3ff955024d
This makes PR KVM allocate its kvm_vcpu structs from the kvm_vcpu_cache rather than having them embedded in the kvmppc_vcpu_book3s struct, which is allocated with vzalloc. The reason is to reduce the differences between PR and HV KVM in order to make is easier to have them coexist in one kernel binary. With this, the kvm_vcpu struct has a pointer to the kvmppc_vcpu_book3s struct. The pointer to the kvmppc_book3s_shadow_vcpu struct has moved from the kvmppc_vcpu_book3s struct to the kvm_vcpu struct, and is only present for 32-bit, since it is only used for 32-bit. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: squash in compile fix from Aneesh] Signed-off-by: Alexander Graf <agraf@suse.de>
1483 lines
38 KiB
C
1483 lines
38 KiB
C
/*
|
|
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
|
|
*
|
|
* Authors:
|
|
* Alexander Graf <agraf@suse.de>
|
|
* Kevin Wolf <mail@kevin-wolf.de>
|
|
* Paul Mackerras <paulus@samba.org>
|
|
*
|
|
* Description:
|
|
* Functions relating to running KVM on Book 3S processors where
|
|
* we don't have access to hypervisor mode, and we run the guest
|
|
* in problem state (user mode).
|
|
*
|
|
* This file is derived from arch/powerpc/kvm/44x.c,
|
|
* by Hollis Blanchard <hollisb@us.ibm.com>.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/export.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/reg.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/hvcall.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include "trace.h"
|
|
|
|
/* #define EXIT_DEBUG */
|
|
/* #define DEBUG_EXT */
|
|
|
|
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
|
|
ulong msr);
|
|
|
|
/* Some compatibility defines */
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
#define MSR_USER32 MSR_USER
|
|
#define MSR_USER64 MSR_USER
|
|
#define HW_PAGE_SIZE PAGE_SIZE
|
|
#endif
|
|
|
|
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
|
|
svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
|
|
svcpu_put(svcpu);
|
|
#endif
|
|
vcpu->cpu = smp_processor_id();
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
|
|
#endif
|
|
}
|
|
|
|
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
|
|
to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
|
|
svcpu_put(svcpu);
|
|
#endif
|
|
|
|
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
|
|
vcpu->cpu = -1;
|
|
}
|
|
|
|
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
|
|
void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
svcpu->gpr[0] = vcpu->arch.gpr[0];
|
|
svcpu->gpr[1] = vcpu->arch.gpr[1];
|
|
svcpu->gpr[2] = vcpu->arch.gpr[2];
|
|
svcpu->gpr[3] = vcpu->arch.gpr[3];
|
|
svcpu->gpr[4] = vcpu->arch.gpr[4];
|
|
svcpu->gpr[5] = vcpu->arch.gpr[5];
|
|
svcpu->gpr[6] = vcpu->arch.gpr[6];
|
|
svcpu->gpr[7] = vcpu->arch.gpr[7];
|
|
svcpu->gpr[8] = vcpu->arch.gpr[8];
|
|
svcpu->gpr[9] = vcpu->arch.gpr[9];
|
|
svcpu->gpr[10] = vcpu->arch.gpr[10];
|
|
svcpu->gpr[11] = vcpu->arch.gpr[11];
|
|
svcpu->gpr[12] = vcpu->arch.gpr[12];
|
|
svcpu->gpr[13] = vcpu->arch.gpr[13];
|
|
svcpu->cr = vcpu->arch.cr;
|
|
svcpu->xer = vcpu->arch.xer;
|
|
svcpu->ctr = vcpu->arch.ctr;
|
|
svcpu->lr = vcpu->arch.lr;
|
|
svcpu->pc = vcpu->arch.pc;
|
|
}
|
|
|
|
/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
|
|
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu)
|
|
{
|
|
vcpu->arch.gpr[0] = svcpu->gpr[0];
|
|
vcpu->arch.gpr[1] = svcpu->gpr[1];
|
|
vcpu->arch.gpr[2] = svcpu->gpr[2];
|
|
vcpu->arch.gpr[3] = svcpu->gpr[3];
|
|
vcpu->arch.gpr[4] = svcpu->gpr[4];
|
|
vcpu->arch.gpr[5] = svcpu->gpr[5];
|
|
vcpu->arch.gpr[6] = svcpu->gpr[6];
|
|
vcpu->arch.gpr[7] = svcpu->gpr[7];
|
|
vcpu->arch.gpr[8] = svcpu->gpr[8];
|
|
vcpu->arch.gpr[9] = svcpu->gpr[9];
|
|
vcpu->arch.gpr[10] = svcpu->gpr[10];
|
|
vcpu->arch.gpr[11] = svcpu->gpr[11];
|
|
vcpu->arch.gpr[12] = svcpu->gpr[12];
|
|
vcpu->arch.gpr[13] = svcpu->gpr[13];
|
|
vcpu->arch.cr = svcpu->cr;
|
|
vcpu->arch.xer = svcpu->xer;
|
|
vcpu->arch.ctr = svcpu->ctr;
|
|
vcpu->arch.lr = svcpu->lr;
|
|
vcpu->arch.pc = svcpu->pc;
|
|
vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
|
|
vcpu->arch.fault_dar = svcpu->fault_dar;
|
|
vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
|
|
vcpu->arch.last_inst = svcpu->last_inst;
|
|
}
|
|
|
|
int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r = 1; /* Indicate we want to get back into the guest */
|
|
|
|
/* We misuse TLB_FLUSH to indicate that we want to clear
|
|
all shadow cache entries */
|
|
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
|
|
kvmppc_mmu_pte_flush(vcpu, 0, 0);
|
|
|
|
return r;
|
|
}
|
|
|
|
/************* MMU Notifiers *************/
|
|
|
|
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
trace_kvm_unmap_hva(hva);
|
|
|
|
/*
|
|
