80645bd4aa
Provide a top-level-ish function that can be pointed to directly by ->read_iter file op. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
634 lines
19 KiB
C
634 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Network filesystem high-level buffered read support.
|
|
*
|
|
* Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Unlock the folios in a read operation. We need to set PG_fscache on any
|
|
* folios we're going to write back before we unlock them.
|
|
*/
|
|
void netfs_rreq_unlock_folios(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
struct netfs_folio *finfo;
|
|
struct folio *folio;
|
|
pgoff_t start_page = rreq->start / PAGE_SIZE;
|
|
pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
|
|
size_t account = 0;
|
|
bool subreq_failed = false;
|
|
|
|
XA_STATE(xas, &rreq->mapping->i_pages, start_page);
|
|
|
|
if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
|
|
__clear_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
__clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
|
|
}
|
|
}
|
|
|
|
/* Walk through the pagecache and the I/O request lists simultaneously.
|
|
* We may have a mixture of cached and uncached sections and we only
|
|
* really want to write out the uncached sections. This is slightly
|
|
* complicated by the possibility that we might have huge pages with a
|
|
* mixture inside.
|
|
*/
|
|
subreq = list_first_entry(&rreq->subrequests,
|
|
struct netfs_io_subrequest, rreq_link);
|
|
subreq_failed = (subreq->error < 0);
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);
|
|
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, folio, last_page) {
|
|
loff_t pg_end;
|
|
bool pg_failed = false;
|
|
bool folio_started;
|
|
|
|
if (xas_retry(&xas, folio))
|
|
continue;
|
|
|
|
pg_end = folio_pos(folio) + folio_size(folio) - 1;
|
|
|
|
folio_started = false;
|
|
for (;;) {
|
|
loff_t sreq_end;
|
|
|
|
if (!subreq) {
|
|
pg_failed = true;
|
|
break;
|
|
}
|
|
if (!folio_started && test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
|
|
folio_start_fscache(folio);
|
|
folio_started = true;
|
|
}
|
|
pg_failed |= subreq_failed;
|
|
sreq_end = subreq->start + subreq->len - 1;
|
|
if (pg_end < sreq_end)
|
|
break;
|
|
|
|
account += subreq->transferred;
|
|
if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
|
|
subreq = list_next_entry(subreq, rreq_link);
|
|
subreq_failed = (subreq->error < 0);
|
|
} else {
|
|
subreq = NULL;
|
|
subreq_failed = false;
|
|
}
|
|
|
|
if (pg_end == sreq_end)
|
|
break;
|
|
}
|
|
|
|
if (!pg_failed) {
|
|
flush_dcache_folio(folio);
|
|
finfo = netfs_folio_info(folio);
|
|
if (finfo) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_filled_gaps);
|
|
if (finfo->netfs_group)
|
|
folio_change_private(folio, finfo->netfs_group);
|
|
else
|
|
folio_detach_private(folio);
|
|
kfree(finfo);
|
|
}
|
|
folio_mark_uptodate(folio);
|
|
}
|
|
|
|
if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) {
|
|
if (folio_index(folio) == rreq->no_unlock_folio &&
|
|
test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags))
|
|
_debug("no unlock");
|
|
else
|
|
folio_unlock(folio);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
task_io_account_read(account);
|
|
if (rreq->netfs_ops->done)
|
|
rreq->netfs_ops->done(rreq);
|
|
}
|
|
|
|
static void netfs_cache_expand_readahead(struct netfs_io_request *rreq,
|
|
loff_t *_start, size_t *_len, loff_t i_size)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
if (cres->ops && cres->ops->expand_readahead)
|
|
cres->ops->expand_readahead(cres, _start, _len, i_size);
|
|
}
|
|
|
|
static void netfs_rreq_expand(struct netfs_io_request *rreq,
|
|
struct readahead_control *ractl)
|
|
{
|
|
/* Give the cache a chance to change the request parameters. The
|
|
* resultant request must contain the original region.
|
|
*/
|
|
netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
|
|
|
|
/* Give the netfs a chance to change the request parameters. The
|
|
* resultant request must contain the original region.
|
|
*/
|
|
if (rreq->netfs_ops->expand_readahead)
|
|
rreq->netfs_ops->expand_readahead(rreq);
|
|
|
|
/* Expand the request if the cache wants it to start earlier. Note
|
|
* that the expansion may get further extended if the VM wishes to
|
|
* insert THPs and the preferred start and/or end wind up in the middle
|
|
* of THPs.
