Files
linux/sound/firewire/motu/motu-protocol-v2.c
Takashi Sakamoto ff8f11860e ALSA: firewire-motu: fix detection for S/PDIF source on optical interface in v2 protocol
[ Upstream commit fa4db23233 ]

The devices in protocol version 2 has a register with flag for IEC 60958
signal detection as source of sampling clock without discrimination
between coaxial and optical interfaces. On the other hand, current
implementation of driver manage to interpret type of signal on optical
interface instead.

This commit fixes the detection of optical/coaxial interface for S/PDIF
signal.

Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Link: https://lore.kernel.org/r/20210623075941.72562-2-o-takashi@sakamocchi.jp
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-20 16:05:45 +02:00

359 lines
8.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* motu-protocol-v2.c - a part of driver for MOTU FireWire series
*
* Copyright (c) 2015-2017 Takashi Sakamoto <o-takashi@sakamocchi.jp>
*/
#include "motu.h"
#define V2_CLOCK_STATUS_OFFSET 0x0b14
#define V2_CLOCK_RATE_MASK 0x00000038
#define V2_CLOCK_RATE_SHIFT 3
#define V2_CLOCK_SRC_MASK 0x00000007
#define V2_CLOCK_SRC_SHIFT 0
#define V2_CLOCK_FETCH_ENABLE 0x02000000
#define V2_CLOCK_MODEL_SPECIFIC 0x04000000
#define V2_IN_OUT_CONF_OFFSET 0x0c04
#define V2_OPT_OUT_IFACE_MASK 0x00000c00
#define V2_OPT_OUT_IFACE_SHIFT 10
#define V2_OPT_IN_IFACE_MASK 0x00000300
#define V2_OPT_IN_IFACE_SHIFT 8
#define V2_OPT_IFACE_MODE_NONE 0
#define V2_OPT_IFACE_MODE_ADAT 1
#define V2_OPT_IFACE_MODE_SPDIF 2
static int get_clock_rate(u32 data, unsigned int *rate)
{
unsigned int index = (data & V2_CLOCK_RATE_MASK) >> V2_CLOCK_RATE_SHIFT;
if (index >= ARRAY_SIZE(snd_motu_clock_rates))
return -EIO;
*rate = snd_motu_clock_rates[index];
return 0;
}
int snd_motu_protocol_v2_get_clock_rate(struct snd_motu *motu,
unsigned int *rate)
{
__be32 reg;
int err;
err = snd_motu_transaction_read(motu, V2_CLOCK_STATUS_OFFSET, &reg,
sizeof(reg));
if (err < 0)
return err;
return get_clock_rate(be32_to_cpu(reg), rate);
}
int snd_motu_protocol_v2_set_clock_rate(struct snd_motu *motu,
unsigned int rate)
{
__be32 reg;
u32 data;
int i;
int err;
for (i = 0; i < ARRAY_SIZE(snd_motu_clock_rates); ++i) {
if (snd_motu_clock_rates[i] == rate)
break;
}
if (i == ARRAY_SIZE(snd_motu_clock_rates))
return -EINVAL;
err = snd_motu_transaction_read(motu, V2_CLOCK_STATUS_OFFSET, &reg,
sizeof(reg));
if (err < 0)
return err;
data = be32_to_cpu(reg);
data &= ~V2_CLOCK_RATE_MASK;
data |= i << V2_CLOCK_RATE_SHIFT;
reg = cpu_to_be32(data);
return snd_motu_transaction_write(motu, V2_CLOCK_STATUS_OFFSET, &reg,
sizeof(reg));
}
static int detect_clock_source_optical_model(struct snd_motu *motu, u32 data,
enum snd_motu_clock_source *src)
{
switch (data) {
case 0:
*src = SND_MOTU_CLOCK_SOURCE_INTERNAL;
break;
case 1:
*src = SND_MOTU_CLOCK_SOURCE_ADAT_ON_OPT;
break;
case 2:
{
__be32 reg;
// To check the configuration of optical interface.