* Flush all shadow tlb entries everywhere. This is slow, but
|
|
* we are 100% sure that we catch the to be unmapped page
|
|
*/
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
|
|
{
|
|
/* kvm_unmap_hva flushes everything anyways */
|
|
kvm_unmap_hva(kvm, start);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
/* XXX could be more clever ;) */
|
|
return 0;
|
|
}
|
|
|
|
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
/* XXX could be more clever ;) */
|
|
return 0;
|
|
}
|
|
|
|
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
|
|
{
|
|
/* The page will get remapped properly on its next fault */
|
|
kvm_unmap_hva(kvm, hva);
|
|
}
|
|
|
|
/*****************************************/
|
|
|
|
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong smsr = vcpu->arch.shared->msr;
|
|
|
|
/* Guest MSR values */
|
|
smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE;
|
|
/* Process MSR values */
|
|
smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
|
|
/* External providers the guest reserved */
|
|
smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext);
|
|
/* 64-bit Process MSR values */
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
smsr |= MSR_ISF | MSR_HV;
|
|
#endif
|
|
vcpu->arch.shadow_msr = smsr;
|
|
}
|
|
|
|
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
|
|
{
|
|
ulong old_msr = vcpu->arch.shared->msr;
|
|
|
|
#ifdef EXIT_DEBUG
|
|
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
|
|
#endif
|
|
|
|
msr &= to_book3s(vcpu)->msr_mask;
|
|
vcpu->arch.shared->msr = msr;
|
|
kvmppc_recalc_shadow_msr(vcpu);
|
|
|
|
if (msr & MSR_POW) {
|
|
if (!vcpu->arch.pending_exceptions) {
|
|
kvm_vcpu_block(vcpu);
|
|
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
|
|
vcpu->stat.halt_wakeup++;
|
|
|
|
/* Unset POW bit after we woke up */
|
|
msr &= ~MSR_POW;
|
|
vcpu->arch.shared->msr = msr;
|
|
}
|
|
}
|
|
|
|
if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) !=
|
|
(old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
|
|
kvmppc_mmu_flush_segments(vcpu);
|
|
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
|
|
|
|
/* Preload magic page segment when in kernel mode */
|
|
if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
|
|
struct kvm_vcpu_arch *a = &vcpu->arch;
|
|
|
|
if (msr & MSR_DR)
|
|
kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
|
|
else
|
|
kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When switching from 32 to 64-bit, we may have a stale 32-bit
|
|
* magic page around, we need to flush it. Typically 32-bit magic
|
|
* page will be instanciated when calling into RTAS. Note: We
|
|
* assume that such transition only happens while in kernel mode,
|
|
* ie, we never transition from user 32-bit to kernel 64-bit with
|
|
* a 32-bit magic page around.
|
|
*/
|
|
if (vcpu->arch.magic_page_pa &&
|
|
!(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
|
|
/* going from RTAS to normal kernel code */
|
|
kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
|
|
~0xFFFUL);
|
|
}
|
|
|
|
/* Preload FPU if it's enabled */
|
|
if (vcpu->arch.shared->msr & MSR_FP)
|
|
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
|
|
}
|
|
|
|
void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
|
|
{
|
|
u32 host_pvr;
|
|
|
|
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
|
|
vcpu->arch.pvr = pvr;
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
|
|
kvmppc_mmu_book3s_64_init(vcpu);
|
|
if (!to_book3s(vcpu)->hior_explicit)
|
|
to_book3s(vcpu)->hior = 0xfff00000;
|
|
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
|
|
vcpu->arch.cpu_type = KVM_CPU_3S_64;
|
|
} else
|
|
#endif
|
|
{
|
|
kvmppc_mmu_book3s_32_init(vcpu);
|
|
if (!to_book3s(vcpu)->hior_explicit)
|
|
to_book3s(vcpu)->hior = 0;
|
|
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
|
|
vcpu->arch.cpu_type = KVM_CPU_3S_32;
|
|
}
|
|
|
|
kvmppc_sanity_check(vcpu);
|
|
|
|
/* If we are in hypervisor level on 970, we can tell the CPU to
|
|
* treat DCBZ as 32 bytes store */
|
|
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
|
|
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
|
|
!strcmp(cur_cpu_spec->platform, "ppc970"))
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
|
|
|
|
/* Cell performs badly if MSR_FEx are set. So let's hope nobody
|
|
really needs them in a VM on Cell and force disable them. */
|
|
if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
|
|
to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
|
|
|
|
/*
|
|
* If they're asking for POWER6 or later, set the flag
|
|
* indicating that we can do multiple large page sizes
|
|
* and 1TB segments.
|
|
* Also set the flag that indicates that tlbie has the large
|
|
* page bit in the RB operand instead of the instruction.