|
|
*
|
|
* If this is the case, however, the THP size should be an integer
|
|
* multiple of the cache granule size, so we get a whole number of
|
|
* granules to deal with.
|
|
*/
|
|
if (rreq->start != readahead_pos(ractl) ||
|
|
rreq->len != readahead_length(ractl)) {
|
|
readahead_expand(ractl, rreq->start, rreq->len);
|
|
rreq->start = readahead_pos(ractl);
|
|
rreq->len = readahead_length(ractl);
|
|
|
|
trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
|
|
netfs_read_trace_expanded);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Begin an operation, and fetch the stored zero point value from the cookie if
|
|
* available.
|
|
*/
|
|
static int netfs_begin_cache_read(struct netfs_io_request *rreq, struct netfs_inode *ctx)
|
|
{
|
|
return fscache_begin_read_operation(&rreq->cache_resources, netfs_i_cookie(ctx));
|
|
}
|
|
|
|
/**
|
|
* netfs_readahead - Helper to manage a read request
|
|
* @ractl: The description of the readahead request
|
|
*
|
|
* Fulfil a readahead request by drawing data from the cache if possible, or
|
|
* the netfs if not. Space beyond the EOF is zero-filled. Multiple I/O
|
|
* requests from different sources will get munged together. If necessary, the
|
|
* readahead window can be expanded in either direction to a more convenient
|
|
* alighment for RPC efficiency or to make storage in the cache feasible.
|
|
*
|
|
* The calling netfs must initialise a netfs context contiguous to the vfs
|
|
* inode before calling this.
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
void netfs_readahead(struct readahead_control *ractl)
|
|
{
|
|
struct netfs_io_request *rreq;
|
|
struct netfs_inode *ctx = netfs_inode(ractl->mapping->host);
|
|
int ret;
|
|
|
|
_enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));
|
|
|
|
if (readahead_count(ractl) == 0)
|
|
return;
|
|
|
|
rreq = netfs_alloc_request(ractl->mapping, ractl->file,
|
|
readahead_pos(ractl),
|
|
readahead_length(ractl),
|
|
NETFS_READAHEAD);
|
|
if (IS_ERR(rreq))
|
|
return;
|
|
|
|
ret = netfs_begin_cache_read(rreq, ctx);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto cleanup_free;
|
|
|
|
netfs_stat(&netfs_n_rh_readahead);
|
|
trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
|
|
netfs_read_trace_readahead);
|
|
|
|
netfs_rreq_expand(rreq, ractl);
|
|
|
|
/* Set up the output buffer */
|
|
iov_iter_xarray(&rreq->iter, ITER_DEST, &ractl->mapping->i_pages,
|
|
rreq->start, rreq->len);
|
|
|
|
/* Drop the refs on the folios here rather than in the cache or
|
|
* filesystem. The locks will be dropped in netfs_rreq_unlock().
|
|
*/
|
|
while (readahead_folio(ractl))
|
|
;
|
|
|
|
netfs_begin_read(rreq, false);
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
|
|
return;
|
|
|
|
cleanup_free:
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
|
|
return;
|
|
}
|
|
EXPORT_SYMBOL(netfs_readahead);
|
|
|
|
/**
|
|
* netfs_read_folio - Helper to manage a read_folio request
|
|
* @file: The file to read from
|
|
* @folio: The folio to read
|
|
*
|
|
* Fulfil a read_folio request by drawing data from the cache if
|
|
* possible, or the netfs if not. Space beyond the EOF is zero-filled.
|
|
* Multiple I/O requests from different sources will get munged together.
|
|
*
|
|
* The calling netfs must initialise a netfs context contiguous to the vfs
|
|
* inode before calling this.
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
int netfs_read_folio(struct file *file, struct folio *folio)
|
|
{
|
|
struct address_space *mapping = folio_file_mapping(folio);
|
|
struct netfs_io_request *rreq;
|
|
struct netfs_inode *ctx = netfs_inode(mapping->host);
|
|
struct folio *sink = NULL;
|
|
int ret;
|
|
|
|
_enter("%lx", folio_index(folio));
|
|
|
|
rreq = netfs_alloc_request(mapping, file,
|
|
folio_file_pos(folio), folio_size(folio),
|
|
NETFS_READPAGE);
|
|
if (IS_ERR(rreq)) {
|
|
ret = PTR_ERR(rreq);
|
|
goto alloc_error;
|
|
}
|
|
|
|
ret = netfs_begin_cache_read(rreq, ctx);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto discard;
|
|
|
|
netfs_stat(&netfs_n_rh_readpage);
|
|
trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
|
|
|
|
/* Set up the output buffer */
|
|
if (folio_test_dirty(folio)) {
|
|
/* Handle someone trying to read from an unflushed streaming
|
|
* write. We fiddle the buffer so that a gap at the beginning
|
|
* and/or a gap at the end get copied to, but the middle is
|
|
* discarded.
