Rafał Miłecki 4da909e7b5 b43: do not use SSB specific flags when calling core reset function
Luckily the only flag we use when calling core reset is GMODE one.
Thanks to that we can just switch to single bool and make function calls
bus generic.

Tested on my BCM4312 (LP-PHY) and early tested with BCM43224.

Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-06-03 15:01:07 -04:00

3056 lines
81 KiB
C

/*
Broadcom B43 wireless driver
IEEE 802.11g PHY driver
Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
Copyright (c) 2005-2007 Stefano Brivio <stefano.brivio@polimi.it>
Copyright (c) 2005-2008 Michael Buesch <mb@bu3sch.de>
Copyright (c) 2005, 2006 Danny van Dyk <kugelfang@gentoo.org>
Copyright (c) 2005, 2006 Andreas Jaggi <andreas.jaggi@waterwave.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "b43.h"
#include "phy_g.h"
#include "phy_common.h"
#include "lo.h"
#include "main.h"
#include <linux/bitrev.h>
#include <linux/slab.h>
static const s8 b43_tssi2dbm_g_table[] = {
77, 77, 77, 76,
76, 76, 75, 75,
74, 74, 73, 73,
73, 72, 72, 71,
71, 70, 70, 69,
68, 68, 67, 67,
66, 65, 65, 64,
63, 63, 62, 61,
60, 59, 58, 57,
56, 55, 54, 53,
52, 50, 49, 47,
45, 43, 40, 37,
33, 28, 22, 14,
5, -7, -20, -20,
-20, -20, -20, -20,
-20, -20, -20, -20,
};
static const u8 b43_radio_channel_codes_bg[] = {
12, 17, 22, 27,
32, 37, 42, 47,
52, 57, 62, 67,
72, 84,
};
static void b43_calc_nrssi_threshold(struct b43_wldev *dev);
#define bitrev4(tmp) (bitrev8(tmp) >> 4)
/* Get the freq, as it has to be written to the device. */
static inline u16 channel2freq_bg(u8 channel)
{
B43_WARN_ON(!(channel >= 1 && channel <= 14));
return b43_radio_channel_codes_bg[channel - 1];
}
static void generate_rfatt_list(struct b43_wldev *dev,
struct b43_rfatt_list *list)
{
struct b43_phy *phy = &dev->phy;
/* APHY.rev < 5 || GPHY.rev < 6 */
static const struct b43_rfatt rfatt_0[] = {
{.att = 3,.with_padmix = 0,},
{.att = 1,.with_padmix = 0,},
{.att = 5,.with_padmix = 0,},
{.att = 7,.with_padmix = 0,},
{.att = 9,.with_padmix = 0,},
{.att = 2,.with_padmix = 0,},
{.att = 0,.with_padmix = 0,},
{.att = 4,.with_padmix = 0,},
{.att = 6,.with_padmix = 0,},
{.att = 8,.with_padmix = 0,},
{.att = 1,.with_padmix = 1,},
{.att = 2,.with_padmix = 1,},
{.att = 3,.with_padmix = 1,},
{.att = 4,.with_padmix = 1,},
};
/* Radio.rev == 8 && Radio.version == 0x2050 */
static const struct b43_rfatt rfatt_1[] = {
{.att = 2,.with_padmix = 1,},
{.att = 4,.with_padmix = 1,},
{.att = 6,.with_padmix = 1,},
{.att = 8,.with_padmix = 1,},
{.att = 10,.with_padmix = 1,},
{.att = 12,.with_padmix = 1,},
{.att = 14,.with_padmix = 1,},
};
/* Otherwise */
static const struct b43_rfatt rfatt_2[] = {
{.att = 0,.with_padmix = 1,},
{.att = 2,.with_padmix = 1,},
{.att = 4,.with_padmix = 1,},
{.att = 6,.with_padmix = 1,},
{.att = 8,.with_padmix = 1,},
{.att = 9,.with_padmix = 1,},
{.att = 9,.with_padmix = 1,},
};
if (!b43_has_hardware_pctl(dev)) {
/* Software pctl */
list->list = rfatt_0;
list->len = ARRAY_SIZE(rfatt_0);
list->min_val = 0;
list->max_val = 9;
return;
}
if (phy->radio_ver == 0x2050 && phy->radio_rev == 8) {
/* Hardware pctl */
list->list = rfatt_1;
list->len = ARRAY_SIZE(rfatt_1);
list->min_val = 0;
list->max_val = 14;
return;
}
/* Hardware pctl */
list->list = rfatt_2;
list->len = ARRAY_SIZE(rfatt_2);
list->min_val = 0;
list->max_val = 9;
}
static void generate_bbatt_list(struct b43_wldev *dev,
struct b43_bbatt_list *list)
{
static const struct b43_bbatt bbatt_0[] = {
{.att = 0,},
{.att = 1,},
{.att = 2,},
{.att = 3,},
{.att = 4,},
{.att = 5,},
{.att = 6,},
{.att = 7,},
{.att = 8,},
};
list->list = bbatt_0;
list->len = ARRAY_SIZE(bbatt_0);
list->min_val = 0;
list->max_val = 8;
}
static void b43_shm_clear_tssi(struct b43_wldev *dev)
{
b43_shm_write16(dev, B43_SHM_SHARED, 0x0058, 0x7F7F);
b43_shm_write16(dev, B43_SHM_SHARED, 0x005a, 0x7F7F);
b43_shm_write16(dev, B43_SHM_SHARED, 0x0070, 0x7F7F);
b43_shm_write16(dev, B43_SHM_SHARED, 0x0072, 0x7F7F);
}
/* Synthetic PU workaround */
static void b43_synth_pu_workaround(struct b43_wldev *dev, u8 channel)
{
struct b43_phy *phy = &dev->phy;
might_sleep();
if (phy->radio_ver != 0x2050 || phy->radio_rev >= 6) {
/* We do not need the workaround. */
return;
}
if (channel <= 10) {
b43_write16(dev, B43_MMIO_CHANNEL,
channel2freq_bg(channel + 4));
} else {
b43_write16(dev, B43_MMIO_CHANNEL, channel2freq_bg(1));
}
msleep(1);
b43_write16(dev, B43_MMIO_CHANNEL, channel2freq_bg(channel));
}
/* Set the baseband attenuation value on chip. */
void b43_gphy_set_baseband_attenuation(struct b43_wldev *dev,
u16 baseband_attenuation)
{
struct b43_phy *phy = &dev->phy;
if (phy->analog == 0) {
b43_write16(dev, B43_MMIO_PHY0, (b43_read16(dev, B43_MMIO_PHY0)
& 0xFFF0) |
baseband_attenuation);
} else if (phy->analog > 1) {
b43_phy_maskset(dev, B43_PHY_DACCTL, 0xFFC3, (baseband_attenuation << 2));
} else {
b43_phy_maskset(dev, B43_PHY_DACCTL, 0xFF87, (baseband_attenuation << 3));
}
}
/* Adjust the transmission power output (G-PHY) */
static void b43_set_txpower_g(struct b43_wldev *dev,
const struct b43_bbatt *bbatt,
const struct b43_rfatt *rfatt, u8 tx_control)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
u16 bb, rf;
u16 tx_bias, tx_magn;
bb = bbatt->att;
rf = rfatt->att;
tx_bias = lo->tx_bias;
tx_magn = lo->tx_magn;
if (unlikely(tx_bias == 0xFF))
tx_bias = 0;
/* Save the values for later. Use memmove, because it's valid
* to pass &gphy->rfatt as rfatt pointer argument. Same for bbatt. */
gphy->tx_control = tx_control;
memmove(&gphy->rfatt, rfatt, sizeof(*rfatt));
gphy->rfatt.with_padmix = !!(tx_control & B43_TXCTL_TXMIX);
memmove(&gphy->bbatt, bbatt, sizeof(*bbatt));
if (b43_debug(dev, B43_DBG_XMITPOWER)) {
b43dbg(dev->wl, "Tuning TX-power to bbatt(%u), "
"rfatt(%u), tx_control(0x%02X), "
"tx_bias(0x%02X), tx_magn(0x%02X)\n",
bb, rf, tx_control, tx_bias, tx_magn);
}
b43_gphy_set_baseband_attenuation(dev, bb);
b43_shm_write16(dev, B43_SHM_SHARED, B43_SHM_SH_RFATT, rf);
if (phy->radio_ver == 0x2050 && phy->radio_rev == 8) {
b43_radio_write16(dev, 0x43,
(rf & 0x000F) | (tx_control & 0x0070));
} else {
b43_radio_maskset(dev, 0x43, 0xFFF0, (rf & 0x000F));
b43_radio_maskset(dev, 0x52, ~0x0070, (tx_control & 0x0070));
}
if (has_tx_magnification(phy)) {
b43_radio_write16(dev, 0x52, tx_magn | tx_bias);
} else {
b43_radio_maskset(dev, 0x52, 0xFFF0, (tx_bias & 0x000F));
}
b43_lo_g_adjust(dev);
}
/* GPHY_TSSI_Power_Lookup_Table_Init */
static void b43_gphy_tssi_power_lt_init(struct b43_wldev *dev)
{
struct b43_phy_g *gphy = dev->phy.g;
int i;
u16 value;
for (i = 0; i < 32; i++)
b43_ofdmtab_write16(dev, 0x3C20, i, gphy->tssi2dbm[i]);
for (i = 32; i < 64; i++)
b43_ofdmtab_write16(dev, 0x3C00, i - 32, gphy->tssi2dbm[i]);
for (i = 0; i < 64; i += 2) {
value = (u16) gphy->tssi2dbm[i];
value |= ((u16) gphy->tssi2dbm[i + 1]) << 8;
b43_phy_write(dev, 0x380 + (i / 2), value);
}
}
/* GPHY_Gain_Lookup_Table_Init */
static void b43_gphy_gain_lt_init(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
u16 nr_written = 0;
u16 tmp;
u8 rf, bb;
for (rf = 0; rf < lo->rfatt_list.len; rf++) {
for (bb = 0; bb < lo->bbatt_list.len; bb++) {
if (nr_written >= 0x40)
return;
tmp = lo->bbatt_list.list[bb].att;
tmp <<= 8;
if (phy->radio_rev == 8)
tmp |= 0x50;
else
tmp |= 0x40;
tmp |= lo->rfatt_list.list[rf].att;
b43_phy_write(dev, 0x3C0 + nr_written, tmp);
nr_written++;
}
}
}
static void b43_set_all_gains(struct b43_wldev *dev,
s16 first, s16 second, s16 third)
{
struct b43_phy *phy = &dev->phy;
u16 i;
u16 start = 0x08, end = 0x18;
u16 tmp;
u16 table;
if (phy->rev <= 1) {
start = 0x10;
end = 0x20;
}
table = B43_OFDMTAB_GAINX;
if (phy->rev <= 1)
table = B43_OFDMTAB_GAINX_R1;
for (i = 0; i < 4; i++)
b43_ofdmtab_write16(dev, table, i, first);
for (i = start; i < end; i++)
b43_ofdmtab_write16(dev, table, i, second);
if (third != -1) {
tmp = ((u16) third << 14) | ((u16) third << 6);
b43_phy_maskset(dev, 0x04A0, 0xBFBF, tmp);
b43_phy_maskset(dev, 0x04A1, 0xBFBF, tmp);
b43_phy_maskset(dev, 0x04A2, 0xBFBF, tmp);
}
b43_dummy_transmission(dev, false, true);
}
static void b43_set_original_gains(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
u16 i, tmp;
u16 table;
u16 start = 0x0008, end = 0x0018;
if (phy->rev <= 1) {
start = 0x0010;
end = 0x0020;
}
table = B43_OFDMTAB_GAINX;
if (phy->rev <= 1)
table = B43_OFDMTAB_GAINX_R1;
for (i = 0; i < 4; i++) {
tmp = (i & 0xFFFC);
tmp |= (i & 0x0001) << 1;
tmp |= (i & 0x0002) >> 1;
b43_ofdmtab_write16(dev, table, i, tmp);
}
for (i = start; i < end; i++)
b43_ofdmtab_write16(dev, table, i, i - start);
b43_phy_maskset(dev, 0x04A0, 0xBFBF, 0x4040);
b43_phy_maskset(dev, 0x04A1, 0xBFBF, 0x4040);
b43_phy_maskset(dev, 0x04A2, 0xBFBF, 0x4000);
b43_dummy_transmission(dev, false, true);
}
/* http://bcm-specs.sipsolutions.net/NRSSILookupTable */
static void b43_nrssi_hw_write(struct b43_wldev *dev, u16 offset, s16 val)
{
b43_phy_write(dev, B43_PHY_NRSSILT_CTRL, offset);
b43_phy_write(dev, B43_PHY_NRSSILT_DATA, (u16) val);
}
/* http://bcm-specs.sipsolutions.net/NRSSILookupTable */
static s16 b43_nrssi_hw_read(struct b43_wldev *dev, u16 offset)
{
u16 val;
b43_phy_write(dev, B43_PHY_NRSSILT_CTRL, offset);
val = b43_phy_read(dev, B43_PHY_NRSSILT_DATA);
return (s16) val;
}
/* http://bcm-specs.sipsolutions.net/NRSSILookupTable */
static void b43_nrssi_hw_update(struct b43_wldev *dev, u16 val)
{
u16 i;
s16 tmp;
for (i = 0; i < 64; i++) {
tmp = b43_nrssi_hw_read(dev, i);
tmp -= val;
tmp = clamp_val(tmp, -32, 31);
b43_nrssi_hw_write(dev, i, tmp);
}
}
/* http://bcm-specs.sipsolutions.net/NRSSILookupTable */
static void b43_nrssi_mem_update(struct b43_wldev *dev)
{
struct b43_phy_g *gphy = dev->phy.g;