|
|
*/
|
|
switch (PVR_VER(pvr)) {
|
|
case PVR_POWER6:
|
|
case PVR_POWER7:
|
|
case PVR_POWER7p:
|
|
case PVR_POWER8:
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
|
|
BOOK3S_HFLAG_NEW_TLBIE;
|
|
break;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
/* 32 bit Book3S always has 32 byte dcbz */
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
|
|
#endif
|
|
|
|
/* On some CPUs we can execute paired single operations natively */
|
|
asm ( "mfpvr %0" : "=r"(host_pvr));
|
|
switch (host_pvr) {
|
|
case 0x00080200: /* lonestar 2.0 */
|
|
case 0x00088202: /* lonestar 2.2 */
|
|
case 0x70000100: /* gekko 1.0 */
|
|
case 0x00080100: /* gekko 2.0 */
|
|
case 0x00083203: /* gekko 2.3a */
|
|
case 0x00083213: /* gekko 2.3b */
|
|
case 0x00083204: /* gekko 2.4 */
|
|
case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
|
|
case 0x00087200: /* broadway */
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
|
|
/* Enable HID2.PSE - in case we need it later */
|
|
mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
|
|
}
|
|
}
|
|
|
|
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
|
|
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
|
|
* emulate 32 bytes dcbz length.
|
|
*
|
|
* The Book3s_64 inventors also realized this case and implemented a special bit
|
|
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
|
|
*
|
|
* My approach here is to patch the dcbz instruction on executing pages.
|
|
*/
|
|
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
|
|
{
|
|
struct page *hpage;
|
|
u64 hpage_offset;
|
|
u32 *page;
|
|
int i;
|
|
|
|
hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
|
|
if (is_error_page(hpage))
|
|
return;
|
|
|
|
hpage_offset = pte->raddr & ~PAGE_MASK;
|
|
hpage_offset &= ~0xFFFULL;
|
|
hpage_offset /= 4;
|
|
|
|
get_page(hpage);
|
|
page = kmap_atomic(hpage);
|
|
|
|
/* patch dcbz into reserved instruction, so we trap */
|
|
for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
|
|
if ((page[i] & 0xff0007ff) == INS_DCBZ)
|
|
page[i] &= 0xfffffff7;
|
|
|
|
kunmap_atomic(page);
|
|
put_page(hpage);
|
|
}
|
|
|
|
static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
ulong mp_pa = vcpu->arch.magic_page_pa;
|
|
|
|
if (!(vcpu->arch.shared->msr & MSR_SF))
|
|
mp_pa = (uint32_t)mp_pa;
|
|
|
|
if (unlikely(mp_pa) &&
|
|
unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
|
|
return 1;
|
|
}
|
|
|
|
return kvm_is_visible_gfn(vcpu->kvm, gfn);
|
|
}
|
|
|
|
int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
ulong eaddr, int vec)
|
|
{
|
|
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
|
|
int r = RESUME_GUEST;
|
|
int relocated;
|
|
int page_found = 0;
|
|
struct kvmppc_pte pte;
|
|
bool is_mmio = false;
|
|
bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false;
|
|
bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false;
|
|
u64 vsid;
|
|
|
|
relocated = data ? dr : ir;
|
|
|
|
/* Resolve real address if translation turned on */
|
|
if (relocated) {
|
|
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data);
|
|
} else {
|
|
pte.may_execute = true;
|
|
pte.may_read = true;
|
|
pte.may_write = true;
|
|
pte.raddr = eaddr & KVM_PAM;
|
|
pte.eaddr = eaddr;
|
|
pte.vpage = eaddr >> 12;
|
|
pte.page_size = MMU_PAGE_64K;
|
|
}
|
|
|
|
switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
|
|
case 0:
|
|
pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
|
|
break;
|
|
case MSR_DR:
|
|
case MSR_IR:
|
|
vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
|
|
|
|
if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR)
|
|
pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
|
|
else
|
|
pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
|
|
pte.vpage |= vsid;
|
|
|
|
if (vsid == -1)
|
|
page_found = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
|
|
/*
|
|
* If we do the dcbz hack, we have to NX on every execution,
|
|
* so we can patch the executing code. This renders our guest
|
|
* NX-less.
|
|
*/
|
|
pte.may_execute = !data;
|
|
}
|
|
|
|
if (page_found == -ENOENT) {
|
|
/* Page not found in guest PTE entries */
|
|
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
|
|
vcpu->arch.shared->dsisr = vcpu->arch.fault_dsisr;
|
|
vcpu->arch.shared->msr |=
|
|
vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL;
|
|
kvmppc_book3s_queue_irqprio(vcpu, vec);
|
|
} else if (page_found == -EPERM) {
|
|
/* Storage protection */
|
|
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
|
|
vcpu->arch.shared->dsisr = vcpu->arch.fault_dsisr & ~DSISR_NOHPTE;
|
|
vcpu->arch.shared->dsisr |= DSISR_PROTFAULT;
|
|
vcpu->arch.shared->msr |=
|
|
vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL;
|
|
kvmppc_book3s_queue_irqprio(vcpu, vec);
|
|
} else if (page_found == -EINVAL) {
|
|
/* Page not found in guest SLB */
|
|
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
|
|
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
|
|
} else if (!is_mmio &&
|
|
kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
|
|
/* The guest's PTE is not mapped yet. Map on the host */
|
|
kvmppc_mmu_map_page(vcpu, &pte);
|
|
if (data)
|
|
vcpu->stat.sp_storage++;
|
|
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
|
|
kvmppc_patch_dcbz(vcpu, &pte);
|
|
} else {
|
|
/* MMIO */
|
|
vcpu->stat.mmio_exits++;
|
|
vcpu->arch.paddr_accessed = pte.raddr;
|
|
vcpu->arch.vaddr_accessed = pte.eaddr;
|
|
r = kvmppc_emulate_mmio(run, vcpu);
|
|
if ( r == RESUME_HOST_NV )
|
|
r = RESUME_HOST;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline int get_fpr_index(int i)
|
|
{
|
|
return i * TS_FPRWIDTH;
|
|
}
|
|
|
|
/* Give up external provider (FPU, Altivec, VSX) */
|
|
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
|
|
{
|
|
struct thread_struct *t = ¤t->thread;
|
|
u64 *vcpu_fpr = vcpu->arch.fpr;
|
|
#ifdef CONFIG_VSX
|
|
u64 *vcpu_vsx = vcpu->arch.vsr;
|
|
#endif
|
|
u64 *thread_fpr = (u64*)t->fpr;
|
|
int i;
|
|
|
|
/*
|
|
* VSX instructions can access FP and vector registers, so if
|
|
* we are giving up VSX, make sure we give up FP and VMX as well.