|
|
*/
|
|
struct netfs_folio *finfo = netfs_folio_info(folio);
|
|
struct bio_vec *bvec;
|
|
unsigned int from = finfo->dirty_offset;
|
|
unsigned int to = from + finfo->dirty_len;
|
|
unsigned int off = 0, i = 0;
|
|
size_t flen = folio_size(folio);
|
|
size_t nr_bvec = flen / PAGE_SIZE + 2;
|
|
size_t part;
|
|
|
|
ret = -ENOMEM;
|
|
bvec = kmalloc_array(nr_bvec, sizeof(*bvec), GFP_KERNEL);
|
|
if (!bvec)
|
|
goto discard;
|
|
|
|
sink = folio_alloc(GFP_KERNEL, 0);
|
|
if (!sink)
|
|
goto discard;
|
|
|
|
trace_netfs_folio(folio, netfs_folio_trace_read_gaps);
|
|
|
|
rreq->direct_bv = bvec;
|
|
rreq->direct_bv_count = nr_bvec;
|
|
if (from > 0) {
|
|
bvec_set_folio(&bvec[i++], folio, from, 0);
|
|
off = from;
|
|
}
|
|
while (off < to) {
|
|
part = min_t(size_t, to - off, PAGE_SIZE);
|
|
bvec_set_folio(&bvec[i++], sink, part, 0);
|
|
off += part;
|
|
}
|
|
if (to < flen)
|
|
bvec_set_folio(&bvec[i++], folio, flen - to, to);
|
|
iov_iter_bvec(&rreq->iter, ITER_DEST, bvec, i, rreq->len);
|
|
} else {
|
|
iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
|
|
rreq->start, rreq->len);
|
|
}
|
|
|
|
ret = netfs_begin_read(rreq, true);
|
|
if (sink)
|
|
folio_put(sink);
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
|
|
return ret < 0 ? ret : 0;
|
|
|
|
discard:
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
|
|
alloc_error:
|
|
folio_unlock(folio);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_read_folio);
|
|
|
|
/*
|
|
* Prepare a folio for writing without reading first
|
|
* @folio: The folio being prepared
|
|
* @pos: starting position for the write
|
|
* @len: length of write
|
|
* @always_fill: T if the folio should always be completely filled/cleared
|
|
*
|
|
* In some cases, write_begin doesn't need to read at all:
|
|
* - full folio write
|
|
* - write that lies in a folio that is completely beyond EOF
|
|
* - write that covers the folio from start to EOF or beyond it
|
|
*
|
|
* If any of these criteria are met, then zero out the unwritten parts
|
|
* of the folio and return true. Otherwise, return false.
|
|
*/
|
|
static bool netfs_skip_folio_read(struct folio *folio, loff_t pos, size_t len,
|
|
bool always_fill)
|
|
{
|
|
struct inode *inode = folio_inode(folio);
|
|
loff_t i_size = i_size_read(inode);
|
|
size_t offset = offset_in_folio(folio, pos);
|
|
size_t plen = folio_size(folio);
|
|
|
|
if (unlikely(always_fill)) {
|
|
if (pos - offset + len <= i_size)
|
|
return false; /* Page entirely before EOF */
|
|
zero_user_segment(&folio->page, 0, plen);
|
|
folio_mark_uptodate(folio);
|
|
return true;
|
|
}
|
|
|
|
/* Full folio write */
|
|
if (offset == 0 && len >= plen)
|
|
return true;
|
|
|
|
/* Page entirely beyond the end of the file */
|
|
if (pos - offset >= i_size)
|
|
goto zero_out;
|
|
|
|
/* Write that covers from the start of the folio to EOF or beyond */
|
|
if (offset == 0 && (pos + len) >= i_size)
|
|
goto zero_out;
|
|
|
|
return false;
|
|
zero_out:
|
|
zero_user_segments(&folio->page, 0, offset, offset + len, plen);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* netfs_write_begin - Helper to prepare for writing
|
|
* @ctx: The netfs context
|
|
* @file: The file to read from
|
|
* @mapping: The mapping to read from
|
|
* @pos: File position at which the write will begin
|
|
* @len: The length of the write (may extend beyond the end of the folio chosen)
|
|
* @_folio: Where to put the resultant folio
|
|
* @_fsdata: Place for the netfs to store a cookie
|
|
*
|
|
* Pre-read data for a write-begin request by drawing data from the cache if
|
|
* possible, or the netfs if not. Space beyond the EOF is zero-filled.