s16 i, delta;
s32 tmp;
delta = 0x1F - gphy->nrssi[0];
for (i = 0; i < 64; i++) {
tmp = (i - delta) * gphy->nrssislope;
tmp /= 0x10000;
tmp += 0x3A;
tmp = clamp_val(tmp, 0, 0x3F);
gphy->nrssi_lt[i] = tmp;
}
}
static void b43_calc_nrssi_offset(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
u16 backup[20] = { 0 };
s16 v47F;
u16 i;
u16 saved = 0xFFFF;
backup[0] = b43_phy_read(dev, 0x0001);
backup[1] = b43_phy_read(dev, 0x0811);
backup[2] = b43_phy_read(dev, 0x0812);
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
backup[3] = b43_phy_read(dev, 0x0814);
backup[4] = b43_phy_read(dev, 0x0815);
}
backup[5] = b43_phy_read(dev, 0x005A);
backup[6] = b43_phy_read(dev, 0x0059);
backup[7] = b43_phy_read(dev, 0x0058);
backup[8] = b43_phy_read(dev, 0x000A);
backup[9] = b43_phy_read(dev, 0x0003);
backup[10] = b43_radio_read16(dev, 0x007A);
backup[11] = b43_radio_read16(dev, 0x0043);
b43_phy_mask(dev, 0x0429, 0x7FFF);
b43_phy_maskset(dev, 0x0001, 0x3FFF, 0x4000);
b43_phy_set(dev, 0x0811, 0x000C);
b43_phy_maskset(dev, 0x0812, 0xFFF3, 0x0004);
b43_phy_mask(dev, 0x0802, ~(0x1 | 0x2));
if (phy->rev >= 6) {
backup[12] = b43_phy_read(dev, 0x002E);
backup[13] = b43_phy_read(dev, 0x002F);
backup[14] = b43_phy_read(dev, 0x080F);
backup[15] = b43_phy_read(dev, 0x0810);
backup[16] = b43_phy_read(dev, 0x0801);
backup[17] = b43_phy_read(dev, 0x0060);
backup[18] = b43_phy_read(dev, 0x0014);
backup[19] = b43_phy_read(dev, 0x0478);
b43_phy_write(dev, 0x002E, 0);
b43_phy_write(dev, 0x002F, 0);
b43_phy_write(dev, 0x080F, 0);
b43_phy_write(dev, 0x0810, 0);
b43_phy_set(dev, 0x0478, 0x0100);
b43_phy_set(dev, 0x0801, 0x0040);
b43_phy_set(dev, 0x0060, 0x0040);
b43_phy_set(dev, 0x0014, 0x0200);
}
b43_radio_set(dev, 0x007A, 0x0070);
b43_radio_set(dev, 0x007A, 0x0080);
udelay(30);
v47F = (s16) ((b43_phy_read(dev, 0x047F) >> 8) & 0x003F);
if (v47F >= 0x20)
v47F -= 0x40;
if (v47F == 31) {
for (i = 7; i >= 4; i--) {
b43_radio_write16(dev, 0x007B, i);
udelay(20);
v47F =
(s16) ((b43_phy_read(dev, 0x047F) >> 8) & 0x003F);
if (v47F >= 0x20)
v47F -= 0x40;
if (v47F < 31 && saved == 0xFFFF)
saved = i;
}
if (saved == 0xFFFF)
saved = 4;
} else {
b43_radio_mask(dev, 0x007A, 0x007F);
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_set(dev, 0x0814, 0x0001);
b43_phy_mask(dev, 0x0815, 0xFFFE);
}
b43_phy_set(dev, 0x0811, 0x000C);
b43_phy_set(dev, 0x0812, 0x000C);
b43_phy_set(dev, 0x0811, 0x0030);
b43_phy_set(dev, 0x0812, 0x0030);
b43_phy_write(dev, 0x005A, 0x0480);
b43_phy_write(dev, 0x0059, 0x0810);
b43_phy_write(dev, 0x0058, 0x000D);
if (phy->rev == 0) {
b43_phy_write(dev, 0x0003, 0x0122);
} else {
b43_phy_set(dev, 0x000A, 0x2000);
}
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_set(dev, 0x0814, 0x0004);
b43_phy_mask(dev, 0x0815, 0xFFFB);
}
b43_phy_maskset(dev, 0x0003, 0xFF9F, 0x0040);
b43_radio_set(dev, 0x007A, 0x000F);
b43_set_all_gains(dev, 3, 0, 1);
b43_radio_maskset(dev, 0x0043, 0x00F0, 0x000F);
udelay(30);
v47F = (s16) ((b43_phy_read(dev, 0x047F) >> 8) & 0x003F);
if (v47F >= 0x20)
v47F -= 0x40;
if (v47F == -32) {
for (i = 0; i < 4; i++) {
b43_radio_write16(dev, 0x007B, i);
udelay(20);
v47F =
(s16) ((b43_phy_read(dev, 0x047F) >> 8) &
0x003F);
if (v47F >= 0x20)
v47F -= 0x40;
if (v47F > -31 && saved == 0xFFFF)
saved = i;
}
if (saved == 0xFFFF)
saved = 3;
} else
saved = 0;
}
b43_radio_write16(dev, 0x007B, saved);
if (phy->rev >= 6) {
b43_phy_write(dev, 0x002E, backup[12]);
b43_phy_write(dev, 0x002F, backup[13]);
b43_phy_write(dev, 0x080F, backup[14]);
b43_phy_write(dev, 0x0810, backup[15]);
}
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_write(dev, 0x0814, backup[3]);
b43_phy_write(dev, 0x0815, backup[4]);
}
b43_phy_write(dev, 0x005A, backup[5]);
b43_phy_write(dev, 0x0059, backup[6]);
b43_phy_write(dev, 0x0058, backup[7]);
b43_phy_write(dev, 0x000A, backup[8]);
b43_phy_write(dev, 0x0003, backup[9]);
b43_radio_write16(dev, 0x0043, backup[11]);
b43_radio_write16(dev, 0x007A, backup[10]);
b43_phy_write(dev, 0x0802, b43_phy_read(dev, 0x0802) | 0x1 | 0x2);
b43_phy_set(dev, 0x0429, 0x8000);
b43_set_original_gains(dev);
if (phy->rev >= 6) {
b43_phy_write(dev, 0x0801, backup[16]);
b43_phy_write(dev, 0x0060, backup[17]);
b43_phy_write(dev, 0x0014, backup[18]);
b43_phy_write(dev, 0x0478, backup[19]);
}
b43_phy_write(dev, 0x0001, backup[0]);
b43_phy_write(dev, 0x0812, backup[2]);
b43_phy_write(dev, 0x0811, backup[1]);
}
static void b43_calc_nrssi_slope(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 backup[18] = { 0 };
u16 tmp;
s16 nrssi0, nrssi1;
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
if (phy->radio_rev >= 9)
return;
if (phy->radio_rev == 8)
b43_calc_nrssi_offset(dev);
b43_phy_mask(dev, B43_PHY_G_CRS, 0x7FFF);
b43_phy_mask(dev, 0x0802, 0xFFFC);
backup[7] = b43_read16(dev, 0x03E2);
b43_write16(dev, 0x03E2, b43_read16(dev, 0x03E2) | 0x8000);
backup[0] = b43_radio_read16(dev, 0x007A);
backup[1] = b43_radio_read16(dev, 0x0052);
backup[2] = b43_radio_read16(dev, 0x0043);
backup[3] = b43_phy_read(dev, 0x0015);
backup[4] = b43_phy_read(dev, 0x005A);
backup[5] = b43_phy_read(dev, 0x0059);
backup[6] = b43_phy_read(dev, 0x0058);
backup[8] = b43_read16(dev, 0x03E6);
backup[9] = b43_read16(dev, B43_MMIO_CHANNEL_EXT);
if (phy->rev >= 3) {
backup[10] = b43_phy_read(dev, 0x002E);
backup[11] = b43_phy_read(dev, 0x002F);
backup[12] = b43_phy_read(dev, 0x080F);
backup[13] = b43_phy_read(dev, B43_PHY_G_LO_CONTROL);
backup[14] = b43_phy_read(dev, 0x0801);
backup[15] = b43_phy_read(dev, 0x0060);
backup[16] = b43_phy_read(dev, 0x0014);
backup[17] = b43_phy_read(dev, 0x0478);
b43_phy_write(dev, 0x002E, 0);
b43_phy_write(dev, B43_PHY_G_LO_CONTROL, 0);
switch (phy->rev) {
case 4:
case 6:
case 7:
b43_phy_set(dev, 0x0478, 0x0100);
b43_phy_set(dev, 0x0801, 0x0040);
break;
case 3:
case 5:
b43_phy_mask(dev, 0x0801, 0xFFBF);
break;
}
b43_phy_set(dev, 0x0060, 0x0040);
b43_phy_set(dev, 0x0014, 0x0200);
}
b43_radio_set(dev, 0x007A, 0x0070);
b43_set_all_gains(dev, 0, 8, 0);
b43_radio_mask(dev, 0x007A, 0x00F7);
if (phy->rev >= 2) {
b43_phy_maskset(dev, 0x0811, 0xFFCF, 0x0030);
b43_phy_maskset(dev, 0x0812, 0xFFCF, 0x0010);
}
b43_radio_set(dev, 0x007A, 0x0080);
udelay(20);
nrssi0 = (s16) ((b43_phy_read(dev, 0x047F) >> 8) & 0x003F);
if (nrssi0 >= 0x0020)
nrssi0 -= 0x0040;
b43_radio_mask(dev, 0x007A, 0x007F);
if (phy->rev >= 2) {
b43_phy_maskset(dev, 0x0003, 0xFF9F, 0x0040);
}
b43_write16(dev, B43_MMIO_CHANNEL_EXT,
b43_read16(dev, B43_MMIO_CHANNEL_EXT)
| 0x2000);
b43_radio_set(dev, 0x007A, 0x000F);
b43_phy_write(dev, 0x0015, 0xF330);
if (phy->rev >= 2) {
b43_phy_maskset(dev, 0x0812, 0xFFCF, 0x0020);
b43_phy_maskset(dev, 0x0811, 0xFFCF, 0x0020);
}
b43_set_all_gains(dev, 3, 0, 1);
if (phy->radio_rev == 8) {
b43_radio_write16(dev, 0x0043, 0x001F);
} else {
tmp = b43_radio_read16(dev, 0x0052) & 0xFF0F;
b43_radio_write16(dev, 0x0052, tmp | 0x0060);
tmp = b43_radio_read16(dev, 0x0043) & 0xFFF0;
b43_radio_write16(dev, 0x0043, tmp | 0x0009);
}
b43_phy_write(dev, 0x005A, 0x0480);
b43_phy_write(dev, 0x0059, 0x0810);
b43_phy_write(dev, 0x0058, 0x000D);
udelay(20);
nrssi1 = (s16) ((b43_phy_read(dev, 0x047F) >> 8) & 0x003F);
if (nrssi1 >= 0x0020)
nrssi1 -= 0x0040;
if (nrssi0 == nrssi1)
gphy->nrssislope = 0x00010000;
else
gphy->nrssislope = 0x00400000 / (nrssi0 - nrssi1);
if (nrssi0 >= -4) {
gphy->nrssi[0] = nrssi1;
gphy->nrssi[1] = nrssi0;
}
if (phy->rev >= 3) {
b43_phy_write(dev, 0x002E, backup[10]);
b43_phy_write(dev, 0x002F, backup[11]);
b43_phy_write(dev, 0x080F, backup[12]);
b43_phy_write(dev, B43_PHY_G_LO_CONTROL, backup[13]);
}
if (phy->rev >= 2) {
b43_phy_mask(dev, 0x0812, 0xFFCF);
b43_phy_mask(dev, 0x0811, 0xFFCF);
}
b43_radio_write16(dev, 0x007A, backup[0]);
b43_radio_write16(dev, 0x0052, backup[1]);
b43_radio_write16(dev, 0x0043, backup[2]);
b43_write16(dev, 0x03E2, backup[7]);
b43_write16(dev, 0x03E6, backup[8]);
b43_write16(dev, B43_MMIO_CHANNEL_EXT, backup[9]);
b43_phy_write(dev, 0x0015, backup[3]);
b43_phy_write(dev, 0x005A, backup[4]);
b43_phy_write(dev, 0x0059, backup[5]);
b43_phy_write(dev, 0x0058, backup[6]);
b43_synth_pu_workaround(dev, phy->channel);
b43_phy_set(dev, 0x0802, (0x0001 | 0x0002));
b43_set_original_gains(dev);
b43_phy_set(dev, B43_PHY_G_CRS, 0x8000);
if (phy->rev >= 3) {
b43_phy_write(dev, 0x0801, backup[14]);
b43_phy_write(dev, 0x0060, backup[15]);
b43_phy_write(dev, 0x0014, backup[16]);
b43_phy_write(dev, 0x0478, backup[17]);
}
b43_nrssi_mem_update(dev);
b43_calc_nrssi_threshold(dev);
}
static void b43_calc_nrssi_threshold(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
s32 a, b;
s16 tmp16;
u16 tmp_u16;
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
if (!phy->gmode ||
!(dev->dev->bus_sprom->boardflags_lo & B43_BFL_RSSI)) {
tmp16 = b43_nrssi_hw_read(dev, 0x20);
if (tmp16 >= 0x20)
tmp16 -= 0x40;
if (tmp16 < 3) {
b43_phy_maskset(dev, 0x048A, 0xF000, 0x09EB);
} else {
b43_phy_maskset(dev, 0x048A, 0xF000, 0x0AED);
}
} else {
if (gphy->interfmode == B43_INTERFMODE_NONWLAN) {
a = 0xE;
b = 0xA;
} else if (!gphy->aci_wlan_automatic && gphy->aci_enable) {
a = 0x13;
b = 0x12;
} else {
a = 0xE;
b = 0x11;
}
a = a * (gphy->nrssi[1] - gphy->nrssi[0]);
a += (gphy->nrssi[0] << 6);
if (a < 32)
a += 31;
else
a += 32;
a = a >> 6;
a = clamp_val(a, -31, 31);
b = b * (gphy->nrssi[1] - gphy->nrssi[0]);
b += (gphy->nrssi[0] << 6);
if (b < 32)
b += 31;
else
b += 32;
b = b >> 6;
b = clamp_val(b, -31, 31);
tmp_u16 = b43_phy_read(dev, 0x048A) & 0xF000;
tmp_u16 |= ((u32) b & 0x0000003F);
tmp_u16 |= (((u32) a & 0x0000003F) << 6);
b43_phy_write(dev, 0x048A, tmp_u16);
}
}
/* Stack implementation to save/restore values from the
* interference mitigation code.
