4ec3eb1363
Conflicts: arch/arm/kernel/entry-armv.S arch/arm/mm/ioremap.c
658 lines
16 KiB
C
658 lines
16 KiB
C
/*
|
|
* linux/arch/arm/mm/dma-mapping.c
|
|
*
|
|
* Copyright (C) 2000-2004 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* DMA uncached mapping support.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/list.h>
|
|
#include <linux/init.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <asm/memory.h>
|
|
#include <asm/highmem.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/sizes.h>
|
|
|
|
static u64 get_coherent_dma_mask(struct device *dev)
|
|
{
|
|
u64 mask = ISA_DMA_THRESHOLD;
|
|
|
|
if (dev) {
|
|
mask = dev->coherent_dma_mask;
|
|
|
|
/*
|
|
* Sanity check the DMA mask - it must be non-zero, and
|
|
* must be able to be satisfied by a DMA allocation.
|
|
*/
|
|
if (mask == 0) {
|
|
dev_warn(dev, "coherent DMA mask is unset\n");
|
|
return 0;
|
|
}
|
|
|
|
if ((~mask) & ISA_DMA_THRESHOLD) {
|
|
dev_warn(dev, "coherent DMA mask %#llx is smaller "
|
|
"than system GFP_DMA mask %#llx\n",
|
|
mask, (unsigned long long)ISA_DMA_THRESHOLD);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
* Allocate a DMA buffer for 'dev' of size 'size' using the
|
|
* specified gfp mask. Note that 'size' must be page aligned.
|
|
*/
|
|
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
|
|
{
|
|
unsigned long order = get_order(size);
|
|
struct page *page, *p, *e;
|
|
void *ptr;
|
|
u64 mask = get_coherent_dma_mask(dev);
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
u64 limit = (mask + 1) & ~mask;
|
|
if (limit && size >= limit) {
|
|
dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
|
|
size, mask);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
if (!mask)
|
|
return NULL;
|
|
|
|
if (mask < 0xffffffffULL)
|
|
gfp |= GFP_DMA;
|
|
|
|
page = alloc_pages(gfp, order);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
/*
|
|
* Now split the huge page and free the excess pages
|
|
*/
|
|
split_page(page, order);
|
|
for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
|
|
__free_page(p);
|
|
|
|
/*
|
|
* Ensure that the allocated pages are zeroed, and that any data
|
|
* lurking in the kernel direct-mapped region is invalidated.
|
|
*/
|
|
ptr = page_address(page);
|
|
memset(ptr, 0, size);
|
|
dmac_flush_range(ptr, ptr + size);
|
|
outer_flush_range(__pa(ptr), __pa(ptr) + size);
|
|
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Free a DMA buffer. 'size' must be page aligned.
|
|
*/
|
|
static void __dma_free_buffer(struct page *page, size_t size)
|
|
{
|
|
struct page *e = page + (size >> PAGE_SHIFT);
|
|
|
|
while (page < e) {
|
|
__free_page(page);
|
|
page++;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
/* Sanity check size */
|
|
#if (CONSISTENT_DMA_SIZE % SZ_2M)
|
|
#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
|
|
#endif
|
|
|
|
#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
|
|
#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
|
|
#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
|
|
|
|
/*
|
|
* These are the page tables (2MB each) covering uncached, DMA consistent allocations
|
|
*/
|
|
static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
|
|
|
|
#include "vmregion.h"
|
|
|
|
static struct arm_vmregion_head consistent_head = {
|
|
.vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
|
|
.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
|
|
.vm_start = CONSISTENT_BASE,
|
|
.vm_end = CONSISTENT_END,
|
|
};
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
#error ARM Coherent DMA allocator does not (yet) support huge TLB
|
|
#endif
|
|
|
|
/*
|
|
* Initialise the consistent memory allocation.