|
|
*/
|
|
if (msr & MSR_VSX)
|
|
msr |= MSR_FP | MSR_VEC;
|
|
|
|
msr &= vcpu->arch.guest_owned_ext;
|
|
if (!msr)
|
|
return;
|
|
|
|
#ifdef DEBUG_EXT
|
|
printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
|
|
#endif
|
|
|
|
if (msr & MSR_FP) {
|
|
/*
|
|
* Note that on CPUs with VSX, giveup_fpu stores
|
|
* both the traditional FP registers and the added VSX
|
|
* registers into thread.fpr[].
|
|
*/
|
|
if (current->thread.regs->msr & MSR_FP)
|
|
giveup_fpu(current);
|
|
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
|
|
vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];
|
|
|
|
vcpu->arch.fpscr = t->fpscr.val;
|
|
|
|
#ifdef CONFIG_VSX
|
|
if (cpu_has_feature(CPU_FTR_VSX))
|
|
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
|
|
vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (msr & MSR_VEC) {
|
|
if (current->thread.regs->msr & MSR_VEC)
|
|
giveup_altivec(current);
|
|
memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
|
|
vcpu->arch.vscr = t->vscr;
|
|
}
|
|
#endif
|
|
|
|
vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
|
|
kvmppc_recalc_shadow_msr(vcpu);
|
|
}
|
|
|
|
static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong srr0 = kvmppc_get_pc(vcpu);
|
|
u32 last_inst = kvmppc_get_last_inst(vcpu);
|
|
int ret;
|
|
|
|
ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
|
|
if (ret == -ENOENT) {
|
|
ulong msr = vcpu->arch.shared->msr;
|
|
|
|
msr = kvmppc_set_field(msr, 33, 33, 1);
|
|
msr = kvmppc_set_field(msr, 34, 36, 0);
|
|
vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0);
|
|
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
|
|
return EMULATE_AGAIN;
|
|
}
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
|
|
{
|
|
|
|
/* Need to do paired single emulation? */
|
|
if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
|
|
return EMULATE_DONE;
|
|
|
|
/* Read out the instruction */
|
|
if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
|
|
/* Need to emulate */
|
|
return EMULATE_FAIL;
|
|
|
|
return EMULATE_AGAIN;
|
|
}
|
|
|
|
/* Handle external providers (FPU, Altivec, VSX) */
|
|
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
|
|
ulong msr)
|
|
{
|
|
struct thread_struct *t = ¤t->thread;
|
|
u64 *vcpu_fpr = vcpu->arch.fpr;
|
|
#ifdef CONFIG_VSX
|
|
u64 *vcpu_vsx = vcpu->arch.vsr;
|
|
#endif
|
|
u64 *thread_fpr = (u64*)t->fpr;
|
|
int i;
|
|
|
|
/* When we have paired singles, we emulate in software */
|
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
|
|
return RESUME_GUEST;
|
|
|
|
if (!(vcpu->arch.shared->msr & msr)) {
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
if (msr == MSR_VSX) {
|
|
/* No VSX? Give an illegal instruction interrupt */
|
|
#ifdef CONFIG_VSX
|
|
if (!cpu_has_feature(CPU_FTR_VSX))
|
|
#endif
|
|
{
|
|
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/*
|
|
* We have to load up all the FP and VMX registers before
|
|
* we can let the guest use VSX instructions.
|
|
*/
|
|
msr = MSR_FP | MSR_VEC | MSR_VSX;
|
|
}
|
|
|
|
/* See if we already own all the ext(s) needed */
|
|
msr &= ~vcpu->arch.guest_owned_ext;
|
|
if (!msr)
|
|
return RESUME_GUEST;
|
|
|
|
#ifdef DEBUG_EXT
|
|
printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
|
|
#endif
|
|
|
|
if (msr & MSR_FP) {
|
|
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
|
|
thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
|
|
#ifdef CONFIG_VSX
|
|
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
|
|
thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
|
|
#endif
|
|
t->fpscr.val = vcpu->arch.fpscr;
|
|
t->fpexc_mode = 0;
|
|
kvmppc_load_up_fpu();
|
|
}
|
|
|
|
if (msr & MSR_VEC) {
|
|
#ifdef CONFIG_ALTIVEC
|
|
memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
|
|
t->vscr = vcpu->arch.vscr;
|
|
t->vrsave = -1;
|
|
kvmppc_load_up_altivec();
|
|
#endif
|
|
}
|
|
|
|
current->thread.regs->msr |= msr;
|
|
vcpu->arch.guest_owned_ext |= msr;
|
|
kvmppc_recalc_shadow_msr(vcpu);
|
|
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/*
|
|
* Kernel code using FP or VMX could have flushed guest state to
|
|
* the thread_struct; if so, get it back now.