* It is save to restore values in random order.
*/
static void _stack_save(u32 *_stackptr, size_t *stackidx,
u8 id, u16 offset, u16 value)
{
u32 *stackptr = &(_stackptr[*stackidx]);
B43_WARN_ON(offset & 0xF000);
B43_WARN_ON(id & 0xF0);
*stackptr = offset;
*stackptr |= ((u32) id) << 12;
*stackptr |= ((u32) value) << 16;
(*stackidx)++;
B43_WARN_ON(*stackidx >= B43_INTERFSTACK_SIZE);
}
static u16 _stack_restore(u32 *stackptr, u8 id, u16 offset)
{
size_t i;
B43_WARN_ON(offset & 0xF000);
B43_WARN_ON(id & 0xF0);
for (i = 0; i < B43_INTERFSTACK_SIZE; i++, stackptr++) {
if ((*stackptr & 0x00000FFF) != offset)
continue;
if (((*stackptr & 0x0000F000) >> 12) != id)
continue;
return ((*stackptr & 0xFFFF0000) >> 16);
}
B43_WARN_ON(1);
return 0;
}
#define phy_stacksave(offset) \
do { \
_stack_save(stack, &stackidx, 0x1, (offset), \
b43_phy_read(dev, (offset))); \
} while (0)
#define phy_stackrestore(offset) \
do { \
b43_phy_write(dev, (offset), \
_stack_restore(stack, 0x1, \
(offset))); \
} while (0)
#define radio_stacksave(offset) \
do { \
_stack_save(stack, &stackidx, 0x2, (offset), \
b43_radio_read16(dev, (offset))); \
} while (0)
#define radio_stackrestore(offset) \
do { \
b43_radio_write16(dev, (offset), \
_stack_restore(stack, 0x2, \
(offset))); \
} while (0)
#define ofdmtab_stacksave(table, offset) \
do { \
_stack_save(stack, &stackidx, 0x3, (offset)|(table), \
b43_ofdmtab_read16(dev, (table), (offset))); \
} while (0)
#define ofdmtab_stackrestore(table, offset) \
do { \
b43_ofdmtab_write16(dev, (table), (offset), \
_stack_restore(stack, 0x3, \
(offset)|(table))); \
} while (0)
static void
b43_radio_interference_mitigation_enable(struct b43_wldev *dev, int mode)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 tmp, flipped;
size_t stackidx = 0;
u32 *stack = gphy->interfstack;
switch (mode) {
case B43_INTERFMODE_NONWLAN:
if (phy->rev != 1) {
b43_phy_set(dev, 0x042B, 0x0800);
b43_phy_mask(dev, B43_PHY_G_CRS, ~0x4000);
break;
}
radio_stacksave(0x0078);
tmp = (b43_radio_read16(dev, 0x0078) & 0x001E);
B43_WARN_ON(tmp > 15);
flipped = bitrev4(tmp);
if (flipped < 10 && flipped >= 8)
flipped = 7;
else if (flipped >= 10)
flipped -= 3;
flipped = (bitrev4(flipped) << 1) | 0x0020;
b43_radio_write16(dev, 0x0078, flipped);
b43_calc_nrssi_threshold(dev);
phy_stacksave(0x0406);
b43_phy_write(dev, 0x0406, 0x7E28);
b43_phy_set(dev, 0x042B, 0x0800);
b43_phy_set(dev, B43_PHY_RADIO_BITFIELD, 0x1000);
phy_stacksave(0x04A0);
b43_phy_maskset(dev, 0x04A0, 0xC0C0, 0x0008);
phy_stacksave(0x04A1);
b43_phy_maskset(dev, 0x04A1, 0xC0C0, 0x0605);
phy_stacksave(0x04A2);
b43_phy_maskset(dev, 0x04A2, 0xC0C0, 0x0204);
phy_stacksave(0x04A8);
b43_phy_maskset(dev, 0x04A8, 0xC0C0, 0x0803);
phy_stacksave(0x04AB);
b43_phy_maskset(dev, 0x04AB, 0xC0C0, 0x0605);
phy_stacksave(0x04A7);
b43_phy_write(dev, 0x04A7, 0x0002);
phy_stacksave(0x04A3);
b43_phy_write(dev, 0x04A3, 0x287A);
phy_stacksave(0x04A9);
b43_phy_write(dev, 0x04A9, 0x2027);
phy_stacksave(0x0493);
b43_phy_write(dev, 0x0493, 0x32F5);
phy_stacksave(0x04AA);
b43_phy_write(dev, 0x04AA, 0x2027);
phy_stacksave(0x04AC);
b43_phy_write(dev, 0x04AC, 0x32F5);
break;
case B43_INTERFMODE_MANUALWLAN:
if (b43_phy_read(dev, 0x0033) & 0x0800)
break;
gphy->aci_enable = 1;
phy_stacksave(B43_PHY_RADIO_BITFIELD);
phy_stacksave(B43_PHY_G_CRS);
if (phy->rev < 2) {
phy_stacksave(0x0406);
} else {
phy_stacksave(0x04C0);
phy_stacksave(0x04C1);
}
phy_stacksave(0x0033);
phy_stacksave(0x04A7);
phy_stacksave(0x04A3);
phy_stacksave(0x04A9);
phy_stacksave(0x04AA);
phy_stacksave(0x04AC);
phy_stacksave(0x0493);
phy_stacksave(0x04A1);
phy_stacksave(0x04A0);
phy_stacksave(0x04A2);
phy_stacksave(0x048A);
phy_stacksave(0x04A8);
phy_stacksave(0x04AB);
if (phy->rev == 2) {
phy_stacksave(0x04AD);
phy_stacksave(0x04AE);
} else if (phy->rev >= 3) {
phy_stacksave(0x04AD);
phy_stacksave(0x0415);
phy_stacksave(0x0416);
phy_stacksave(0x0417);
ofdmtab_stacksave(0x1A00, 0x2);
ofdmtab_stacksave(0x1A00, 0x3);
}
phy_stacksave(0x042B);
phy_stacksave(0x048C);
b43_phy_mask(dev, B43_PHY_RADIO_BITFIELD, ~0x1000);
b43_phy_maskset(dev, B43_PHY_G_CRS, 0xFFFC, 0x0002);
b43_phy_write(dev, 0x0033, 0x0800);
b43_phy_write(dev, 0x04A3, 0x2027);
b43_phy_write(dev, 0x04A9, 0x1CA8);
b43_phy_write(dev, 0x0493, 0x287A);
b43_phy_write(dev, 0x04AA, 0x1CA8);
b43_phy_write(dev, 0x04AC, 0x287A);
b43_phy_maskset(dev, 0x04A0, 0xFFC0, 0x001A);
b43_phy_write(dev, 0x04A7, 0x000D);
if (phy->rev < 2) {
b43_phy_write(dev, 0x0406, 0xFF0D);
} else if (phy->rev == 2) {
b43_phy_write(dev, 0x04C0, 0xFFFF);
b43_phy_write(dev, 0x04C1, 0x00A9);
} else {
b43_phy_write(dev, 0x04C0, 0x00C1);
b43_phy_write(dev, 0x04C1, 0x0059);
}
b43_phy_maskset(dev, 0x04A1, 0xC0FF, 0x1800);
b43_phy_maskset(dev, 0x04A1, 0xFFC0, 0x0015);
b43_phy_maskset(dev, 0x04A8, 0xCFFF, 0x1000);
b43_phy_maskset(dev, 0x04A8, 0xF0FF, 0x0A00);
b43_phy_maskset(dev, 0x04AB, 0xCFFF, 0x1000);
b43_phy_maskset(dev, 0x04AB, 0xF0FF, 0x0800);
b43_phy_maskset(dev, 0x04AB, 0xFFCF, 0x0010);
b43_phy_maskset(dev, 0x04AB, 0xFFF0, 0x0005);
b43_phy_maskset(dev, 0x04A8, 0xFFCF, 0x0010);
b43_phy_maskset(dev, 0x04A8, 0xFFF0, 0x0006);
b43_phy_maskset(dev, 0x04A2, 0xF0FF, 0x0800);
b43_phy_maskset(dev, 0x04A0, 0xF0FF, 0x0500);
b43_phy_maskset(dev, 0x04A2, 0xFFF0, 0x000B);
if (phy->rev >= 3) {
b43_phy_mask(dev, 0x048A, 0x7FFF);
b43_phy_maskset(dev, 0x0415, 0x8000, 0x36D8);
b43_phy_maskset(dev, 0x0416, 0x8000, 0x36D8);
b43_phy_maskset(dev, 0x0417, 0xFE00, 0x016D);
} else {
b43_phy_set(dev, 0x048A, 0x1000);
b43_phy_maskset(dev, 0x048A, 0x9FFF, 0x2000);
b43_hf_write(dev, b43_hf_read(dev) | B43_HF_ACIW);
}
if (phy->rev >= 2) {
b43_phy_set(dev, 0x042B, 0x0800);
}
b43_phy_maskset(dev, 0x048C, 0xF0FF, 0x0200);
if (phy->rev == 2) {
b43_phy_maskset(dev, 0x04AE, 0xFF00, 0x007F);
b43_phy_maskset(dev, 0x04AD, 0x00FF, 0x1300);
} else if (phy->rev >= 6) {
b43_ofdmtab_write16(dev, 0x1A00, 0x3, 0x007F);
b43_ofdmtab_write16(dev, 0x1A00, 0x2, 0x007F);
b43_phy_mask(dev, 0x04AD, 0x00FF);
}
b43_calc_nrssi_slope(dev);
break;
default:
B43_WARN_ON(1);
}
}
static void
b43_radio_interference_mitigation_disable(struct b43_wldev *dev, int mode)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u32 *stack = gphy->interfstack;
switch (mode) {
case B43_INTERFMODE_NONWLAN:
if (phy->rev != 1) {
b43_phy_mask(dev, 0x042B, ~0x0800);
b43_phy_set(dev, B43_PHY_G_CRS, 0x4000);
break;
}
radio_stackrestore(0x0078);
b43_calc_nrssi_threshold(dev);
phy_stackrestore(0x0406);
b43_phy_mask(dev, 0x042B, ~0x0800);
if (!dev->bad_frames_preempt) {
b43_phy_mask(dev, B43_PHY_RADIO_BITFIELD, ~(1 << 11));
}
b43_phy_set(dev, B43_PHY_G_CRS, 0x4000);
phy_stackrestore(0x04A0);
phy_stackrestore(0x04A1);
phy_stackrestore(0x04A2);
phy_stackrestore(0x04A8);
phy_stackrestore(0x04AB);
phy_stackrestore(0x04A7);
phy_stackrestore(0x04A3);
phy_stackrestore(0x04A9);
phy_stackrestore(0x0493);
phy_stackrestore(0x04AA);
phy_stackrestore(0x04AC);
break;
case B43_INTERFMODE_MANUALWLAN:
if (!(b43_phy_read(dev, 0x0033) & 0x0800))
break;
gphy->aci_enable = 0;
phy_stackrestore(B43_PHY_RADIO_BITFIELD);
phy_stackrestore(B43_PHY_G_CRS);
phy_stackrestore(0x0033);
phy_stackrestore(0x04A3);
phy_stackrestore(0x04A9);
phy_stackrestore(0x0493);
phy_stackrestore(0x04AA);
phy_stackrestore(0x04AC);
phy_stackrestore(0x04A0);
phy_stackrestore(0x04A7);
if (phy->rev >= 2) {
phy_stackrestore(0x04C0);
phy_stackrestore(0x04C1);
} else
phy_stackrestore(0x0406);
phy_stackrestore(0x04A1);
phy_stackrestore(0x04AB);
phy_stackrestore(0x04A8);
if (phy->rev == 2) {
phy_stackrestore(0x04AD);
phy_stackrestore(0x04AE);
} else if (phy->rev >= 3) {
phy_stackrestore(0x04AD);
phy_stackrestore(0x0415);
phy_stackrestore(0x0416);
phy_stackrestore(0x0417);
ofdmtab_stackrestore(0x1A00, 0x2);
ofdmtab_stackrestore(0x1A00, 0x3);
}
phy_stackrestore(0x04A2);
phy_stackrestore(0x048A);
phy_stackrestore(0x042B);
phy_stackrestore(0x048C);
b43_hf_write(dev, b43_hf_read(dev) & ~B43_HF_ACIW);
b43_calc_nrssi_slope(dev);
break;
default:
B43_WARN_ON(1);
}
}
#undef phy_stacksave
#undef phy_stackrestore
#undef radio_stacksave
#undef radio_stackrestore
#undef ofdmtab_stacksave
#undef ofdmtab_stackrestore
static u16 b43_radio_core_calibration_value(struct b43_wldev *dev)
{
u16 reg, index, ret;
static const u8 rcc_table[] = {
0x02, 0x03, 0x01, 0x0F,
0x06, 0x07, 0x05, 0x0F,
0x0A, 0x0B, 0x09, 0x0F,
0x0E, 0x0F, 0x0D, 0x0F,
};
reg = b43_radio_read16(dev, 0x60);
index = (reg & 0x001E) >> 1;
ret = rcc_table[index] << 1;
ret |= (reg & 0x0001);
ret |= 0x0020;
return ret;
}