|
|
*/
|
|
static int __init consistent_init(void)
|
|
{
|
|
int ret = 0;
|
|
pgd_t *pgd;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
int i = 0;
|
|
u32 base = CONSISTENT_BASE;
|
|
|
|
do {
|
|
pgd = pgd_offset(&init_mm, base);
|
|
pmd = pmd_alloc(&init_mm, pgd, base);
|
|
if (!pmd) {
|
|
printk(KERN_ERR "%s: no pmd tables\n", __func__);
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
WARN_ON(!pmd_none(*pmd));
|
|
|
|
pte = pte_alloc_kernel(pmd, base);
|
|
if (!pte) {
|
|
printk(KERN_ERR "%s: no pte tables\n", __func__);
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
consistent_pte[i++] = pte;
|
|
base += (1 << PGDIR_SHIFT);
|
|
} while (base < CONSISTENT_END);
|
|
|
|
return ret;
|
|
}
|
|
|
|
core_initcall(consistent_init);
|
|
|
|
static void *
|
|
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
|
|
{
|
|
struct arm_vmregion *c;
|
|
size_t align;
|
|
int bit;
|
|
|
|
if (!consistent_pte[0]) {
|
|
printk(KERN_ERR "%s: not initialised\n", __func__);
|
|
dump_stack();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Align the virtual region allocation - maximum alignment is
|
|
* a section size, minimum is a page size. This helps reduce
|
|
* fragmentation of the DMA space, and also prevents allocations
|
|
* smaller than a section from crossing a section boundary.
|
|
*/
|
|
bit = fls(size - 1);
|
|
if (bit > SECTION_SHIFT)
|
|
bit = SECTION_SHIFT;
|
|
align = 1 << bit;
|
|
|
|
/*
|
|
* Allocate a virtual address in the consistent mapping region.
|
|
*/
|
|
c = arm_vmregion_alloc(&consistent_head, align, size,
|
|
gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
|
|
if (c) {
|
|
pte_t *pte;
|
|
int idx = CONSISTENT_PTE_INDEX(c->vm_start);
|
|
u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
|
|
|
|
pte = consistent_pte[idx] + off;
|
|
c->vm_pages = page;
|
|
|
|
do {
|
|
BUG_ON(!pte_none(*pte));
|
|
|
|
set_pte_ext(pte, mk_pte(page, prot), 0);
|
|
page++;
|
|
pte++;
|
|
off++;
|
|
if (off >= PTRS_PER_PTE) {
|
|
off = 0;
|
|
pte = consistent_pte[++idx];
|
|
}
|
|
} while (size -= PAGE_SIZE);
|
|
|
|
dsb();
|
|
|
|
return (void *)c->vm_start;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void __dma_free_remap(void *cpu_addr, size_t size)
|
|
{
|
|
struct arm_vmregion *c;
|
|
unsigned long addr;
|
|
pte_t *ptep;
|
|
int idx;
|
|
u32 off;
|
|
|
|
c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
|
|
if (!c) {
|
|
printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
|
|
__func__, cpu_addr);
|
|
dump_stack();
|
|
return;
|
|
}
|
|
|
|
if ((c->vm_end - c->vm_start) != size) {
|
|
printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
|
|
__func__, c->vm_end - c->vm_start, size);
|
|
dump_stack();
|
|
size = c->vm_end - c->vm_start;
|
|
}
|
|
|
|
idx = CONSISTENT_PTE_INDEX(c->vm_start);
|
|
off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
|
|
ptep = consistent_pte[idx] + off;
|
|
addr = c->vm_start;
|
|
do {
|
|
pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
|
|
|
|
ptep++;
|
|
addr += PAGE_SIZE;
|
|
off++;
|
|
if (off >= PTRS_PER_PTE) {
|
|
off = 0;
|
|
ptep = consistent_pte[++idx];
|
|
}
|
|
|
|
if (pte_none(pte) || !pte_present(pte))
|
|
printk(KERN_CRIT "%s: bad page in kernel page table\n",
|
|
__func__);
|
|
} while (size -= PAGE_SIZE);
|
|
|
|
flush_tlb_kernel_range(c->vm_start, c->vm_end);
|
|
|
|
arm_vmregion_free(&consistent_head, c);
|
|
}
|
|
|
|
#else /* !CONFIG_MMU */
|
|
|
|
#define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
|
|
#define __dma_free_remap(addr, size) do { } while (0)
|
|
|
|
#endif /* CONFIG_MMU */
|
|
|
|
static void *
|
|
__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
|
|
pgprot_t prot)
|
|
{
|
|
struct page *page;
|
|
void *addr;
|
|
|
|
*handle = ~0;
|
|
size = PAGE_ALIGN(size);
|
|
|
|
page = __dma_alloc_buffer(dev, size, gfp);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
if (!arch_is_coherent())
|
|
addr = __dma_alloc_remap(page, size, gfp, prot);
|
|
else
|
|
addr = page_address(page);
|
|
|
|
if (addr)
|
|
*handle = pfn_to_dma(dev, page_to_pfn(page));
|
|
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA-coherent memory space and return both the kernel remapped
|
|
* virtual and bus address for that space.