|
|
* Multiple I/O requests from different sources will get munged together. If
|
|
* necessary, the readahead window can be expanded in either direction to a
|
|
* more convenient alighment for RPC efficiency or to make storage in the cache
|
|
* feasible.
|
|
*
|
|
* The calling netfs must provide a table of operations, only one of which,
|
|
* issue_op, is mandatory.
|
|
*
|
|
* The check_write_begin() operation can be provided to check for and flush
|
|
* conflicting writes once the folio is grabbed and locked. It is passed a
|
|
* pointer to the fsdata cookie that gets returned to the VM to be passed to
|
|
* write_end. It is permitted to sleep. It should return 0 if the request
|
|
* should go ahead or it may return an error. It may also unlock and put the
|
|
* folio, provided it sets ``*foliop`` to NULL, in which case a return of 0
|
|
* will cause the folio to be re-got and the process to be retried.
|
|
*
|
|
* The calling netfs must initialise a netfs context contiguous to the vfs
|
|
* inode before calling this.
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
int netfs_write_begin(struct netfs_inode *ctx,
|
|
struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned int len, struct folio **_folio,
|
|
void **_fsdata)
|
|
{
|
|
struct netfs_io_request *rreq;
|
|
struct folio *folio;
|
|
pgoff_t index = pos >> PAGE_SHIFT;
|
|
int ret;
|
|
|
|
DEFINE_READAHEAD(ractl, file, NULL, mapping, index);
|
|
|
|
retry:
|
|
folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
|
|
mapping_gfp_mask(mapping));
|
|
if (IS_ERR(folio))
|
|
return PTR_ERR(folio);
|
|
|
|
if (ctx->ops->check_write_begin) {
|
|
/* Allow the netfs (eg. ceph) to flush conflicts. */
|
|
ret = ctx->ops->check_write_begin(file, pos, len, &folio, _fsdata);
|
|
if (ret < 0) {
|
|
trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
|
|
goto error;
|
|
}
|
|
if (!folio)
|
|
goto retry;
|
|
}
|
|
|
|
if (folio_test_uptodate(folio))
|
|
goto have_folio;
|
|
|
|
/* If the page is beyond the EOF, we want to clear it - unless it's
|
|
* within the cache granule containing the EOF, in which case we need
|
|
* to preload the granule.
|
|
*/
|
|
if (!netfs_is_cache_enabled(ctx) &&
|
|
netfs_skip_folio_read(folio, pos, len, false)) {
|
|
netfs_stat(&netfs_n_rh_write_zskip);
|
|
goto have_folio_no_wait;
|
|
}
|
|
|
|
rreq = netfs_alloc_request(mapping, file,
|
|
folio_file_pos(folio), folio_size(folio),
|
|
NETFS_READ_FOR_WRITE);
|
|
if (IS_ERR(rreq)) {
|
|
ret = PTR_ERR(rreq);
|
|
goto error;
|
|
}
|
|
rreq->no_unlock_folio = folio_index(folio);
|
|
__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
|
|
|
|
ret = netfs_begin_cache_read(rreq, ctx);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto error_put;
|
|
|
|
netfs_stat(&netfs_n_rh_write_begin);
|
|
trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
|
|
|
|
/* Expand the request to meet caching requirements and download
|
|
* preferences.
|
|
*/
|
|
ractl._nr_pages = folio_nr_pages(folio);
|
|
netfs_rreq_expand(rreq, &ractl);
|
|
|
|
/* Set up the output buffer */
|
|
iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
|
|
rreq->start, rreq->len);
|
|
|
|
/* We hold the folio locks, so we can drop the references */
|
|
folio_get(folio);
|
|
while (readahead_folio(&ractl))
|
|
;
|
|
|
|
ret = netfs_begin_read(rreq, true);
|
|
if (ret < 0)
|
|
goto error;
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
|
|
|
|
have_folio:
|
|
ret = folio_wait_fscache_killable(folio);
|
|
if (ret < 0)
|
|
goto error;
|
|
have_folio_no_wait:
|
|
*_folio = folio;
|
|
_leave(" = 0");
|
|
return 0;
|
|
|
|
error_put:
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
|
|
error:
|
|
if (folio) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_write_begin);
|
|
|
|
/*
|
|
* Preload the data into a page we're proposing to write into.