#define LPD(L, P, D) (((L) << 2) | ((P) << 1) | ((D) << 0))
static u16 radio2050_rfover_val(struct b43_wldev *dev,
u16 phy_register, unsigned int lpd)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct ssb_sprom *sprom = dev->dev->bus_sprom;
if (!phy->gmode)
return 0;
if (has_loopback_gain(phy)) {
int max_lb_gain = gphy->max_lb_gain;
u16 extlna;
u16 i;
if (phy->radio_rev == 8)
max_lb_gain += 0x3E;
else
max_lb_gain += 0x26;
if (max_lb_gain >= 0x46) {
extlna = 0x3000;
max_lb_gain -= 0x46;
} else if (max_lb_gain >= 0x3A) {
extlna = 0x1000;
max_lb_gain -= 0x3A;
} else if (max_lb_gain >= 0x2E) {
extlna = 0x2000;
max_lb_gain -= 0x2E;
} else {
extlna = 0;
max_lb_gain -= 0x10;
}
for (i = 0; i < 16; i++) {
max_lb_gain -= (i * 6);
if (max_lb_gain < 6)
break;
}
if ((phy->rev < 7) ||
!(sprom->boardflags_lo & B43_BFL_EXTLNA)) {
if (phy_register == B43_PHY_RFOVER) {
return 0x1B3;
} else if (phy_register == B43_PHY_RFOVERVAL) {
extlna |= (i << 8);
switch (lpd) {
case LPD(0, 1, 1):
return 0x0F92;
case LPD(0, 0, 1):
case LPD(1, 0, 1):
return (0x0092 | extlna);
case LPD(1, 0, 0):
return (0x0093 | extlna);
}
B43_WARN_ON(1);
}
B43_WARN_ON(1);
} else {
if (phy_register == B43_PHY_RFOVER) {
return 0x9B3;
} else if (phy_register == B43_PHY_RFOVERVAL) {
if (extlna)
extlna |= 0x8000;
extlna |= (i << 8);
switch (lpd) {
case LPD(0, 1, 1):
return 0x8F92;
case LPD(0, 0, 1):
return (0x8092 | extlna);
case LPD(1, 0, 1):
return (0x2092 | extlna);
case LPD(1, 0, 0):
return (0x2093 | extlna);
}
B43_WARN_ON(1);
}
B43_WARN_ON(1);
}
} else {
if ((phy->rev < 7) ||
!(sprom->boardflags_lo & B43_BFL_EXTLNA)) {
if (phy_register == B43_PHY_RFOVER) {
return 0x1B3;
} else if (phy_register == B43_PHY_RFOVERVAL) {
switch (lpd) {
case LPD(0, 1, 1):
return 0x0FB2;
case LPD(0, 0, 1):
return 0x00B2;
case LPD(1, 0, 1):
return 0x30B2;
case LPD(1, 0, 0):
return 0x30B3;
}
B43_WARN_ON(1);
}
B43_WARN_ON(1);
} else {
if (phy_register == B43_PHY_RFOVER) {
return 0x9B3;
} else if (phy_register == B43_PHY_RFOVERVAL) {
switch (lpd) {
case LPD(0, 1, 1):
return 0x8FB2;
case LPD(0, 0, 1):
return 0x80B2;
case LPD(1, 0, 1):
return 0x20B2;
case LPD(1, 0, 0):
return 0x20B3;
}
B43_WARN_ON(1);
}
B43_WARN_ON(1);
}
}
return 0;
}
struct init2050_saved_values {
/* Core registers */
u16 reg_3EC;
u16 reg_3E6;
u16 reg_3F4;
/* Radio registers */
u16 radio_43;
u16 radio_51;
u16 radio_52;
/* PHY registers */
u16 phy_pgactl;
u16 phy_cck_5A;
u16 phy_cck_59;
u16 phy_cck_58;
u16 phy_cck_30;
u16 phy_rfover;
u16 phy_rfoverval;
u16 phy_analogover;
u16 phy_analogoverval;
u16 phy_crs0;
u16 phy_classctl;
u16 phy_lo_mask;
u16 phy_lo_ctl;
u16 phy_syncctl;
};
static u16 b43_radio_init2050(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct init2050_saved_values sav;
u16 rcc;
u16 radio78;
u16 ret;
u16 i, j;
u32 tmp1 = 0, tmp2 = 0;
memset(&sav, 0, sizeof(sav)); /* get rid of "may be used uninitialized..." */
sav.radio_43 = b43_radio_read16(dev, 0x43);
sav.radio_51 = b43_radio_read16(dev, 0x51);
sav.radio_52 = b43_radio_read16(dev, 0x52);
sav.phy_pgactl = b43_phy_read(dev, B43_PHY_PGACTL);
sav.phy_cck_5A = b43_phy_read(dev, B43_PHY_CCK(0x5A));
sav.phy_cck_59 = b43_phy_read(dev, B43_PHY_CCK(0x59));
sav.phy_cck_58 = b43_phy_read(dev, B43_PHY_CCK(0x58));
if (phy->type == B43_PHYTYPE_B) {
sav.phy_cck_30 = b43_phy_read(dev, B43_PHY_CCK(0x30));
sav.reg_3EC = b43_read16(dev, 0x3EC);
b43_phy_write(dev, B43_PHY_CCK(0x30), 0xFF);
b43_write16(dev, 0x3EC, 0x3F3F);
} else if (phy->gmode || phy->rev >= 2) {
sav.phy_rfover = b43_phy_read(dev, B43_PHY_RFOVER);
sav.phy_rfoverval = b43_phy_read(dev, B43_PHY_RFOVERVAL);
sav.phy_analogover = b43_phy_read(dev, B43_PHY_ANALOGOVER);
sav.phy_analogoverval =
b43_phy_read(dev, B43_PHY_ANALOGOVERVAL);
sav.phy_crs0 = b43_phy_read(dev, B43_PHY_CRS0);
sav.phy_classctl = b43_phy_read(dev, B43_PHY_CLASSCTL);
b43_phy_set(dev, B43_PHY_ANALOGOVER, 0x0003);
b43_phy_mask(dev, B43_PHY_ANALOGOVERVAL, 0xFFFC);
b43_phy_mask(dev, B43_PHY_CRS0, 0x7FFF);
b43_phy_mask(dev, B43_PHY_CLASSCTL, 0xFFFC);
if (has_loopback_gain(phy)) {
sav.phy_lo_mask = b43_phy_read(dev, B43_PHY_LO_MASK);
sav.phy_lo_ctl = b43_phy_read(dev, B43_PHY_LO_CTL);
if (phy->rev >= 3)
b43_phy_write(dev, B43_PHY_LO_MASK, 0xC020);
else
b43_phy_write(dev, B43_PHY_LO_MASK, 0x8020);
b43_phy_write(dev, B43_PHY_LO_CTL, 0);
}
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev, B43_PHY_RFOVERVAL,
LPD(0, 1, 1)));
b43_phy_write(dev, B43_PHY_RFOVER,
radio2050_rfover_val(dev, B43_PHY_RFOVER, 0));
}
b43_write16(dev, 0x3E2, b43_read16(dev, 0x3E2) | 0x8000);
sav.phy_syncctl = b43_phy_read(dev, B43_PHY_SYNCCTL);
b43_phy_mask(dev, B43_PHY_SYNCCTL, 0xFF7F);
sav.reg_3E6 = b43_read16(dev, 0x3E6);
sav.reg_3F4 = b43_read16(dev, 0x3F4);
if (phy->analog == 0) {
b43_write16(dev, 0x03E6, 0x0122);
} else {
if (phy->analog >= 2) {
b43_phy_maskset(dev, B43_PHY_CCK(0x03), 0xFFBF, 0x40);
}
b43_write16(dev, B43_MMIO_CHANNEL_EXT,
(b43_read16(dev, B43_MMIO_CHANNEL_EXT) | 0x2000));
}
rcc = b43_radio_core_calibration_value(dev);
if (phy->type == B43_PHYTYPE_B)
b43_radio_write16(dev, 0x78, 0x26);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev, B43_PHY_RFOVERVAL,
LPD(0, 1, 1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xBFAF);
b43_phy_write(dev, B43_PHY_CCK(0x2B), 0x1403);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev, B43_PHY_RFOVERVAL,
LPD(0, 0, 1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xBFA0);
b43_radio_set(dev, 0x51, 0x0004);
if (phy->radio_rev == 8) {
b43_radio_write16(dev, 0x43, 0x1F);
} else {
b43_radio_write16(dev, 0x52, 0);
b43_radio_maskset(dev, 0x43, 0xFFF0, 0x0009);
}
b43_phy_write(dev, B43_PHY_CCK(0x58), 0);
for (i = 0; i < 16; i++) {
b43_phy_write(dev, B43_PHY_CCK(0x5A), 0x0480);
b43_phy_write(dev, B43_PHY_CCK(0x59), 0xC810);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0x000D);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0, 1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xAFB0);
udelay(10);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0, 1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xEFB0);
udelay(10);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0, 0)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xFFF0);
udelay(20);
tmp1 += b43_phy_read(dev, B43_PHY_LO_LEAKAGE);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0, 1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xAFB0);
}
udelay(10);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0);
tmp1++;
tmp1 >>= 9;
for (i = 0; i < 16; i++) {
radio78 = (bitrev4(i) << 1) | 0x0020;
b43_radio_write16(dev, 0x78, radio78);
udelay(10);
for (j = 0; j < 16; j++) {
b43_phy_write(dev, B43_PHY_CCK(0x5A), 0x0D80);
b43_phy_write(dev, B43_PHY_CCK(0x59), 0xC810);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0x000D);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0,
1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xAFB0);
udelay(10);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0,
1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xEFB0);
udelay(10);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0,
0)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xFFF0);
udelay(10);
tmp2 += b43_phy_read(dev, B43_PHY_LO_LEAKAGE);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0,
1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xAFB0);
}
tmp2++;
tmp2 >>= 8;
if (tmp1 < tmp2)
break;
}
/* Restore the registers */
b43_phy_write(dev, B43_PHY_PGACTL, sav.phy_pgactl);
b43_radio_write16(dev, 0x51, sav.radio_51);
b43_radio_write16(dev, 0x52, sav.radio_52);
b43_radio_write16(dev, 0x43, sav.radio_43);
b43_phy_write(dev, B43_PHY_CCK(0x5A), sav.phy_cck_5A);
b43_phy_write(dev, B43_PHY_CCK(0x59), sav.phy_cck_59);
b43_phy_write(dev, B43_PHY_CCK(0x58), sav.phy_cck_58);
b43_write16(dev, 0x3E6, sav.reg_3E6);
if (phy->analog != 0)
b43_write16(dev, 0x3F4, sav.reg_3F4);
b43_phy_write(dev, B43_PHY_SYNCCTL, sav.phy_syncctl);
b43_synth_pu_workaround(dev, phy->channel);
if (phy->type == B43_PHYTYPE_B) {
b43_phy_write(dev, B43_PHY_CCK(0x30), sav.phy_cck_30);
b43_write16(dev, 0x3EC, sav.reg_3EC);
} else if (phy->gmode) {
b43_write16(dev, B43_MMIO_PHY_RADIO,
b43_read16(dev, B43_MMIO_PHY_RADIO)
& 0x7FFF);
b43_phy_write(dev, B43_PHY_RFOVER, sav.phy_rfover);
b43_phy_write(dev, B43_PHY_RFOVERVAL, sav.phy_rfoverval);
b43_phy_write(dev, B43_PHY_ANALOGOVER, sav.phy_analogover);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL,
sav.phy_analogoverval);
b43_phy_write(dev, B43_PHY_CRS0, sav.phy_crs0);
b43_phy_write(dev, B43_PHY_CLASSCTL, sav.phy_classctl);