|
|
*/
|
|
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long lost_ext;
|
|
|
|
lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
|
|
if (!lost_ext)
|
|
return;
|
|
|
|
if (lost_ext & MSR_FP)
|
|
kvmppc_load_up_fpu();
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (lost_ext & MSR_VEC)
|
|
kvmppc_load_up_altivec();
|
|
#endif
|
|
current->thread.regs->msr |= lost_ext;
|
|
}
|
|
|
|
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
unsigned int exit_nr)
|
|
{
|
|
int r = RESUME_HOST;
|
|
int s;
|
|
|
|
vcpu->stat.sum_exits++;
|
|
|
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
run->ready_for_interrupt_injection = 1;
|
|
|
|
/* We get here with MSR.EE=1 */
|
|
|
|
trace_kvm_exit(exit_nr, vcpu);
|
|
kvm_guest_exit();
|
|
|
|
switch (exit_nr) {
|
|
case BOOK3S_INTERRUPT_INST_STORAGE:
|
|
{
|
|
ulong shadow_srr1 = vcpu->arch.shadow_srr1;
|
|
vcpu->stat.pf_instruc++;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
/* We set segments as unused segments when invalidating them. So
|
|
* treat the respective fault as segment fault. */
|
|
{
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu;
|
|
u32 sr;
|
|
|
|
svcpu = svcpu_get(vcpu);
|
|
sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
|
|
svcpu_put(svcpu);
|
|
if (sr == SR_INVALID) {
|
|
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* only care about PTEG not found errors, but leave NX alone */
|
|
if (shadow_srr1 & 0x40000000) {
|
|
r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
|
|
vcpu->stat.sp_instruc++;
|
|
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
|
|
/*
|
|
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
|
|
* so we can't use the NX bit inside the guest. Let's cross our fingers,
|
|
* that no guest that needs the dcbz hack does NX.
|
|
*/
|
|
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
|
|
r = RESUME_GUEST;
|
|
} else {
|
|
vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000;
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_DATA_STORAGE:
|
|
{
|
|
ulong dar = kvmppc_get_fault_dar(vcpu);
|
|
u32 fault_dsisr = vcpu->arch.fault_dsisr;
|
|
vcpu->stat.pf_storage++;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
/* We set segments as unused segments when invalidating them. So
|
|
* treat the respective fault as segment fault. */
|
|
{
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu;
|
|
u32 sr;
|
|
|
|
svcpu = svcpu_get(vcpu);
|
|
sr = svcpu->sr[dar >> SID_SHIFT];
|
|
svcpu_put(svcpu);
|
|
if (sr == SR_INVALID) {
|
|
kvmppc_mmu_map_segment(vcpu, dar);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* The only case we need to handle is missing shadow PTEs */
|
|
if (fault_dsisr & DSISR_NOHPTE) {
|
|
r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
|
|
} else {
|
|
vcpu->arch.shared->dar = dar;
|
|
vcpu->arch.shared->dsisr = fault_dsisr;
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_DATA_SEGMENT:
|
|
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
|
|
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
|
|
kvmppc_book3s_queue_irqprio(vcpu,
|
|
BOOK3S_INTERRUPT_DATA_SEGMENT);
|
|
}
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_INST_SEGMENT:
|
|
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
|
|
kvmppc_book3s_queue_irqprio(vcpu,
|
|
BOOK3S_INTERRUPT_INST_SEGMENT);
|
|
}
|
|
r = RESUME_GUEST;
|
|
break;
|
|
/* We're good on these - the host merely wanted to get our attention */
|
|
case BOOK3S_INTERRUPT_DECREMENTER:
|
|
case BOOK3S_INTERRUPT_HV_DECREMENTER:
|
|
vcpu->stat.dec_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_EXTERNAL:
|
|
case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
|
|
case BOOK3S_INTERRUPT_EXTERNAL_HV:
|
|
vcpu->stat.ext_intr_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_PERFMON:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_PROGRAM:
|
|
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
|
|
{
|
|
enum emulation_result er;
|
|
ulong flags;
|
|
|
|
program_interrupt:
|
|
flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
|
|
|
|
if (vcpu->arch.shared->msr & MSR_PR) {
|
|
#ifdef EXIT_DEBUG
|
|
printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
|
|
#endif
|
|
if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
|
|
(INS_DCBZ & 0xfffffff7)) {
|
|
kvmppc_core_queue_program(vcpu, flags);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vcpu->stat.emulated_inst_exits++;
|
|
er = kvmppc_emulate_instruction(run, vcpu);
|
|
switch (er) {
|
|
case EMULATE_DONE:
|
|
r = RESUME_GUEST_NV;
|
|
break;
|
|
case EMULATE_AGAIN:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case EMULATE_FAIL:
|
|
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
|
|
__func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
|
|
kvmppc_core_queue_program(vcpu, flags);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case EMULATE_DO_MMIO:
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
r = RESUME_HOST_NV;
|
|
break;
|
|
case EMULATE_EXIT_USER:
|
|
r = RESUME_HOST_NV;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_SYSCALL:
|
|
if (vcpu->arch.papr_enabled &&
|
|
(kvmppc_get_last_sc(vcpu) == 0x44000022) &&
|
|
!(vcpu->arch.shared->msr & MSR_PR)) {
|
|
/* SC 1 papr hypercalls */
|
|
ulong cmd = kvmppc_get_gpr(vcpu, 3);
|
|
int i;
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_64_PR
|
|
if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
run->papr_hcall.nr = cmd;
|
|
for (i = 0; i < 9; ++i) {
|
|
ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
|
|
run->papr_hcall.args[i] = gpr;
|
|
}
|
|
run->exit_reason = KVM_EXIT_PAPR_HCALL;
|
|
vcpu->arch.hcall_needed = 1;
|
|
r = RESUME_HOST;
|
|
} else if (vcpu->arch.osi_enabled &&
|
|
(((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
|
|
(((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
|
|
/* MOL hypercalls */
|
|
u64 *gprs = run->osi.gprs;
|
|
int i;
|
|
|
|
run->exit_reason = KVM_EXIT_OSI;
|
|
for (i = 0; i < 32; i++)
|
|
gprs[i] = kvmppc_get_gpr(vcpu, i);
|
|
vcpu->arch.osi_needed = 1;
|
|
r = RESUME_HOST_NV;
|
|
} else if (!(vcpu->arch.shared->msr & MSR_PR) &&
|
|
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
|
|
/* KVM PV hypercalls */
|
|
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
|
|
r = RESUME_GUEST;
|
|
} else {
|
|
/* Guest syscalls */
|
|
vcpu->stat.syscall_exits++;
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
case BOOK3S_INTERRUPT_FP_UNAVAIL:
|
|
case BOOK3S_INTERRUPT_ALTIVEC:
|
|
case BOOK3S_INTERRUPT_VSX:
|
|
{
|
|
int ext_msr = 0;
|
|
|
|
switch (exit_nr) {
|
|
case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break;
|
|
case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break;
|
|
case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break;
|
|
}
|
|
|
|
switch (kvmppc_check_ext(vcpu, exit_nr)) {
|
|
case EMULATE_DONE:
|
|
/* everything ok - let's enable the ext */
|
|
r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
|
|
break;
|
|
case EMULATE_FAIL:
|
|
/* we need to emulate this instruction */
|
|
goto program_interrupt;
|
|
break;
|
|
default:
|
|
/* nothing to worry about - go again */
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_ALIGNMENT:
|
|
if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
|
|
vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu,
|
|
kvmppc_get_last_inst(vcpu));
|
|
vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu,
|
|
kvmppc_get_last_inst(vcpu));
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
}
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_MACHINE_CHECK:
|
|
case BOOK3S_INTERRUPT_TRACE:
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
default:
|
|
{
|
|
ulong shadow_srr1 = vcpu->arch.shadow_srr1;
|
|
/* Ugh - bork here! What did we get? */
|
|
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
|
|
exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
|
|
r = RESUME_HOST;
|
|
BUG();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!(r & RESUME_HOST)) {
|
|
/* To avoid clobbering exit_reason, only check for signals if
|
|
* we aren't already exiting to userspace for some other
|
|
* reason. */
|
|
|
|
/*
|
|
* Interrupts could be timers for the guest which we have to
|
|
* inject again, so let's postpone them until we're in the guest
|
|
* and if we really did time things so badly, then we just exit
|
|
* again due to a host external interrupt.
|
|
*/
|
|
local_irq_disable();
|
|
s = kvmppc_prepare_to_enter(vcpu);
|
|
if (s <= 0) {
|
|
local_irq_enable();
|
|
r = s;
|
|
} else {
|
|
kvmppc_fix_ee_before_entry();
|
|
}
|
|
kvmppc_handle_lost_ext(vcpu);
|
|
}
|
|
|
|
trace_kvm_book3s_reenter(r, vcpu);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
|
|
int i;
|
|
|
|
sregs->pvr = vcpu->arch.pvr;
|
|
|
|
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
|
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
|
|
for (i = 0; i < 64; i++) {
|
|
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
|
|
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i++)
|
|
sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i];
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
|
|
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
|
|
int i;
|
|
|
|
kvmppc_set_pvr(vcpu, sregs->pvr);
|
|
|
|
vcpu3s->sdr1 = sregs->u.s.sdr1;
|
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
|
|
for (i = 0; i < 64; i++) {
|
|
vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
|
|
sregs->u.s.ppc64.slb[i].slbe);
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i++) {
|
|
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
|
|
(u32)sregs->u.s.ppc32.ibat[i]);
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
|
|
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
|
|
(u32)sregs->u.s.ppc32.dbat[i]);
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
|
|
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
|
|
}
|
|
}
|
|
|
|
/* Flush the MMU after messing with the segments */
|
|
kvmppc_mmu_pte_flush(vcpu, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
|
|
{
|
|
int r = 0;
|
|
|
|
switch (id) {
|
|
case KVM_REG_PPC_HIOR:
|
|
*val = get_reg_val(id, to_book3s(vcpu)->hior);