|
|
*/
|
|
int netfs_prefetch_for_write(struct file *file, struct folio *folio,
|
|
size_t offset, size_t len)
|
|
{
|
|
struct netfs_io_request *rreq;
|
|
struct address_space *mapping = folio_file_mapping(folio);
|
|
struct netfs_inode *ctx = netfs_inode(mapping->host);
|
|
unsigned long long start = folio_pos(folio);
|
|
size_t flen = folio_size(folio);
|
|
int ret;
|
|
|
|
_enter("%zx @%llx", flen, start);
|
|
|
|
ret = -ENOMEM;
|
|
|
|
rreq = netfs_alloc_request(mapping, file, start, flen,
|
|
NETFS_READ_FOR_WRITE);
|
|
if (IS_ERR(rreq)) {
|
|
ret = PTR_ERR(rreq);
|
|
goto error;
|
|
}
|
|
|
|
rreq->no_unlock_folio = folio_index(folio);
|
|
__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
|
|
ret = netfs_begin_cache_read(rreq, ctx);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto error_put;
|
|
|
|
netfs_stat(&netfs_n_rh_write_begin);
|
|
trace_netfs_read(rreq, start, flen, netfs_read_trace_prefetch_for_write);
|
|
|
|
/* Set up the output buffer */
|
|
iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
|
|
rreq->start, rreq->len);
|
|
|
|
ret = netfs_begin_read(rreq, true);
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
|
|
return ret;
|
|
|
|
error_put:
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
|
|
error:
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* netfs_buffered_read_iter - Filesystem buffered I/O read routine
|
|
* @iocb: kernel I/O control block
|
|
* @iter: destination for the data read
|
|
*
|
|
* This is the ->read_iter() routine for all filesystems that can use the page
|
|
* cache directly.
|
|
*
|
|
* The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
|
|
* returned when no data can be read without waiting for I/O requests to
|
|
* complete; it doesn't prevent readahead.
|
|
*
|
|
* The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
|
|
* shall be made for the read or for readahead. When no data can be read,
|
|
* -EAGAIN shall be returned. When readahead would be triggered, a partial,
|
|
* possibly empty read shall be returned.
|
|
*
|
|
* Return:
|
|
* * number of bytes copied, even for partial reads
|
|
* * negative error code (or 0 if IOCB_NOIO) if nothing was read
|
|
*/
|
|
ssize_t netfs_buffered_read_iter(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
struct netfs_inode *ictx = netfs_inode(inode);
|
|
ssize_t ret;
|
|
|
|
if (WARN_ON_ONCE((iocb->ki_flags & IOCB_DIRECT) ||
|
|
test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)))
|
|
return -EINVAL;
|
|
|
|
ret = netfs_start_io_read(inode);
|
|
if (ret == 0) {
|
|
ret = filemap_read(iocb, iter, 0);
|
|
netfs_end_io_read(inode);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_buffered_read_iter);
|
|
|
|
/**
|
|
* netfs_file_read_iter - Generic filesystem read routine
|
|
* @iocb: kernel I/O control block
|
|
* @iter: destination for the data read
|
|
*
|
|
* This is the ->read_iter() routine for all filesystems that can use the page
|
|
* cache directly.
|
|
*
|
|
* The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
|
|
* returned when no data can be read without waiting for I/O requests to
|
|
* complete; it doesn't prevent readahead.
|
|
*
|
|
* The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
|
|
* shall be made for the read or for readahead. When no data can be read,
|
|
* -EAGAIN shall be returned. When readahead would be triggered, a partial,
|
|
* possibly empty read shall be returned.
|
|
*
|
|
* Return:
|
|
* * number of bytes copied, even for partial reads
|
|
* * negative error code (or 0 if IOCB_NOIO) if nothing was read
|
|
*/
|
|
ssize_t netfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct netfs_inode *ictx = netfs_inode(iocb->ki_filp->f_mapping->host);
|
|
|
|
if ((iocb->ki_flags & IOCB_DIRECT) ||
|
|
test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
|
|
return netfs_unbuffered_read_iter(iocb, iter);
|
|
|
|
return netfs_buffered_read_iter(iocb, iter);
|
|
}
|
|
EXPORT_SYMBOL(netfs_file_read_iter);
|