if (has_loopback_gain(phy)) {
b43_phy_write(dev, B43_PHY_LO_MASK, sav.phy_lo_mask);
b43_phy_write(dev, B43_PHY_LO_CTL, sav.phy_lo_ctl);
}
}
if (i > 15)
ret = radio78;
else
ret = rcc;
return ret;
}
static void b43_phy_initb5(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 offset, value;
u8 old_channel;
if (phy->analog == 1) {
b43_radio_set(dev, 0x007A, 0x0050);
}
if ((dev->dev->board_vendor != SSB_BOARDVENDOR_BCM) &&
(dev->dev->board_type != SSB_BOARD_BU4306)) {
value = 0x2120;
for (offset = 0x00A8; offset < 0x00C7; offset++) {
b43_phy_write(dev, offset, value);
value += 0x202;
}
}
b43_phy_maskset(dev, 0x0035, 0xF0FF, 0x0700);
if (phy->radio_ver == 0x2050)
b43_phy_write(dev, 0x0038, 0x0667);
if (phy->gmode || phy->rev >= 2) {
if (phy->radio_ver == 0x2050) {
b43_radio_set(dev, 0x007A, 0x0020);
b43_radio_set(dev, 0x0051, 0x0004);
}
b43_write16(dev, B43_MMIO_PHY_RADIO, 0x0000);
b43_phy_set(dev, 0x0802, 0x0100);
b43_phy_set(dev, 0x042B, 0x2000);
b43_phy_write(dev, 0x001C, 0x186A);
b43_phy_maskset(dev, 0x0013, 0x00FF, 0x1900);
b43_phy_maskset(dev, 0x0035, 0xFFC0, 0x0064);
b43_phy_maskset(dev, 0x005D, 0xFF80, 0x000A);
}
if (dev->bad_frames_preempt) {
b43_phy_set(dev, B43_PHY_RADIO_BITFIELD, (1 << 11));
}
if (phy->analog == 1) {
b43_phy_write(dev, 0x0026, 0xCE00);
b43_phy_write(dev, 0x0021, 0x3763);
b43_phy_write(dev, 0x0022, 0x1BC3);
b43_phy_write(dev, 0x0023, 0x06F9);
b43_phy_write(dev, 0x0024, 0x037E);
} else
b43_phy_write(dev, 0x0026, 0xCC00);
b43_phy_write(dev, 0x0030, 0x00C6);
b43_write16(dev, 0x03EC, 0x3F22);
if (phy->analog == 1)
b43_phy_write(dev, 0x0020, 0x3E1C);
else
b43_phy_write(dev, 0x0020, 0x301C);
if (phy->analog == 0)
b43_write16(dev, 0x03E4, 0x3000);
old_channel = phy->channel;
/* Force to channel 7, even if not supported. */
b43_gphy_channel_switch(dev, 7, 0);
if (phy->radio_ver != 0x2050) {
b43_radio_write16(dev, 0x0075, 0x0080);
b43_radio_write16(dev, 0x0079, 0x0081);
}
b43_radio_write16(dev, 0x0050, 0x0020);
b43_radio_write16(dev, 0x0050, 0x0023);
if (phy->radio_ver == 0x2050) {
b43_radio_write16(dev, 0x0050, 0x0020);
b43_radio_write16(dev, 0x005A, 0x0070);
}
b43_radio_write16(dev, 0x005B, 0x007B);
b43_radio_write16(dev, 0x005C, 0x00B0);
b43_radio_set(dev, 0x007A, 0x0007);
b43_gphy_channel_switch(dev, old_channel, 0);
b43_phy_write(dev, 0x0014, 0x0080);
b43_phy_write(dev, 0x0032, 0x00CA);
b43_phy_write(dev, 0x002A, 0x88A3);
b43_set_txpower_g(dev, &gphy->bbatt, &gphy->rfatt, gphy->tx_control);
if (phy->radio_ver == 0x2050)
b43_radio_write16(dev, 0x005D, 0x000D);
b43_write16(dev, 0x03E4, (b43_read16(dev, 0x03E4) & 0xFFC0) | 0x0004);
}
static void b43_phy_initb6(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 offset, val;
u8 old_channel;
b43_phy_write(dev, 0x003E, 0x817A);
b43_radio_write16(dev, 0x007A,
(b43_radio_read16(dev, 0x007A) | 0x0058));
if (phy->radio_rev == 4 || phy->radio_rev == 5) {
b43_radio_write16(dev, 0x51, 0x37);
b43_radio_write16(dev, 0x52, 0x70);
b43_radio_write16(dev, 0x53, 0xB3);
b43_radio_write16(dev, 0x54, 0x9B);
b43_radio_write16(dev, 0x5A, 0x88);
b43_radio_write16(dev, 0x5B, 0x88);
b43_radio_write16(dev, 0x5D, 0x88);
b43_radio_write16(dev, 0x5E, 0x88);
b43_radio_write16(dev, 0x7D, 0x88);
b43_hf_write(dev, b43_hf_read(dev)
| B43_HF_TSSIRPSMW);
}
B43_WARN_ON(phy->radio_rev == 6 || phy->radio_rev == 7); /* We had code for these revs here... */
if (phy->radio_rev == 8) {
b43_radio_write16(dev, 0x51, 0);
b43_radio_write16(dev, 0x52, 0x40);
b43_radio_write16(dev, 0x53, 0xB7);
b43_radio_write16(dev, 0x54, 0x98);
b43_radio_write16(dev, 0x5A, 0x88);
b43_radio_write16(dev, 0x5B, 0x6B);
b43_radio_write16(dev, 0x5C, 0x0F);
if (dev->dev->bus_sprom->boardflags_lo & B43_BFL_ALTIQ) {
b43_radio_write16(dev, 0x5D, 0xFA);
b43_radio_write16(dev, 0x5E, 0xD8);
} else {
b43_radio_write16(dev, 0x5D, 0xF5);
b43_radio_write16(dev, 0x5E, 0xB8);
}
b43_radio_write16(dev, 0x0073, 0x0003);
b43_radio_write16(dev, 0x007D, 0x00A8);
b43_radio_write16(dev, 0x007C, 0x0001);
b43_radio_write16(dev, 0x007E, 0x0008);
}
val = 0x1E1F;
for (offset = 0x0088; offset < 0x0098; offset++) {
b43_phy_write(dev, offset, val);
val -= 0x0202;
}
val = 0x3E3F;
for (offset = 0x0098; offset < 0x00A8; offset++) {
b43_phy_write(dev, offset, val);
val -= 0x0202;
}
val = 0x2120;
for (offset = 0x00A8; offset < 0x00C8; offset++) {
b43_phy_write(dev, offset, (val & 0x3F3F));
val += 0x0202;
}
if (phy->type == B43_PHYTYPE_G) {
b43_radio_set(dev, 0x007A, 0x0020);
b43_radio_set(dev, 0x0051, 0x0004);
b43_phy_set(dev, 0x0802, 0x0100);
b43_phy_set(dev, 0x042B, 0x2000);
b43_phy_write(dev, 0x5B, 0);
b43_phy_write(dev, 0x5C, 0);
}
old_channel = phy->channel;
if (old_channel >= 8)
b43_gphy_channel_switch(dev, 1, 0);
else
b43_gphy_channel_switch(dev, 13, 0);
b43_radio_write16(dev, 0x0050, 0x0020);
b43_radio_write16(dev, 0x0050, 0x0023);
udelay(40);
if (phy->radio_rev < 6 || phy->radio_rev == 8) {
b43_radio_write16(dev, 0x7C, (b43_radio_read16(dev, 0x7C)
| 0x0002));
b43_radio_write16(dev, 0x50, 0x20);
}
if (phy->radio_rev <= 2) {
b43_radio_write16(dev, 0x7C, 0x20);
b43_radio_write16(dev, 0x5A, 0x70);
b43_radio_write16(dev, 0x5B, 0x7B);
b43_radio_write16(dev, 0x5C, 0xB0);
}
b43_radio_maskset(dev, 0x007A, 0x00F8, 0x0007);
b43_gphy_channel_switch(dev, old_channel, 0);
b43_phy_write(dev, 0x0014, 0x0200);
if (phy->radio_rev >= 6)
b43_phy_write(dev, 0x2A, 0x88C2);
else
b43_phy_write(dev, 0x2A, 0x8AC0);
b43_phy_write(dev, 0x0038, 0x0668);
b43_set_txpower_g(dev, &gphy->bbatt, &gphy->rfatt, gphy->tx_control);
if (phy->radio_rev <= 5) {
b43_phy_maskset(dev, 0x5D, 0xFF80, 0x0003);
}
if (phy->radio_rev <= 2)
b43_radio_write16(dev, 0x005D, 0x000D);
if (phy->analog == 4) {
b43_write16(dev, 0x3E4, 9);
b43_phy_mask(dev, 0x61, 0x0FFF);
} else {
b43_phy_maskset(dev, 0x0002, 0xFFC0, 0x0004);
}
if (phy->type == B43_PHYTYPE_B)
B43_WARN_ON(1);
else if (phy->type == B43_PHYTYPE_G)
b43_write16(dev, 0x03E6, 0x0);
}
static void b43_calc_loopback_gain(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 backup_phy[16] = { 0 };
u16 backup_radio[3];
u16 backup_bband;
u16 i, j, loop_i_max;
u16 trsw_rx;
u16 loop1_outer_done, loop1_inner_done;
backup_phy[0] = b43_phy_read(dev, B43_PHY_CRS0);
backup_phy[1] = b43_phy_read(dev, B43_PHY_CCKBBANDCFG);
backup_phy[2] = b43_phy_read(dev, B43_PHY_RFOVER);
backup_phy[3] = b43_phy_read(dev, B43_PHY_RFOVERVAL);
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
backup_phy[4] = b43_phy_read(dev, B43_PHY_ANALOGOVER);
backup_phy[5] = b43_phy_read(dev, B43_PHY_ANALOGOVERVAL);
}
backup_phy[6] = b43_phy_read(dev, B43_PHY_CCK(0x5A));
backup_phy[7] = b43_phy_read(dev, B43_PHY_CCK(0x59));
backup_phy[8] = b43_phy_read(dev, B43_PHY_CCK(0x58));
backup_phy[9] = b43_phy_read(dev, B43_PHY_CCK(0x0A));
backup_phy[10] = b43_phy_read(dev, B43_PHY_CCK(0x03));
backup_phy[11] = b43_phy_read(dev, B43_PHY_LO_MASK);
backup_phy[12] = b43_phy_read(dev, B43_PHY_LO_CTL);
backup_phy[13] = b43_phy_read(dev, B43_PHY_CCK(0x2B));
backup_phy[14] = b43_phy_read(dev, B43_PHY_PGACTL);
backup_phy[15] = b43_phy_read(dev, B43_PHY_LO_LEAKAGE);
backup_bband = gphy->bbatt.att;
backup_radio[0] = b43_radio_read16(dev, 0x52);
backup_radio[1] = b43_radio_read16(dev, 0x43);
backup_radio[2] = b43_radio_read16(dev, 0x7A);
b43_phy_mask(dev, B43_PHY_CRS0, 0x3FFF);
b43_phy_set(dev, B43_PHY_CCKBBANDCFG, 0x8000);
b43_phy_set(dev, B43_PHY_RFOVER, 0x0002);
b43_phy_mask(dev, B43_PHY_RFOVERVAL, 0xFFFD);
b43_phy_set(dev, B43_PHY_RFOVER, 0x0001);
b43_phy_mask(dev, B43_PHY_RFOVERVAL, 0xFFFE);
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_set(dev, B43_PHY_ANALOGOVER, 0x0001);
b43_phy_mask(dev, B43_PHY_ANALOGOVERVAL, 0xFFFE);
b43_phy_set(dev, B43_PHY_ANALOGOVER, 0x0002);
b43_phy_mask(dev, B43_PHY_ANALOGOVERVAL, 0xFFFD);
}
b43_phy_set(dev, B43_PHY_RFOVER, 0x000C);
b43_phy_set(dev, B43_PHY_RFOVERVAL, 0x000C);
b43_phy_set(dev, B43_PHY_RFOVER, 0x0030);
b43_phy_maskset(dev, B43_PHY_RFOVERVAL, 0xFFCF, 0x10);
b43_phy_write(dev, B43_PHY_CCK(0x5A), 0x0780);
b43_phy_write(dev, B43_PHY_CCK(0x59), 0xC810);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0x000D);
b43_phy_set(dev, B43_PHY_CCK(0x0A), 0x2000);
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_set(dev, B43_PHY_ANALOGOVER, 0x0004);
b43_phy_mask(dev, B43_PHY_ANALOGOVERVAL, 0xFFFB);
}
b43_phy_maskset(dev, B43_PHY_CCK(0x03), 0xFF9F, 0x40);
if (phy->radio_rev == 8) {
b43_radio_write16(dev, 0x43, 0x000F);
} else {
b43_radio_write16(dev, 0x52, 0);
b43_radio_maskset(dev, 0x43, 0xFFF0, 0x9);
}
b43_gphy_set_baseband_attenuation(dev, 11);