int err = snd_motu_transaction_read(motu, V2_IN_OUT_CONF_OFFSET, &reg, sizeof(reg));
if (err < 0)
return err;
if (((data & V2_OPT_IN_IFACE_MASK) >> V2_OPT_IN_IFACE_SHIFT) == V2_OPT_IFACE_MODE_SPDIF)
*src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_OPT;
else
*src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_COAX;
break;
}
case 3:
*src = SND_MOTU_CLOCK_SOURCE_SPH;
break;
case 4:
*src = SND_MOTU_CLOCK_SOURCE_WORD_ON_BNC;
break;
case 5:
*src = SND_MOTU_CLOCK_SOURCE_ADAT_ON_DSUB;
break;
default:
*src = SND_MOTU_CLOCK_SOURCE_UNKNOWN;
break;
}
return 0;
}
static int v2_detect_clock_source(struct snd_motu *motu, u32 data,
enum snd_motu_clock_source *src)
{
switch (data) {
case 0:
*src = SND_MOTU_CLOCK_SOURCE_INTERNAL;
break;
case 2:
*src = SND_MOTU_CLOCK_SOURCE_SPDIF_ON_COAX;
break;
case 3:
*src = SND_MOTU_CLOCK_SOURCE_SPH;
break;
case 4:
*src = SND_MOTU_CLOCK_SOURCE_WORD_ON_BNC;
break;
default:
*src = SND_MOTU_CLOCK_SOURCE_UNKNOWN;
break;
}
return 0;
}
static int get_clock_source(struct snd_motu *motu, u32 data,
enum snd_motu_clock_source *src)
{
data &= V2_CLOCK_SRC_MASK;
if (motu->spec == &snd_motu_spec_828mk2 ||
motu->spec == &snd_motu_spec_traveler)
return detect_clock_source_optical_model(motu, data, src);
else
return v2_detect_clock_source(motu, data, src);
}
int snd_motu_protocol_v2_get_clock_source(struct snd_motu *motu,
enum snd_motu_clock_source *src)
{
__be32 reg;
int err;
err = snd_motu_transaction_read(motu, V2_CLOCK_STATUS_OFFSET, &reg,
sizeof(reg));
if (err < 0)
return err;
return get_clock_source(motu, be32_to_cpu(reg), src);
}
// Expected for Traveler and 896HD, which implements Altera Cyclone EP1C3.
static int switch_fetching_mode_cyclone(struct snd_motu *motu, u32 *data,
bool enable)
{
*data |= V2_CLOCK_MODEL_SPECIFIC;
return 0;
}
// For UltraLite and 8pre, which implements Xilinx Spartan XC3S200.
static int switch_fetching_mode_spartan(struct snd_motu *motu, u32 *data,
bool enable)
{
unsigned int rate;
enum snd_motu_clock_source src;
int err;
err = get_clock_source(motu, *data, &src);
if (err < 0)
return err;
err = get_clock_rate(*data, &rate);
if (err < 0)
return err;
if (src == SND_MOTU_CLOCK_SOURCE_SPH && rate > 48000)
*data |= V2_CLOCK_MODEL_SPECIFIC;
return 0;
}
int snd_motu_protocol_v2_switch_fetching_mode(struct snd_motu *motu,
bool enable)
{
if (motu->spec == &snd_motu_spec_828mk2) {
// 828mkII implements Altera ACEX 1K EP1K30. Nothing to do.
return 0;
} else {
__be32 reg;
u32 data;
int err;
err = snd_motu_transaction_read(motu, V2_CLOCK_STATUS_OFFSET,
&reg, sizeof(reg));
if (err < 0)
return err;
data = be32_to_cpu(reg);
data &= ~(V2_CLOCK_FETCH_ENABLE | V2_CLOCK_MODEL_SPECIFIC);
if (enable)
data |= V2_CLOCK_FETCH_ENABLE;
if (motu->spec == &snd_motu_spec_traveler)
err = switch_fetching_mode_cyclone(motu, &data, enable);
else
err = switch_fetching_mode_spartan(motu, &data, enable);
if (err < 0)
return err;
reg = cpu_to_be32(data);
return snd_motu_transaction_write(motu, V2_CLOCK_STATUS_OFFSET,
&reg, sizeof(reg));
}
}
static int detect_packet_formats_828mk2(struct snd_motu *motu, u32 data)
{
if (((data & V2_OPT_IN_IFACE_MASK) >> V2_OPT_IN_IFACE_SHIFT) ==
V2_OPT_IFACE_MODE_ADAT) {