|
|
*/
|
|
void *
|
|
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
|
|
{
|
|
void *memory;
|
|
|
|
if (dma_alloc_from_coherent(dev, size, handle, &memory))
|
|
return memory;
|
|
|
|
return __dma_alloc(dev, size, handle, gfp,
|
|
pgprot_dmacoherent(pgprot_kernel));
|
|
}
|
|
EXPORT_SYMBOL(dma_alloc_coherent);
|
|
|
|
/*
|
|
* Allocate a writecombining region, in much the same way as
|
|
* dma_alloc_coherent above.
|
|
*/
|
|
void *
|
|
dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
|
|
{
|
|
return __dma_alloc(dev, size, handle, gfp,
|
|
pgprot_writecombine(pgprot_kernel));
|
|
}
|
|
EXPORT_SYMBOL(dma_alloc_writecombine);
|
|
|
|
static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
{
|
|
int ret = -ENXIO;
|
|
#ifdef CONFIG_MMU
|
|
unsigned long user_size, kern_size;
|
|
struct arm_vmregion *c;
|
|
|
|
user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
|
|
c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
|
|
if (c) {
|
|
unsigned long off = vma->vm_pgoff;
|
|
|
|
kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
|
|
|
|
if (off < kern_size &&
|
|
user_size <= (kern_size - off)) {
|
|
ret = remap_pfn_range(vma, vma->vm_start,
|
|
page_to_pfn(c->vm_pages) + off,
|
|
user_size << PAGE_SHIFT,
|
|
vma->vm_page_prot);
|
|
}
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
|
|
return ret;
|
|
}
|
|
|
|
int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
{
|
|
vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
|
|
return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
|
|
}
|
|
EXPORT_SYMBOL(dma_mmap_coherent);
|
|
|
|
int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
{
|
|
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
|
return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
|
|
}
|
|
EXPORT_SYMBOL(dma_mmap_writecombine);
|
|
|
|
/*
|
|
* free a page as defined by the above mapping.
|
|
* Must not be called with IRQs disabled.
|
|
*/
|
|
void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
|
|
{
|
|
WARN_ON(irqs_disabled());
|
|
|
|
if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
|
|
return;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (!arch_is_coherent())
|
|
__dma_free_remap(cpu_addr, size);
|
|
|
|
__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
|
|
}
|
|
EXPORT_SYMBOL(dma_free_coherent);
|
|
|
|
/*
|
|
* Make an area consistent for devices.
|
|
* Note: Drivers should NOT use this function directly, as it will break
|
|
* platforms with CONFIG_DMABOUNCE.
|
|
* Use the driver DMA support - see dma-mapping.h (dma_sync_*)
|
|
*/
|
|
void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned long paddr;
|
|
|
|
BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
|
|
|
|
dmac_map_area(kaddr, size, dir);
|
|
|
|
paddr = __pa(kaddr);
|
|
if (dir == DMA_FROM_DEVICE) {
|
|
outer_inv_range(paddr, paddr + size);
|
|
} else {
|
|
outer_clean_range(paddr, paddr + size);
|
|
}
|
|
/* FIXME: non-speculating: flush on bidirectional mappings? */
|
|
}
|
|
EXPORT_SYMBOL(___dma_single_cpu_to_dev);
|
|
|
|
void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
|
|
|
|
/* FIXME: non-speculating: not required */
|
|
/* don't bother invalidating if DMA to device */
|
|
if (dir != DMA_TO_DEVICE) {
|
|
unsigned long paddr = __pa(kaddr);
|
|
outer_inv_range(paddr, paddr + size);
|
|
}
|
|
|
|
dmac_unmap_area(kaddr, size, dir);
|
|
}
|
|
EXPORT_SYMBOL(___dma_single_dev_to_cpu);
|
|
|
|
static void dma_cache_maint_page(struct page *page, unsigned long offset,
|
|
size_t size, enum dma_data_direction dir,
|
|
void (*op)(const void *, size_t, int))
|
|
{
|
|
/*
|
|
* A single sg entry may refer to multiple physically contiguous
|
|
* pages. But we still need to process highmem pages individually.
|
|
* If highmem is not configured then the bulk of this loop gets
|
|
* optimized out.