if (phy->rev >= 3)
b43_phy_write(dev, B43_PHY_LO_MASK, 0xC020);
else
b43_phy_write(dev, B43_PHY_LO_MASK, 0x8020);
b43_phy_write(dev, B43_PHY_LO_CTL, 0);
b43_phy_maskset(dev, B43_PHY_CCK(0x2B), 0xFFC0, 0x01);
b43_phy_maskset(dev, B43_PHY_CCK(0x2B), 0xC0FF, 0x800);
b43_phy_set(dev, B43_PHY_RFOVER, 0x0100);
b43_phy_mask(dev, B43_PHY_RFOVERVAL, 0xCFFF);
if (dev->dev->bus_sprom->boardflags_lo & B43_BFL_EXTLNA) {
if (phy->rev >= 7) {
b43_phy_set(dev, B43_PHY_RFOVER, 0x0800);
b43_phy_set(dev, B43_PHY_RFOVERVAL, 0x8000);
}
}
b43_radio_mask(dev, 0x7A, 0x00F7);
j = 0;
loop_i_max = (phy->radio_rev == 8) ? 15 : 9;
for (i = 0; i < loop_i_max; i++) {
for (j = 0; j < 16; j++) {
b43_radio_write16(dev, 0x43, i);
b43_phy_maskset(dev, B43_PHY_RFOVERVAL, 0xF0FF, (j << 8));
b43_phy_maskset(dev, B43_PHY_PGACTL, 0x0FFF, 0xA000);
b43_phy_set(dev, B43_PHY_PGACTL, 0xF000);
udelay(20);
if (b43_phy_read(dev, B43_PHY_LO_LEAKAGE) >= 0xDFC)
goto exit_loop1;
}
}
exit_loop1:
loop1_outer_done = i;
loop1_inner_done = j;
if (j >= 8) {
b43_phy_set(dev, B43_PHY_RFOVERVAL, 0x30);
trsw_rx = 0x1B;
for (j = j - 8; j < 16; j++) {
b43_phy_maskset(dev, B43_PHY_RFOVERVAL, 0xF0FF, (j << 8));
b43_phy_maskset(dev, B43_PHY_PGACTL, 0x0FFF, 0xA000);
b43_phy_set(dev, B43_PHY_PGACTL, 0xF000);
udelay(20);
trsw_rx -= 3;
if (b43_phy_read(dev, B43_PHY_LO_LEAKAGE) >= 0xDFC)
goto exit_loop2;
}
} else
trsw_rx = 0x18;
exit_loop2:
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_write(dev, B43_PHY_ANALOGOVER, backup_phy[4]);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL, backup_phy[5]);
}
b43_phy_write(dev, B43_PHY_CCK(0x5A), backup_phy[6]);
b43_phy_write(dev, B43_PHY_CCK(0x59), backup_phy[7]);
b43_phy_write(dev, B43_PHY_CCK(0x58), backup_phy[8]);
b43_phy_write(dev, B43_PHY_CCK(0x0A), backup_phy[9]);
b43_phy_write(dev, B43_PHY_CCK(0x03), backup_phy[10]);
b43_phy_write(dev, B43_PHY_LO_MASK, backup_phy[11]);
b43_phy_write(dev, B43_PHY_LO_CTL, backup_phy[12]);
b43_phy_write(dev, B43_PHY_CCK(0x2B), backup_phy[13]);
b43_phy_write(dev, B43_PHY_PGACTL, backup_phy[14]);
b43_gphy_set_baseband_attenuation(dev, backup_bband);
b43_radio_write16(dev, 0x52, backup_radio[0]);
b43_radio_write16(dev, 0x43, backup_radio[1]);
b43_radio_write16(dev, 0x7A, backup_radio[2]);
b43_phy_write(dev, B43_PHY_RFOVER, backup_phy[2] | 0x0003);
udelay(10);
b43_phy_write(dev, B43_PHY_RFOVER, backup_phy[2]);
b43_phy_write(dev, B43_PHY_RFOVERVAL, backup_phy[3]);
b43_phy_write(dev, B43_PHY_CRS0, backup_phy[0]);
b43_phy_write(dev, B43_PHY_CCKBBANDCFG, backup_phy[1]);
gphy->max_lb_gain =
((loop1_inner_done * 6) - (loop1_outer_done * 4)) - 11;
gphy->trsw_rx_gain = trsw_rx * 2;
}
static void b43_hardware_pctl_early_init(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
if (!b43_has_hardware_pctl(dev)) {
b43_phy_write(dev, 0x047A, 0xC111);
return;
}
b43_phy_mask(dev, 0x0036, 0xFEFF);
b43_phy_write(dev, 0x002F, 0x0202);
b43_phy_set(dev, 0x047C, 0x0002);
b43_phy_set(dev, 0x047A, 0xF000);
if (phy->radio_ver == 0x2050 && phy->radio_rev == 8) {
b43_phy_maskset(dev, 0x047A, 0xFF0F, 0x0010);
b43_phy_set(dev, 0x005D, 0x8000);
b43_phy_maskset(dev, 0x004E, 0xFFC0, 0x0010);
b43_phy_write(dev, 0x002E, 0xC07F);
b43_phy_set(dev, 0x0036, 0x0400);
} else {
b43_phy_set(dev, 0x0036, 0x0200);
b43_phy_set(dev, 0x0036, 0x0400);
b43_phy_mask(dev, 0x005D, 0x7FFF);
b43_phy_mask(dev, 0x004F, 0xFFFE);
b43_phy_maskset(dev, 0x004E, 0xFFC0, 0x0010);
b43_phy_write(dev, 0x002E, 0xC07F);
b43_phy_maskset(dev, 0x047A, 0xFF0F, 0x0010);
}
}
/* Hardware power control for G-PHY */
static void b43_hardware_pctl_init_gphy(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
if (!b43_has_hardware_pctl(dev)) {
/* No hardware power control */
b43_hf_write(dev, b43_hf_read(dev) & ~B43_HF_HWPCTL);
return;
}
b43_phy_maskset(dev, 0x0036, 0xFFC0, (gphy->tgt_idle_tssi - gphy->cur_idle_tssi));
b43_phy_maskset(dev, 0x0478, 0xFF00, (gphy->tgt_idle_tssi - gphy->cur_idle_tssi));
b43_gphy_tssi_power_lt_init(dev);
b43_gphy_gain_lt_init(dev);
b43_phy_mask(dev, 0x0060, 0xFFBF);
b43_phy_write(dev, 0x0014, 0x0000);
B43_WARN_ON(phy->rev < 6);
b43_phy_set(dev, 0x0478, 0x0800);
b43_phy_mask(dev, 0x0478, 0xFEFF);
b43_phy_mask(dev, 0x0801, 0xFFBF);
b43_gphy_dc_lt_init(dev, 1);
/* Enable hardware pctl in firmware. */
b43_hf_write(dev, b43_hf_read(dev) | B43_HF_HWPCTL);
}
/* Initialize B/G PHY power control */
static void b43_phy_init_pctl(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_rfatt old_rfatt;
struct b43_bbatt old_bbatt;
u8 old_tx_control = 0;
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
if ((dev->dev->board_vendor == SSB_BOARDVENDOR_BCM) &&
(dev->dev->board_type == SSB_BOARD_BU4306))
return;
b43_phy_write(dev, 0x0028, 0x8018);
/* This does something with the Analog... */
b43_write16(dev, B43_MMIO_PHY0, b43_read16(dev, B43_MMIO_PHY0)
& 0xFFDF);
if (!phy->gmode)
return;
b43_hardware_pctl_early_init(dev);
if (gphy->cur_idle_tssi == 0) {
if (phy->radio_ver == 0x2050 && phy->analog == 0) {
b43_radio_maskset(dev, 0x0076, 0x00F7, 0x0084);
} else {
struct b43_rfatt rfatt;
struct b43_bbatt bbatt;
memcpy(&old_rfatt, &gphy->rfatt, sizeof(old_rfatt));
memcpy(&old_bbatt, &gphy->bbatt, sizeof(old_bbatt));
old_tx_control = gphy->tx_control;
bbatt.att = 11;
if (phy->radio_rev == 8) {
rfatt.att = 15;
rfatt.with_padmix = 1;
} else {
rfatt.att = 9;
rfatt.with_padmix = 0;
}
b43_set_txpower_g(dev, &bbatt, &rfatt, 0);
}
b43_dummy_transmission(dev, false, true);
gphy->cur_idle_tssi = b43_phy_read(dev, B43_PHY_ITSSI);
if (B43_DEBUG) {
/* Current-Idle-TSSI sanity check. */
if (abs(gphy->cur_idle_tssi - gphy->tgt_idle_tssi) >= 20) {
b43dbg(dev->wl,
"!WARNING! Idle-TSSI phy->cur_idle_tssi "
"measuring failed. (cur=%d, tgt=%d). Disabling TX power "
"adjustment.\n", gphy->cur_idle_tssi,
gphy->tgt_idle_tssi);
gphy->cur_idle_tssi = 0;
}
}
if (phy->radio_ver == 0x2050 && phy->analog == 0) {
b43_radio_mask(dev, 0x0076, 0xFF7B);
} else {
b43_set_txpower_g(dev, &old_bbatt,
&old_rfatt, old_tx_control);
}
}
b43_hardware_pctl_init_gphy(dev);
b43_shm_clear_tssi(dev);
}
static void b43_phy_initg(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 tmp;
if (phy->rev == 1)
b43_phy_initb5(dev);
else
b43_phy_initb6(dev);
if (phy->rev >= 2 || phy->gmode)
b43_phy_inita(dev);
if (phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_ANALOGOVER, 0);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL, 0);
}
if (phy->rev == 2) {
b43_phy_write(dev, B43_PHY_RFOVER, 0);
b43_phy_write(dev, B43_PHY_PGACTL, 0xC0);
}
if (phy->rev > 5) {
b43_phy_write(dev, B43_PHY_RFOVER, 0x400);
b43_phy_write(dev, B43_PHY_PGACTL, 0xC0);
}
if (phy->gmode || phy->rev >= 2) {
tmp = b43_phy_read(dev, B43_PHY_VERSION_OFDM);
tmp &= B43_PHYVER_VERSION;
if (tmp == 3 || tmp == 5) {
b43_phy_write(dev, B43_PHY_OFDM(0xC2), 0x1816);
b43_phy_write(dev, B43_PHY_OFDM(0xC3), 0x8006);
}
if (tmp == 5) {
b43_phy_maskset(dev, B43_PHY_OFDM(0xCC), 0x00FF, 0x1F00);
}
}
if ((phy->rev <= 2 && phy->gmode) || phy->rev >= 2)
b43_phy_write(dev, B43_PHY_OFDM(0x7E), 0x78);
if (phy->radio_rev == 8) {
b43_phy_set(dev, B43_PHY_EXTG(0x01), 0x80);
b43_phy_set(dev, B43_PHY_OFDM(0x3E), 0x4);
}
if (has_loopback_gain(phy))
b43_calc_loopback_gain(dev);
if (phy->radio_rev != 8) {
if (gphy->initval == 0xFFFF)
gphy->initval = b43_radio_init2050(dev);
else
b43_radio_write16(dev, 0x0078, gphy->initval);
}
b43_lo_g_init(dev);
if (has_tx_magnification(phy)) {
b43_radio_write16(dev, 0x52,
(b43_radio_read16(dev, 0x52) & 0xFF00)
| gphy->lo_control->tx_bias | gphy->
lo_control->tx_magn);
} else {
b43_radio_maskset(dev, 0x52, 0xFFF0, gphy->lo_control->tx_bias);
}
if (phy->rev >= 6) {
b43_phy_maskset(dev, B43_PHY_CCK(0x36), 0x0FFF, (gphy->lo_control->tx_bias << 12));
}
if (dev->dev->bus_sprom->boardflags_lo & B43_BFL_PACTRL)
b43_phy_write(dev, B43_PHY_CCK(0x2E), 0x8075);
else
b43_phy_write(dev, B43_PHY_CCK(0x2E), 0x807F);
if (phy->rev < 2)
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0x101);
else
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0x202);
if (phy->gmode || phy->rev >= 2) {
b43_lo_g_adjust(dev);
b43_phy_write(dev, B43_PHY_LO_MASK, 0x8078);
}
if (!(dev->dev->bus_sprom->boardflags_lo & B43_BFL_RSSI)) {
/* The specs state to update the NRSSI LT with
* the value 0x7FFFFFFF here. I think that is some weird
* compiler optimization in the original driver.
* Essentially, what we do here is resetting all NRSSI LT
* entries to -32 (see the clamp_val() in nrssi_hw_update())
*/
b43_nrssi_hw_update(dev, 0xFFFF); //FIXME?