|
|
break;
|
|
#ifdef CONFIG_VSX
|
|
case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
|
|
long int i = id - KVM_REG_PPC_VSR0;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_VSX)) {
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
val->vsxval[0] = vcpu->arch.fpr[i];
|
|
val->vsxval[1] = vcpu->arch.vsr[i];
|
|
break;
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
|
|
{
|
|
int r = 0;
|
|
|
|
switch (id) {
|
|
case KVM_REG_PPC_HIOR:
|
|
to_book3s(vcpu)->hior = set_reg_val(id, *val);
|
|
to_book3s(vcpu)->hior_explicit = true;
|
|
break;
|
|
#ifdef CONFIG_VSX
|
|
case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
|
|
long int i = id - KVM_REG_PPC_VSR0;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_VSX)) {
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
vcpu->arch.fpr[i] = val->vsxval[0];
|
|
vcpu->arch.vsr[i] = val->vsxval[1];
|
|
break;
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvmppc_core_check_processor_compat(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu_book3s;
|
|
struct kvm_vcpu *vcpu;
|
|
int err = -ENOMEM;
|
|
unsigned long p;
|
|
|
|
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
if (!vcpu)
|
|
goto out;
|
|
|
|
vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
|
|
if (!vcpu_book3s)
|
|
goto free_vcpu;
|
|
vcpu->arch.book3s = vcpu_book3s;
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_32
|
|
vcpu->arch.shadow_vcpu =
|
|
kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
|
|
if (!vcpu->arch.shadow_vcpu)
|
|
goto free_vcpu3s;
|
|
#endif
|
|
|
|
err = kvm_vcpu_init(vcpu, kvm, id);
|
|
if (err)
|
|
goto free_shadow_vcpu;
|
|
|
|
err = -ENOMEM;
|
|
p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
|
|
if (!p)
|
|
goto uninit_vcpu;
|
|
/* the real shared page fills the last 4k of our page */
|
|
vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* Default to the same as the host if we're on sufficiently
|
|
* recent machine that we have 1TB segments;
|
|
* otherwise default to PPC970FX.
|
|
*/
|
|
vcpu->arch.pvr = 0x3C0301;
|
|
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
vcpu->arch.pvr = mfspr(SPRN_PVR);
|
|
#else
|
|
/* default to book3s_32 (750) */
|
|
vcpu->arch.pvr = 0x84202;
|
|
#endif
|
|
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
|
|
vcpu->arch.slb_nr = 64;
|
|
|
|
vcpu->arch.shadow_msr = MSR_USER64;
|
|
|
|
err = kvmppc_mmu_init(vcpu);
|
|
if (err < 0)
|
|
goto uninit_vcpu;
|
|
|
|
return vcpu;
|
|
|
|
uninit_vcpu:
|
|
kvm_vcpu_uninit(vcpu);
|
|
free_shadow_vcpu:
|
|
#ifdef CONFIG_KVM_BOOK3S_32
|
|
kfree(vcpu->arch.shadow_vcpu);
|
|
free_vcpu3s:
|
|
#endif
|
|
vfree(vcpu_book3s);
|
|
free_vcpu:
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
|
|
|
|
free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
|
|
kvm_vcpu_uninit(vcpu);
|
|
#ifdef CONFIG_KVM_BOOK3S_32
|
|
kfree(vcpu->arch.shadow_vcpu);
|
|
#endif
|
|
vfree(vcpu_book3s);
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
}
|
|
|
|
int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
double fpr[32][TS_FPRWIDTH];
|
|
unsigned int fpscr;
|
|
int fpexc_mode;
|
|
#ifdef CONFIG_ALTIVEC
|
|
vector128 vr[32];
|
|
vector128 vscr;
|
|
unsigned long uninitialized_var(vrsave);
|
|
int used_vr;
|
|
#endif
|
|
#ifdef CONFIG_VSX
|
|
int used_vsr;
|
|
#endif
|
|
ulong ext_msr;
|
|
|
|
/* Check if we can run the vcpu at all */
|
|
if (!vcpu->arch.sane) {
|
|
kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Interrupts could be timers for the guest which we have to inject
|
|
* again, so let's postpone them until we're in the guest and if we
|
|
* really did time things so badly, then we just exit again due to
|
|
* a host external interrupt.
|
|
*/
|
|
local_irq_disable();
|
|
ret = kvmppc_prepare_to_enter(vcpu);
|
|
if (ret <= 0) {
|
|
local_irq_enable();
|
|
goto out;
|
|
}
|
|
|
|
/* Save FPU state in stack */
|
|
if (current->thread.regs->msr & MSR_FP)
|
|
giveup_fpu(current);
|
|
memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
|
|
fpscr = current->thread.fpscr.val;
|
|
fpexc_mode = current->thread.fpexc_mode;
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
/* Save Altivec state in stack */
|
|
used_vr = current->thread.used_vr;
|
|
if (used_vr) {
|
|
if (current->thread.regs->msr & MSR_VEC)
|
|
giveup_altivec(current);
|
|
memcpy(vr, current->thread.vr, sizeof(current->thread.vr));
|
|
vscr = current->thread.vscr;
|
|
vrsave = current->thread.vrsave;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_VSX
|
|
/* Save VSX state in stack */
|
|
used_vsr = current->thread.used_vsr;
|
|
if (used_vsr && (current->thread.regs->msr & MSR_VSX))
|
|
__giveup_vsx(current);
|
|
#endif
|
|
|
|
/* Remember the MSR with disabled extensions */
|
|
ext_msr = current->thread.regs->msr;
|
|
|
|
/* Preload FPU if it's enabled */
|
|
if (vcpu->arch.shared->msr & MSR_FP)
|
|
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
|
|
|
|
kvmppc_fix_ee_before_entry();
|
|
|
|
ret = __kvmppc_vcpu_run(kvm_run, vcpu);
|
|
|
|
/* No need for kvm_guest_exit. It's done in handle_exit.