|
|
*/
|
|
size_t left = size;
|
|
do {
|
|
size_t len = left;
|
|
void *vaddr;
|
|
|
|
if (PageHighMem(page)) {
|
|
if (len + offset > PAGE_SIZE) {
|
|
if (offset >= PAGE_SIZE) {
|
|
page += offset / PAGE_SIZE;
|
|
offset %= PAGE_SIZE;
|
|
}
|
|
len = PAGE_SIZE - offset;
|
|
}
|
|
vaddr = kmap_high_get(page);
|
|
if (vaddr) {
|
|
vaddr += offset;
|
|
op(vaddr, len, dir);
|
|
kunmap_high(page);
|
|
} else if (cache_is_vipt()) {
|
|
pte_t saved_pte;
|
|
vaddr = kmap_high_l1_vipt(page, &saved_pte);
|
|
op(vaddr + offset, len, dir);
|
|
kunmap_high_l1_vipt(page, saved_pte);
|
|
}
|
|
} else {
|
|
vaddr = page_address(page) + offset;
|
|
op(vaddr, len, dir);
|
|
}
|
|
offset = 0;
|
|
page++;
|
|
left -= len;
|
|
} while (left);
|
|
}
|
|
|
|
void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
unsigned long paddr;
|
|
|
|
dma_cache_maint_page(page, off, size, dir, dmac_map_area);
|
|
|
|
paddr = page_to_phys(page) + off;
|
|
if (dir == DMA_FROM_DEVICE) {
|
|
outer_inv_range(paddr, paddr + size);
|
|
} else {
|
|
outer_clean_range(paddr, paddr + size);
|
|
}
|
|
/* FIXME: non-speculating: flush on bidirectional mappings? */
|
|
}
|
|
EXPORT_SYMBOL(___dma_page_cpu_to_dev);
|
|
|
|
void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
unsigned long paddr = page_to_phys(page) + off;
|
|
|
|
/* FIXME: non-speculating: not required */
|
|
/* don't bother invalidating if DMA to device */
|
|
if (dir != DMA_TO_DEVICE)
|
|
outer_inv_range(paddr, paddr + size);
|
|
|
|
dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
|
|
|
|
/*
|
|
* Mark the D-cache clean for this page to avoid extra flushing.
|
|
*/
|
|
if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
|
|
set_bit(PG_dcache_clean, &page->flags);
|
|
}
|
|
EXPORT_SYMBOL(___dma_page_dev_to_cpu);
|
|
|
|
/**
|
|
* dma_map_sg - map a set of SG buffers for streaming mode DMA
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Map a set of buffers described by scatterlist in streaming mode for DMA.
|
|
* This is the scatter-gather version of the dma_map_single interface.
|
|
* Here the scatter gather list elements are each tagged with the
|
|
* appropriate dma address and length. They are obtained via
|
|
* sg_dma_{address,length}.
|
|
*
|
|
* Device ownership issues as mentioned for dma_map_single are the same
|
|
* here.
|
|
*/
|
|
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *s;
|
|
int i, j;
|
|
|
|
BUG_ON(!valid_dma_direction(dir));
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
|
|
s->length, dir);
|
|
if (dma_mapping_error(dev, s->dma_address))
|
|
goto bad_mapping;
|
|
}
|
|
debug_dma_map_sg(dev, sg, nents, nents, dir);
|
|
return nents;
|
|
|
|
bad_mapping:
|
|
for_each_sg(sg, s, i, j)
|
|
__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dma_map_sg);
|
|
|
|
/**
|
|
* dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to unmap (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*
|
|
* Unmap a set of streaming mode DMA translations. Again, CPU access
|
|
* rules concerning calls here are the same as for dma_unmap_single().
|
|
*/
|
|
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
debug_dma_unmap_sg(dev, sg, nents, dir);
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
|
|
}
|
|
EXPORT_SYMBOL(dma_unmap_sg);
|
|
|
|
/**
|
|
* dma_sync_sg_for_cpu
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
|
|
sg_dma_len(s), dir))
|
|
continue;
|
|
|
|
__dma_page_dev_to_cpu(sg_page(s), s->offset,
|
|
s->length, dir);
|
|
}
|
|
|
|
debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
|
|
}
|
|
EXPORT_SYMBOL(dma_sync_sg_for_cpu);
|
|
|
|
/**
|
|
* dma_sync_sg_for_device
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
|
|
sg_dma_len(s), dir))
|
|
continue;
|
|
|
|
__dma_page_cpu_to_dev(sg_page(s), s->offset,
|
|
s->length, dir);
|
|
}
|
|
|
|
debug_dma_sync_sg_for_device(dev, sg, nents, dir);
|
|
}
|
|
EXPORT_SYMBOL(dma_sync_sg_for_device);
|
|
|
|
#define PREALLOC_DMA_DEBUG_ENTRIES 4096
|
|
|
|
static int __init dma_debug_do_init(void)
|
|
{
|
|
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
|
|
return 0;
|
|
}
|
|
fs_initcall(dma_debug_do_init);
|