b43_calc_nrssi_threshold(dev);
} else if (phy->gmode || phy->rev >= 2) {
if (gphy->nrssi[0] == -1000) {
B43_WARN_ON(gphy->nrssi[1] != -1000);
b43_calc_nrssi_slope(dev);
} else
b43_calc_nrssi_threshold(dev);
}
if (phy->radio_rev == 8)
b43_phy_write(dev, B43_PHY_EXTG(0x05), 0x3230);
b43_phy_init_pctl(dev);
/* FIXME: The spec says in the following if, the 0 should be replaced
'if OFDM may not be used in the current locale'
but OFDM is legal everywhere */
if ((dev->dev->chip_id == 0x4306
&& dev->dev->chip_pkg == 2) || 0) {
b43_phy_mask(dev, B43_PHY_CRS0, 0xBFFF);
b43_phy_mask(dev, B43_PHY_OFDM(0xC3), 0x7FFF);
}
}
void b43_gphy_channel_switch(struct b43_wldev *dev,
unsigned int channel,
bool synthetic_pu_workaround)
{
if (synthetic_pu_workaround)
b43_synth_pu_workaround(dev, channel);
b43_write16(dev, B43_MMIO_CHANNEL, channel2freq_bg(channel));
if (channel == 14) {
if (dev->dev->bus_sprom->country_code ==
SSB_SPROM1CCODE_JAPAN)
b43_hf_write(dev,
b43_hf_read(dev) & ~B43_HF_ACPR);
else
b43_hf_write(dev,
b43_hf_read(dev) | B43_HF_ACPR);
b43_write16(dev, B43_MMIO_CHANNEL_EXT,
b43_read16(dev, B43_MMIO_CHANNEL_EXT)
| (1 << 11));
} else {
b43_write16(dev, B43_MMIO_CHANNEL_EXT,
b43_read16(dev, B43_MMIO_CHANNEL_EXT)
& 0xF7BF);
}
}
static void default_baseband_attenuation(struct b43_wldev *dev,
struct b43_bbatt *bb)
{
struct b43_phy *phy = &dev->phy;
if (phy->radio_ver == 0x2050 && phy->radio_rev < 6)
bb->att = 0;
else
bb->att = 2;
}
static void default_radio_attenuation(struct b43_wldev *dev,
struct b43_rfatt *rf)
{
struct b43_bus_dev *bdev = dev->dev;
struct b43_phy *phy = &dev->phy;
rf->with_padmix = 0;
if (dev->dev->board_vendor == SSB_BOARDVENDOR_BCM &&
dev->dev->board_type == SSB_BOARD_BCM4309G) {
if (dev->dev->board_rev < 0x43) {
rf->att = 2;
return;
} else if (dev->dev->board_rev < 0x51) {
rf->att = 3;
return;
}
}
if (phy->type == B43_PHYTYPE_A) {
rf->att = 0x60;
return;
}
switch (phy->radio_ver) {
case 0x2053:
switch (phy->radio_rev) {
case 1:
rf->att = 6;
return;
}
break;
case 0x2050:
switch (phy->radio_rev) {
case 0:
rf->att = 5;
return;
case 1:
if (phy->type == B43_PHYTYPE_G) {
if (bdev->board_vendor == SSB_BOARDVENDOR_BCM
&& bdev->board_type == SSB_BOARD_BCM4309G
&& bdev->board_rev >= 30)
rf->att = 3;
else if (bdev->board_vendor ==
SSB_BOARDVENDOR_BCM
&& bdev->board_type ==
SSB_BOARD_BU4306)
rf->att = 3;
else
rf->att = 1;
} else {
if (bdev->board_vendor == SSB_BOARDVENDOR_BCM
&& bdev->board_type == SSB_BOARD_BCM4309G
&& bdev->board_rev >= 30)
rf->att = 7;
else
rf->att = 6;
}
return;
case 2:
if (phy->type == B43_PHYTYPE_G) {
if (bdev->board_vendor == SSB_BOARDVENDOR_BCM
&& bdev->board_type == SSB_BOARD_BCM4309G
&& bdev->board_rev >= 30)
rf->att = 3;
else if (bdev->board_vendor ==
SSB_BOARDVENDOR_BCM
&& bdev->board_type ==
SSB_BOARD_BU4306)
rf->att = 5;
else if (bdev->chip_id == 0x4320)
rf->att = 4;
else
rf->att = 3;
} else
rf->att = 6;
return;
case 3:
rf->att = 5;
return;
case 4:
case 5:
rf->att = 1;
return;
case 6:
case 7:
rf->att = 5;
return;
case 8:
rf->att = 0xA;
rf->with_padmix = 1;
return;
case 9:
default:
rf->att = 5;
return;
}
}
rf->att = 5;
}
static u16 default_tx_control(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
if (phy->radio_ver != 0x2050)
return 0;
if (phy->radio_rev == 1)
return B43_TXCTL_PA2DB | B43_TXCTL_TXMIX;
if (phy->radio_rev < 6)
return B43_TXCTL_PA2DB;
if (phy->radio_rev == 8)
return B43_TXCTL_TXMIX;
return 0;
}
static u8 b43_gphy_aci_detect(struct b43_wldev *dev, u8 channel)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u8 ret = 0;
u16 saved, rssi, temp;
int i, j = 0;
saved = b43_phy_read(dev, 0x0403);
b43_switch_channel(dev, channel);
b43_phy_write(dev, 0x0403, (saved & 0xFFF8) | 5);
if (gphy->aci_hw_rssi)
rssi = b43_phy_read(dev, 0x048A) & 0x3F;
else
rssi = saved & 0x3F;
/* clamp temp to signed 5bit */
if (rssi > 32)
rssi -= 64;
for (i = 0; i < 100; i++) {
temp = (b43_phy_read(dev, 0x047F) >> 8) & 0x3F;
if (temp > 32)
temp -= 64;
if (temp < rssi)
j++;
if (j >= 20)
ret = 1;
}
b43_phy_write(dev, 0x0403, saved);
return ret;
}
static u8 b43_gphy_aci_scan(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
u8 ret[13];
unsigned int channel = phy->channel;
unsigned int i, j, start, end;
if (!((phy->type == B43_PHYTYPE_G) && (phy->rev > 0)))
return 0;
b43_phy_lock(dev);
b43_radio_lock(dev);
b43_phy_mask(dev, 0x0802, 0xFFFC);
b43_phy_mask(dev, B43_PHY_G_CRS, 0x7FFF);
b43_set_all_gains(dev, 3, 8, 1);
start = (channel - 5 > 0) ? channel - 5 : 1;
end = (channel + 5 < 14) ? channel + 5 : 13;
for (i = start; i <= end; i++) {
if (abs(channel - i) > 2)
ret[i - 1] = b43_gphy_aci_detect(dev, i);
}
b43_switch_channel(dev, channel);
b43_phy_maskset(dev, 0x0802, 0xFFFC, 0x0003);
b43_phy_mask(dev, 0x0403, 0xFFF8);
b43_phy_set(dev, B43_PHY_G_CRS, 0x8000);
b43_set_original_gains(dev);
for (i = 0; i < 13; i++) {
if (!ret[i])
continue;
end = (i + 5 < 13) ? i + 5 : 13;
for (j = i; j < end; j++)
ret[j] = 1;
}
b43_radio_unlock(dev);
b43_phy_unlock(dev);
return ret[channel - 1];
}
static s32 b43_tssi2dbm_ad(s32 num, s32 den)
{
if (num < 0)
return num / den;
else
return (num + den / 2) / den;
}
static s8 b43_tssi2dbm_entry(s8 entry[], u8 index,
s16 pab0, s16 pab1, s16 pab2)
{
s32 m1, m2, f = 256, q, delta;
s8 i = 0;
m1 = b43_tssi2dbm_ad(16 * pab0 + index * pab1, 32);
m2 = max(b43_tssi2dbm_ad(32768 + index * pab2, 256), 1);
do {
if (i > 15)
return -EINVAL;
q = b43_tssi2dbm_ad(f * 4096 -
b43_tssi2dbm_ad(m2 * f, 16) * f, 2048);
delta = abs(q - f);
f = q;
i++;
} while (delta >= 2);
entry[index] = clamp_val(b43_tssi2dbm_ad(m1 * f, 8192), -127, 128);
return 0;
}
u8 *b43_generate_dyn_tssi2dbm_tab(struct b43_wldev *dev,
s16 pab0, s16 pab1, s16 pab2)
{
unsigned int i;
u8 *tab;
int err;
tab = kmalloc(64, GFP_KERNEL);
if (!tab) {
b43err(dev->wl, "Could not allocate memory "
"for tssi2dbm table\n");
return NULL;
}
for (i = 0; i < 64; i++) {
err = b43_tssi2dbm_entry(tab, i, pab0, pab1, pab2);
if (err) {
b43err(dev->wl, "Could not generate "
"tssi2dBm table\n");
kfree(tab);
return NULL;
}
}
return tab;
}
/* Initialise the TSSI->dBm lookup table */
static int b43_gphy_init_tssi2dbm_table(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
s16 pab0, pab1, pab2;
pab0 = (s16) (dev->dev->bus_sprom->pa0b0);
pab1 = (s16) (dev->dev->bus_sprom->pa0b1);
pab2 = (s16) (dev->dev->bus_sprom->pa0b2);
B43_WARN_ON((dev->dev->chip_id == 0x4301) &&
(phy->radio_ver != 0x2050)); /* Not supported anymore */
gphy->dyn_tssi_tbl = 0;
if (pab0 != 0 && pab1 != 0 && pab2 != 0 &&
pab0 != -1 && pab1 != -1 && pab2 != -1) {
/* The pabX values are set in SPROM. Use them. */
if ((s8) dev->dev->bus_sprom->itssi_bg != 0 &&
(s8) dev->dev->bus_sprom->itssi_bg != -1) {
gphy->tgt_idle_tssi =
(s8) (dev->dev->bus_sprom->itssi_bg);
} else
gphy->tgt_idle_tssi = 62;
gphy->tssi2dbm = b43_generate_dyn_tssi2dbm_tab(dev, pab0,
pab1, pab2);
if (!gphy->tssi2dbm)
return -ENOMEM;
gphy->dyn_tssi_tbl = 1;
} else {
/* pabX values not set in SPROM. */
gphy->tgt_idle_tssi = 52;
gphy->tssi2dbm = b43_tssi2dbm_g_table;
}
return 0;
}
static int b43_gphy_op_allocate(struct b43_wldev *dev)
{
struct b43_phy_g *gphy;
struct b43_txpower_lo_control *lo;
int err;
gphy = kzalloc(sizeof(*gphy), GFP_KERNEL);
if (!gphy) {
err = -ENOMEM;
goto error;
}
dev->phy.g = gphy;
lo = kzalloc(sizeof(*lo), GFP_KERNEL);
if (!lo) {
err = -ENOMEM;
goto err_free_gphy;
}
gphy->lo_control = lo;
err = b43_gphy_init_tssi2dbm_table(dev);
if (err)
goto err_free_lo;
return 0;
err_free_lo:
kfree(lo);
err_free_gphy:
kfree(gphy);
error:
return err;
}
static void b43_gphy_op_prepare_structs(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
const void *tssi2dbm;
int tgt_idle_tssi;
struct b43_txpower_lo_control *lo;
unsigned int i;
/* tssi2dbm table is constant, so it is initialized at alloc time.
* Save a copy of the pointer. */
tssi2dbm = gphy->tssi2dbm;
tgt_idle_tssi = gphy->tgt_idle_tssi;
/* Save the LO pointer. */
lo = gphy->lo_control;
/* Zero out the whole PHY structure. */
memset(gphy, 0, sizeof(*gphy));
/* Restore pointers. */
gphy->tssi2dbm = tssi2dbm;
gphy->tgt_idle_tssi = tgt_idle_tssi;
gphy->lo_control = lo;
memset(gphy->minlowsig, 0xFF, sizeof(gphy->minlowsig));
/* NRSSI */
for (i = 0; i < ARRAY_SIZE(gphy->nrssi); i++)
gphy->nrssi[i] = -1000;
for (i = 0; i < ARRAY_SIZE(gphy->nrssi_lt); i++)
gphy->nrssi_lt[i] = i;
gphy->lofcal = 0xFFFF;
gphy->initval = 0xFFFF;
gphy->interfmode = B43_INTERFMODE_NONE;
/* OFDM-table address caching. */
gphy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_UNKNOWN;
gphy->average_tssi = 0xFF;
/* Local Osciallator structure */
lo->tx_bias = 0xFF;
INIT_LIST_HEAD(&lo->calib_list);
}
static void b43_gphy_op_free(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
kfree(gphy->lo_control);
if (gphy->dyn_tssi_tbl)
kfree(gphy->tssi2dbm);
gphy->dyn_tssi_tbl = 0;
gphy->tssi2dbm = NULL;
kfree(gphy);
dev->phy.g = NULL;
}
static int b43_gphy_op_prepare_hardware(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
default_baseband_attenuation(dev, &gphy->bbatt);
default_radio_attenuation(dev, &gphy->rfatt);
gphy->tx_control = (default_tx_control(dev) << 4);
generate_rfatt_list(dev, &lo->rfatt_list);
generate_bbatt_list(dev, &lo->bbatt_list);
/* Commit previous writes */
b43_read32(dev, B43_MMIO_MACCTL);
if (phy->rev == 1) {
/* Workaround: Temporarly disable gmode through the early init
* phase, as the gmode stuff is not needed for phy rev 1 */
phy->gmode = 0;
b43_wireless_core_reset(dev, 0);
b43_phy_initg(dev);
phy->gmode = 1;
b43_wireless_core_reset(dev, 1);
}
return 0;
}
static int b43_gphy_op_init(struct b43_wldev *dev)
{
b43_phy_initg(dev);
return 0;
}
static void b43_gphy_op_exit(struct b43_wldev *dev)
{
b43_lo_g_cleanup(dev);
}
static u16 b43_gphy_op_read(struct b43_wldev *dev, u16 reg)
{
b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
return b43_read16(dev, B43_MMIO_PHY_DATA);
}
static void b43_gphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
{
b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
b43_write16(dev, B43_MMIO_PHY_DATA, value);
}
static u16 b43_gphy_op_radio_read(struct b43_wldev *dev, u16 reg)
{
/* Register 1 is a 32-bit register. */
B43_WARN_ON(reg == 1);
/* G-PHY needs 0x80 for read access. */
reg |= 0x80;
b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
}
static void b43_gphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
{
/* Register 1 is a 32-bit register. */
B43_WARN_ON(reg == 1);
b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
}
static bool b43_gphy_op_supports_hwpctl(struct b43_wldev *dev)
{
return (dev->phy.rev >= 6);
}
static void b43_gphy_op_software_rfkill(struct b43_wldev *dev,
bool blocked)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
unsigned int channel;
might_sleep();
if (!blocked) {
/* Turn radio ON */
if (phy->radio_on)
return;
b43_phy_write(dev, 0x0015, 0x8000);
b43_phy_write(dev, 0x0015, 0xCC00);
b43_phy_write(dev, 0x0015, (phy->gmode ? 0x00C0 : 0x0000));
if (gphy->radio_off_context.valid) {
/* Restore the RFover values. */
b43_phy_write(dev, B43_PHY_RFOVER,
gphy->radio_off_context.rfover);
b43_phy_write(dev, B43_PHY_RFOVERVAL,
gphy->radio_off_context.rfoverval);
gphy->radio_off_context.valid = 0;
}
channel = phy->channel;
b43_gphy_channel_switch(dev, 6, 1);
b43_gphy_channel_switch(dev, channel, 0);
} else {
/* Turn radio OFF */
u16 rfover, rfoverval;
rfover = b43_phy_read(dev, B43_PHY_RFOVER);
rfoverval = b43_phy_read(dev, B43_PHY_RFOVERVAL);
gphy->radio_off_context.rfover = rfover;
gphy->radio_off_context.rfoverval = rfoverval;
gphy->radio_off_context.valid = 1;
b43_phy_write(dev, B43_PHY_RFOVER, rfover | 0x008C);
b43_phy_write(dev, B43_PHY_RFOVERVAL, rfoverval & 0xFF73);
}
}
static int b43_gphy_op_switch_channel(struct b43_wldev *dev,
unsigned int new_channel)
{
if ((new_channel < 1) || (new_channel > 14))
return -EINVAL;
b43_gphy_channel_switch(dev, new_channel, 0);
return 0;
}
static unsigned int b43_gphy_op_get_default_chan(struct b43_wldev *dev)
{
return 1; /* Default to channel 1 */
}
static void b43_gphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
{
struct b43_phy *phy = &dev->phy;
u16 tmp;
int autodiv = 0;
if (antenna == B43_ANTENNA_AUTO0 || antenna == B43_ANTENNA_AUTO1)
autodiv = 1;
b43_hf_write(dev, b43_hf_read(dev) & ~B43_HF_ANTDIVHELP);
b43_phy_maskset(dev, B43_PHY_BBANDCFG, ~B43_PHY_BBANDCFG_RXANT,
(autodiv ? B43_ANTENNA_AUTO1 : antenna) <<
B43_PHY_BBANDCFG_RXANT_SHIFT);
if (autodiv) {
tmp = b43_phy_read(dev, B43_PHY_ANTDWELL);
if (antenna == B43_ANTENNA_AUTO1)
tmp &= ~B43_PHY_ANTDWELL_AUTODIV1;
else
tmp |= B43_PHY_ANTDWELL_AUTODIV1;
b43_phy_write(dev, B43_PHY_ANTDWELL, tmp);
}
tmp = b43_phy_read(dev, B43_PHY_ANTWRSETT);
if (autodiv)
tmp |= B43_PHY_ANTWRSETT_ARXDIV;
else
tmp &= ~B43_PHY_ANTWRSETT_ARXDIV;
b43_phy_write(dev, B43_PHY_ANTWRSETT, tmp);
if (autodiv)
b43_phy_set(dev, B43_PHY_ANTWRSETT, B43_PHY_ANTWRSETT_ARXDIV);
else {
b43_phy_mask(dev, B43_PHY_ANTWRSETT,
B43_PHY_ANTWRSETT_ARXDIV);
}
if (phy->rev >= 2) {
b43_phy_set(dev, B43_PHY_OFDM61, B43_PHY_OFDM61_10);
b43_phy_maskset(dev, B43_PHY_DIVSRCHGAINBACK, 0xFF00, 0x15);
if (phy->rev == 2)
b43_phy_write(dev, B43_PHY_ADIVRELATED, 8);
else
b43_phy_maskset(dev, B43_PHY_ADIVRELATED, 0xFF00, 8);
}
if (phy->rev >= 6)
b43_phy_write(dev, B43_PHY_OFDM9B, 0xDC);
b43_hf_write(dev, b43_hf_read(dev) | B43_HF_ANTDIVHELP);
}
static int b43_gphy_op_interf_mitigation(struct b43_wldev *dev,
enum b43_interference_mitigation mode)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
int currentmode;
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
if ((phy->rev == 0) || (!phy->gmode))
return -ENODEV;
gphy->aci_wlan_automatic = 0;
switch (mode) {
case B43_INTERFMODE_AUTOWLAN:
gphy->aci_wlan_automatic = 1;
if (gphy->aci_enable)
mode = B43_INTERFMODE_MANUALWLAN;
else
mode = B43_INTERFMODE_NONE;
break;
case B43_INTERFMODE_NONE:
case B43_INTERFMODE_NONWLAN:
case B43_INTERFMODE_MANUALWLAN:
break;
default:
return -EINVAL;
}
currentmode = gphy->interfmode;
if (currentmode == mode)
return 0;
if (currentmode != B43_INTERFMODE_NONE)
b43_radio_interference_mitigation_disable(dev, currentmode);
if (mode == B43_INTERFMODE_NONE) {
gphy->aci_enable = 0;
gphy->aci_hw_rssi = 0;
} else
b43_radio_interference_mitigation_enable(dev, mode);
gphy->interfmode = mode;
return 0;
}
/* http://bcm-specs.sipsolutions.net/EstimatePowerOut
* This function converts a TSSI value to dBm in Q5.2
*/
static s8 b43_gphy_estimate_power_out(struct b43_wldev *dev, s8 tssi)
{
struct b43_phy_g *gphy = dev->phy.g;
s8 dbm;
s32 tmp;
tmp = (gphy->tgt_idle_tssi - gphy->cur_idle_tssi + tssi);
tmp = clamp_val(tmp, 0x00, 0x3F);
dbm = gphy->tssi2dbm[tmp];
return dbm;
}
static void b43_put_attenuation_into_ranges(struct b43_wldev *dev,
int *_bbatt, int *_rfatt)
{
int rfatt = *_rfatt;
int bbatt = *_bbatt;
struct b43_txpower_lo_control *lo = dev->phy.g->lo_control;
/* Get baseband and radio attenuation values into their permitted ranges.