motu->tx_packet_formats.pcm_chunks[0] += 8;
motu->tx_packet_formats.pcm_chunks[1] += 4;
}
if (((data & V2_OPT_OUT_IFACE_MASK) >> V2_OPT_OUT_IFACE_SHIFT) ==
V2_OPT_IFACE_MODE_ADAT) {
motu->rx_packet_formats.pcm_chunks[0] += 8;
motu->rx_packet_formats.pcm_chunks[1] += 4;
}
return 0;
}
static int detect_packet_formats_traveler(struct snd_motu *motu, u32 data)
{
if (((data & V2_OPT_IN_IFACE_MASK) >> V2_OPT_IN_IFACE_SHIFT) ==
V2_OPT_IFACE_MODE_ADAT) {
motu->tx_packet_formats.pcm_chunks[0] += 8;
motu->tx_packet_formats.pcm_chunks[1] += 4;
}
if (((data & V2_OPT_OUT_IFACE_MASK) >> V2_OPT_OUT_IFACE_SHIFT) ==
V2_OPT_IFACE_MODE_ADAT) {
motu->rx_packet_formats.pcm_chunks[0] += 8;
motu->rx_packet_formats.pcm_chunks[1] += 4;
}
return 0;
}
static int detect_packet_formats_8pre(struct snd_motu *motu, u32 data)
{
if (((data & V2_OPT_IN_IFACE_MASK) >> V2_OPT_IN_IFACE_SHIFT) ==
V2_OPT_IFACE_MODE_ADAT) {
motu->tx_packet_formats.pcm_chunks[0] += 8;
motu->tx_packet_formats.pcm_chunks[1] += 8;
}
if (((data & V2_OPT_OUT_IFACE_MASK) >> V2_OPT_OUT_IFACE_SHIFT) ==
V2_OPT_IFACE_MODE_ADAT) {
motu->rx_packet_formats.pcm_chunks[0] += 8;
motu->rx_packet_formats.pcm_chunks[1] += 8;
}
return 0;
}
int snd_motu_protocol_v2_cache_packet_formats(struct snd_motu *motu)
{
__be32 reg;
u32 data;
int err;
motu->tx_packet_formats.pcm_byte_offset = 10;
motu->rx_packet_formats.pcm_byte_offset = 10;
motu->tx_packet_formats.msg_chunks = 2;
motu->rx_packet_formats.msg_chunks = 2;
err = snd_motu_transaction_read(motu, V2_IN_OUT_CONF_OFFSET, &reg,
sizeof(reg));
if (err < 0)
return err;
data = be32_to_cpu(reg);
memcpy(motu->tx_packet_formats.pcm_chunks,
motu->spec->tx_fixed_pcm_chunks,
sizeof(motu->tx_packet_formats.pcm_chunks));
memcpy(motu->rx_packet_formats.pcm_chunks,
motu->spec->rx_fixed_pcm_chunks,
sizeof(motu->rx_packet_formats.pcm_chunks));
if (motu->spec == &snd_motu_spec_828mk2)
return detect_packet_formats_828mk2(motu, data);
else if (motu->spec == &snd_motu_spec_traveler)
return detect_packet_formats_traveler(motu, data);
else if (motu->spec == &snd_motu_spec_8pre)
return detect_packet_formats_8pre(motu, data);
else
return 0;
}
const struct snd_motu_spec snd_motu_spec_828mk2 = {
.name = "828mk2",
.protocol_version = SND_MOTU_PROTOCOL_V2,
.flags = SND_MOTU_SPEC_RX_MIDI_2ND_Q |
SND_MOTU_SPEC_TX_MIDI_2ND_Q,
.tx_fixed_pcm_chunks = {14, 14, 0},
.rx_fixed_pcm_chunks = {14, 14, 0},
};
const struct snd_motu_spec snd_motu_spec_traveler = {
.name = "Traveler",
.protocol_version = SND_MOTU_PROTOCOL_V2,
.flags = SND_MOTU_SPEC_RX_MIDI_2ND_Q |
SND_MOTU_SPEC_TX_MIDI_2ND_Q,
.tx_fixed_pcm_chunks = {14, 14, 8},
.rx_fixed_pcm_chunks = {14, 14, 8},
};
const struct snd_motu_spec snd_motu_spec_ultralite = {
.name = "UltraLite",
.protocol_version = SND_MOTU_PROTOCOL_V2,
.flags = SND_MOTU_SPEC_RX_MIDI_2ND_Q |
SND_MOTU_SPEC_TX_MIDI_2ND_Q,
.tx_fixed_pcm_chunks = {14, 14, 0},
.rx_fixed_pcm_chunks = {14, 14, 0},
};
const struct snd_motu_spec snd_motu_spec_8pre = {
.name = "8pre",
.protocol_version = SND_MOTU_PROTOCOL_V2,
.flags = SND_MOTU_SPEC_RX_MIDI_2ND_Q |
SND_MOTU_SPEC_TX_MIDI_2ND_Q,
// Two dummy chunks always in the end of data block.
.tx_fixed_pcm_chunks = {10, 10, 0},
.rx_fixed_pcm_chunks = {6, 6, 0},
};