|
|
We also get here with interrupts enabled. */
|
|
|
|
/* Make sure we save the guest FPU/Altivec/VSX state */
|
|
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
|
|
|
|
current->thread.regs->msr = ext_msr;
|
|
|
|
/* Restore FPU/VSX state from stack */
|
|
memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
|
|
current->thread.fpscr.val = fpscr;
|
|
current->thread.fpexc_mode = fpexc_mode;
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
/* Restore Altivec state from stack */
|
|
if (used_vr && current->thread.used_vr) {
|
|
memcpy(current->thread.vr, vr, sizeof(current->thread.vr));
|
|
current->thread.vscr = vscr;
|
|
current->thread.vrsave = vrsave;
|
|
}
|
|
current->thread.used_vr = used_vr;
|
|
#endif
|
|
|
|
#ifdef CONFIG_VSX
|
|
current->thread.used_vsr = used_vsr;
|
|
#endif
|
|
|
|
out:
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get (and clear) the dirty memory log for a memory slot.
|
|
*/
|
|
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
|
|
struct kvm_dirty_log *log)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
struct kvm_vcpu *vcpu;
|
|
ulong ga, ga_end;
|
|
int is_dirty = 0;
|
|
int r;
|
|
unsigned long n;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = kvm_get_dirty_log(kvm, log, &is_dirty);
|
|
if (r)
|
|
goto out;
|
|
|
|
/* If nothing is dirty, don't bother messing with page tables. */
|
|
if (is_dirty) {
|
|
memslot = id_to_memslot(kvm->memslots, log->slot);
|
|
|
|
ga = memslot->base_gfn << PAGE_SHIFT;
|
|
ga_end = ga + (memslot->npages << PAGE_SHIFT);
|
|
|
|
kvm_for_each_vcpu(n, vcpu, kvm)
|
|
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
|
|
|
|
n = kvm_dirty_bitmap_bytes(memslot);
|
|
memset(memslot->dirty_bitmap, 0, n);
|
|
}
|
|
|
|
r = 0;
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
|
|
{
|
|
long int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
info->flags = 0;
|
|
|
|
/* SLB is always 64 entries */
|
|
info->slb_size = 64;
|
|
|
|
/* Standard 4k base page size segment */
|
|
info->sps[0].page_shift = 12;
|
|
info->sps[0].slb_enc = 0;
|
|
info->sps[0].enc[0].page_shift = 12;
|
|
info->sps[0].enc[0].pte_enc = 0;
|
|
|
|
/*
|
|
* 64k large page size.
|
|
* We only want to put this in if the CPUs we're emulating
|
|
* support it, but unfortunately we don't have a vcpu easily
|
|
* to hand here to test. Just pick the first vcpu, and if
|
|
* that doesn't exist yet, report the minimum capability,
|
|
* i.e., no 64k pages.
|
|
* 1T segment support goes along with 64k pages.
|
|
*/
|
|
i = 1;
|
|
vcpu = kvm_get_vcpu(kvm, 0);
|
|
if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
|
|
info->flags = KVM_PPC_1T_SEGMENTS;
|
|
info->sps[i].page_shift = 16;
|
|
info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
|
|
info->sps[i].enc[0].page_shift = 16;
|
|
info->sps[i].enc[0].pte_enc = 1;
|
|
++i;
|
|
}
|
|
|
|
/* Standard 16M large page size segment */
|
|
info->sps[i].page_shift = 24;
|
|
info->sps[i].slb_enc = SLB_VSID_L;
|
|
info->sps[i].enc[0].page_shift = 24;
|
|
info->sps[i].enc[0].pte_enc = 0;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
}
|
|
|
|
int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
|
|
unsigned long npages)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
struct kvm_userspace_memory_region *mem)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_core_commit_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
const struct kvm_memory_slot *old)
|
|
{
|
|
}
|
|
|
|
void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
|
|
{
|
|
}
|
|
|
|
static unsigned int kvm_global_user_count = 0;
|
|
static DEFINE_SPINLOCK(kvm_global_user_count_lock);
|
|
|
|
int kvmppc_core_init_vm(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
|
|
INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
|
|
#endif
|
|
mutex_init(&kvm->arch.hpt_mutex);
|
|
|
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
|
spin_lock(&kvm_global_user_count_lock);
|
|
if (++kvm_global_user_count == 1)
|
|
pSeries_disable_reloc_on_exc();
|
|
spin_unlock(&kvm_global_user_count_lock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_core_destroy_vm(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
|
|
#endif
|
|
|
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
|
spin_lock(&kvm_global_user_count_lock);
|
|
BUG_ON(kvm_global_user_count == 0);
|
|
if (--kvm_global_user_count == 0)
|
|
pSeries_enable_reloc_on_exc();
|
|
spin_unlock(&kvm_global_user_count_lock);
|
|
}
|
|
}
|
|
|
|
static int kvmppc_book3s_init(void)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
|
|
|
|
if (r)
|
|
return r;
|
|
|
|
r = kvmppc_mmu_hpte_sysinit();
|
|
|
|
return r;
|
|
}
|
|
|
|
static void kvmppc_book3s_exit(void)
|
|
{
|
|
kvmppc_mmu_hpte_sysexit();
|
|
kvm_exit();
|
|
}
|
|
|
|
module_init(kvmppc_book3s_init);
|
|
module_exit(kvmppc_book3s_exit);
|