* Radio attenuation affects power level 4 times as much as baseband. */
/* Range constants */
const int rf_min = lo->rfatt_list.min_val;
const int rf_max = lo->rfatt_list.max_val;
const int bb_min = lo->bbatt_list.min_val;
const int bb_max = lo->bbatt_list.max_val;
while (1) {
if (rfatt > rf_max && bbatt > bb_max - 4)
break; /* Can not get it into ranges */
if (rfatt < rf_min && bbatt < bb_min + 4)
break; /* Can not get it into ranges */
if (bbatt > bb_max && rfatt > rf_max - 1)
break; /* Can not get it into ranges */
if (bbatt < bb_min && rfatt < rf_min + 1)
break; /* Can not get it into ranges */
if (bbatt > bb_max) {
bbatt -= 4;
rfatt += 1;
continue;
}
if (bbatt < bb_min) {
bbatt += 4;
rfatt -= 1;
continue;
}
if (rfatt > rf_max) {
rfatt -= 1;
bbatt += 4;
continue;
}
if (rfatt < rf_min) {
rfatt += 1;
bbatt -= 4;
continue;
}
break;
}
*_rfatt = clamp_val(rfatt, rf_min, rf_max);
*_bbatt = clamp_val(bbatt, bb_min, bb_max);
}
static void b43_gphy_op_adjust_txpower(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
int rfatt, bbatt;
u8 tx_control;
b43_mac_suspend(dev);
/* Calculate the new attenuation values. */
bbatt = gphy->bbatt.att;
bbatt += gphy->bbatt_delta;
rfatt = gphy->rfatt.att;
rfatt += gphy->rfatt_delta;
b43_put_attenuation_into_ranges(dev, &bbatt, &rfatt);
tx_control = gphy->tx_control;
if ((phy->radio_ver == 0x2050) && (phy->radio_rev == 2)) {
if (rfatt <= 1) {
if (tx_control == 0) {
tx_control =
B43_TXCTL_PA2DB |
B43_TXCTL_TXMIX;
rfatt += 2;
bbatt += 2;
} else if (dev->dev->bus_sprom->
boardflags_lo &
B43_BFL_PACTRL) {
bbatt += 4 * (rfatt - 2);
rfatt = 2;
}
} else if (rfatt > 4 && tx_control) {
tx_control = 0;
if (bbatt < 3) {
rfatt -= 3;
bbatt += 2;
} else {
rfatt -= 2;
bbatt -= 2;
}
}
}
/* Save the control values */
gphy->tx_control = tx_control;
b43_put_attenuation_into_ranges(dev, &bbatt, &rfatt);
gphy->rfatt.att = rfatt;
gphy->bbatt.att = bbatt;
if (b43_debug(dev, B43_DBG_XMITPOWER))
b43dbg(dev->wl, "Adjusting TX power\n");
/* Adjust the hardware */
b43_phy_lock(dev);
b43_radio_lock(dev);
b43_set_txpower_g(dev, &gphy->bbatt, &gphy->rfatt,
gphy->tx_control);
b43_radio_unlock(dev);
b43_phy_unlock(dev);
b43_mac_enable(dev);
}
static enum b43_txpwr_result b43_gphy_op_recalc_txpower(struct b43_wldev *dev,
bool ignore_tssi)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
unsigned int average_tssi;
int cck_result, ofdm_result;
int estimated_pwr, desired_pwr, pwr_adjust;
int rfatt_delta, bbatt_delta;
unsigned int max_pwr;
/* First get the average TSSI */
cck_result = b43_phy_shm_tssi_read(dev, B43_SHM_SH_TSSI_CCK);
ofdm_result = b43_phy_shm_tssi_read(dev, B43_SHM_SH_TSSI_OFDM_G);
if ((cck_result < 0) && (ofdm_result < 0)) {
/* No TSSI information available */
if (!ignore_tssi)
goto no_adjustment_needed;
cck_result = 0;
ofdm_result = 0;
}
if (cck_result < 0)
average_tssi = ofdm_result;
else if (ofdm_result < 0)
average_tssi = cck_result;
else
average_tssi = (cck_result + ofdm_result) / 2;
/* Merge the average with the stored value. */
if (likely(gphy->average_tssi != 0xFF))
average_tssi = (average_tssi + gphy->average_tssi) / 2;
gphy->average_tssi = average_tssi;
B43_WARN_ON(average_tssi >= B43_TSSI_MAX);
/* Estimate the TX power emission based on the TSSI */
estimated_pwr = b43_gphy_estimate_power_out(dev, average_tssi);
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
max_pwr = dev->dev->bus_sprom->maxpwr_bg;
if (dev->dev->bus_sprom->boardflags_lo & B43_BFL_PACTRL)
max_pwr -= 3; /* minus 0.75 */
if (unlikely(max_pwr >= INT_TO_Q52(30/*dBm*/))) {
b43warn(dev->wl,
"Invalid max-TX-power value in SPROM.\n");
max_pwr = INT_TO_Q52(20); /* fake it */
dev->dev->bus_sprom->maxpwr_bg = max_pwr;
}
/* Get desired power (in Q5.2) */
if (phy->desired_txpower < 0)
desired_pwr = INT_TO_Q52(0);
else
desired_pwr = INT_TO_Q52(phy->desired_txpower);
/* And limit it. max_pwr already is Q5.2 */
desired_pwr = clamp_val(desired_pwr, 0, max_pwr);
if (b43_debug(dev, B43_DBG_XMITPOWER)) {
b43dbg(dev->wl,
"[TX power] current = " Q52_FMT
" dBm, desired = " Q52_FMT
" dBm, max = " Q52_FMT "\n",
Q52_ARG(estimated_pwr),
Q52_ARG(desired_pwr),
Q52_ARG(max_pwr));
}
/* Calculate the adjustment delta. */
pwr_adjust = desired_pwr - estimated_pwr;
if (pwr_adjust == 0)
goto no_adjustment_needed;
/* RF attenuation delta. */
rfatt_delta = ((pwr_adjust + 7) / 8);
/* Lower attenuation => Bigger power output. Negate it. */
rfatt_delta = -rfatt_delta;
/* Baseband attenuation delta. */
bbatt_delta = pwr_adjust / 2;
/* Lower attenuation => Bigger power output. Negate it. */
bbatt_delta = -bbatt_delta;
/* RF att affects power level 4 times as much as
* Baseband attennuation. Subtract it. */
bbatt_delta -= 4 * rfatt_delta;
#if B43_DEBUG
if (b43_debug(dev, B43_DBG_XMITPOWER)) {
int dbm = pwr_adjust < 0 ? -pwr_adjust : pwr_adjust;
b43dbg(dev->wl,
"[TX power deltas] %s" Q52_FMT " dBm => "
"bbatt-delta = %d, rfatt-delta = %d\n",
(pwr_adjust < 0 ? "-" : ""), Q52_ARG(dbm),
bbatt_delta, rfatt_delta);
}
#endif /* DEBUG */
/* So do we finally need to adjust something in hardware? */
if ((rfatt_delta == 0) && (bbatt_delta == 0))
goto no_adjustment_needed;
/* Save the deltas for later when we adjust the power. */
gphy->bbatt_delta = bbatt_delta;
gphy->rfatt_delta = rfatt_delta;
/* We need to adjust the TX power on the device. */
return B43_TXPWR_RES_NEED_ADJUST;
no_adjustment_needed:
return B43_TXPWR_RES_DONE;
}
static void b43_gphy_op_pwork_15sec(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
b43_mac_suspend(dev);
//TODO: update_aci_moving_average
if (gphy->aci_enable && gphy->aci_wlan_automatic) {
if (!gphy->aci_enable && 1 /*TODO: not scanning? */ ) {
if (0 /*TODO: bunch of conditions */ ) {
phy->ops->interf_mitigation(dev,
B43_INTERFMODE_MANUALWLAN);
}
} else if (0 /*TODO*/) {
if (/*(aci_average > 1000) &&*/ !b43_gphy_aci_scan(dev))
phy->ops->interf_mitigation(dev, B43_INTERFMODE_NONE);
}
} else if (gphy->interfmode == B43_INTERFMODE_NONWLAN &&
phy->rev == 1) {
//TODO: implement rev1 workaround
}
b43_lo_g_maintanance_work(dev);
b43_mac_enable(dev);
}
static void b43_gphy_op_pwork_60sec(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
if (!(dev->dev->bus_sprom->boardflags_lo & B43_BFL_RSSI))
return;
b43_mac_suspend(dev);
b43_calc_nrssi_slope(dev);
if ((phy->radio_ver == 0x2050) && (phy->radio_rev == 8)) {
u8 old_chan = phy->channel;
/* VCO Calibration */
if (old_chan >= 8)
b43_switch_channel(dev, 1);
else
b43_switch_channel(dev, 13);
b43_switch_channel(dev, old_chan);
}
b43_mac_enable(dev);
}
const struct b43_phy_operations b43_phyops_g = {
.allocate = b43_gphy_op_allocate,
.free = b43_gphy_op_free,
.prepare_structs = b43_gphy_op_prepare_structs,
.prepare_hardware = b43_gphy_op_prepare_hardware,
.init = b43_gphy_op_init,
.exit = b43_gphy_op_exit,
.phy_read = b43_gphy_op_read,
.phy_write = b43_gphy_op_write,
.radio_read = b43_gphy_op_radio_read,
.radio_write = b43_gphy_op_radio_write,
.supports_hwpctl = b43_gphy_op_supports_hwpctl,
.software_rfkill = b43_gphy_op_software_rfkill,
.switch_analog = b43_phyop_switch_analog_generic,
.switch_channel = b43_gphy_op_switch_channel,
.get_default_chan = b43_gphy_op_get_default_chan,
.set_rx_antenna = b43_gphy_op_set_rx_antenna,
.interf_mitigation = b43_gphy_op_interf_mitigation,
.recalc_txpower = b43_gphy_op_recalc_txpower,
.adjust_txpower = b43_gphy_op_adjust_txpower,
.pwork_15sec = b43_gphy_op_pwork_15sec,
.pwork_60sec = b43_gphy_op_pwork_60sec,
};