5068debff2
back mtc0 / mfc0 pairs from the same coprocessor register. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
239 lines
5.0 KiB
C
239 lines
5.0 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2003, 2004 Ralf Baechle
|
|
*/
|
|
#ifndef _ASM_HAZARDS_H
|
|
#define _ASM_HAZARDS_H
|
|
|
|
#include <linux/config.h>
|
|
|
|
#ifdef __ASSEMBLY__
|
|
|
|
.macro _ssnop
|
|
sll $0, $0, 1
|
|
.endm
|
|
|
|
.macro _ehb
|
|
sll $0, $0, 3
|
|
.endm
|
|
|
|
/*
|
|
* RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
|
|
* use of the JTLB for instructions should not occur for 4 cpu cycles and use
|
|
* for data translations should not occur for 3 cpu cycles.
|
|
*/
|
|
#ifdef CONFIG_CPU_RM9000
|
|
|
|
.macro mtc0_tlbw_hazard
|
|
.set push
|
|
.set mips32
|
|
_ssnop; _ssnop; _ssnop; _ssnop
|
|
.set pop
|
|
.endm
|
|
|
|
.macro tlbw_eret_hazard
|
|
.set push
|
|
.set mips32
|
|
_ssnop; _ssnop; _ssnop; _ssnop
|
|
.set pop
|
|
.endm
|
|
|
|
#else
|
|
|
|
/*
|
|
* The taken branch will result in a two cycle penalty for the two killed
|
|
* instructions on R4000 / R4400. Other processors only have a single cycle
|
|
* hazard so this is nice trick to have an optimal code for a range of
|
|
* processors.
|
|
*/
|
|
.macro mtc0_tlbw_hazard
|
|
b . + 8
|
|
.endm
|
|
|
|
.macro tlbw_eret_hazard
|
|
.endm
|
|
#endif
|
|
|
|
/*
|
|
* mtc0->mfc0 hazard
|
|
* The 24K has a 2 cycle mtc0/mfc0 execution hazard.
|
|
* It is a MIPS32R2 processor so ehb will clear the hazard.
|
|
*/
|
|
|
|
#ifdef CONFIG_CPU_MIPSR2
|
|
/*
|
|
* Use a macro for ehb unless explicit support for MIPSR2 is enabled
|
|
*/
|
|
|
|
#define irq_enable_hazard
|
|
_ehb
|
|
|
|
#define irq_disable_hazard
|
|
_ehb
|
|
|
|
#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
|
|
|
|
/*
|
|
* R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
|
|
*/
|
|
|
|
#define irq_enable_hazard
|
|
|
|
#define irq_disable_hazard
|
|
|
|
#else
|
|
|
|
/*
|
|
* Classic MIPS needs 1 - 3 nops or ssnops
|
|
*/
|
|
#define irq_enable_hazard
|
|
#define irq_disable_hazard \
|
|
_ssnop; _ssnop; _ssnop
|
|
|
|
#endif
|
|
|
|
#else /* __ASSEMBLY__ */
|
|
|
|
__asm__(
|
|
" .macro _ssnop \n\t"
|
|
" sll $0, $2, 1 \n\t"
|
|
" .endm \n\t"
|
|
" \n\t"
|
|
" .macro _ehb \n\t"
|
|
" sll $0, $0, 3 \n\t"
|
|
" .endm \n\t");
|
|
|
|
#ifdef CONFIG_CPU_RM9000
|
|
/*
|
|
* RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
|
|
* use of the JTLB for instructions should not occur for 4 cpu cycles and use
|
|
* for data translations should not occur for 3 cpu cycles.
|
|
*/
|
|
|
|
#define mtc0_tlbw_hazard() \
|
|
__asm__ __volatile__( \
|
|
".set\tmips32\n\t" \
|
|
"_ssnop; _ssnop; _ssnop; _ssnop\n\t" \
|
|
".set\tmips0")
|
|
|
|
#define tlbw_use_hazard() \
|
|
__asm__ __volatile__( \
|
|
".set\tmips32\n\t" \
|
|
"_ssnop; _ssnop; _ssnop; _ssnop\n\t" \
|
|
".set\tmips0")
|
|
|
|
#define back_to_back_c0_hazard() do { } while (0)
|
|
|
|
#else
|
|
|
|
/*
|
|
* Overkill warning ...
|
|
*/
|
|
#define mtc0_tlbw_hazard() \
|
|
__asm__ __volatile__( \
|
|
".set noreorder\n\t" \
|
|
"nop; nop; nop; nop; nop; nop;\n\t" \
|
|
".set reorder\n\t")
|
|
|
|
#define tlbw_use_hazard() \
|
|
__asm__ __volatile__( \
|
|
".set noreorder\n\t" \
|
|
"nop; nop; nop; nop; nop; nop;\n\t" \
|
|
".set reorder\n\t")
|
|
|
|
#define back_to_back_c0_hazard() \
|
|
__asm__ __volatile__( \
|
|
" .set noreorder \n" \
|
|
" nop; nop; nop \n" \
|
|
" .set reorder \n")
|
|
|
|
#endif
|
|
|
|
/*
|
|
* mtc0->mfc0 hazard
|
|
* The 24K has a 2 cycle mtc0/mfc0 execution hazard.
|
|
* It is a MIPS32R2 processor so ehb will clear the hazard.
|
|
*/
|
|
|
|
#ifdef CONFIG_CPU_MIPSR2
|
|
/*
|
|
* Use a macro for ehb unless explicit support for MIPSR2 is enabled
|
|
*/
|
|
__asm__(
|
|
" .macro\tirq_enable_hazard \n\t"
|
|
" _ehb \n\t"
|
|
" .endm \n\t"
|
|
" \n\t"
|
|
" .macro\tirq_disable_hazard \n\t"
|
|
" _ehb \n\t"
|
|
" .endm");
|
|
|
|
#define irq_enable_hazard() \
|
|
__asm__ __volatile__( \
|
|
"_ehb\t\t\t\t# irq_enable_hazard")
|
|
|
|
#define irq_disable_hazard() \
|
|
__asm__ __volatile__( \
|
|
"_ehb\t\t\t\t# irq_disable_hazard")
|
|
|
|
#define back_to_back_c0_hazard() \
|
|
__asm__ __volatile__( \
|
|
"_ehb\t\t\t\t# back_to_back_c0_hazard")
|
|
|
|
#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
|
|
|
|
/*
|
|
* R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
|
|
*/
|
|
|
|
__asm__(
|
|
" .macro\tirq_enable_hazard \n\t"
|
|
" .endm \n\t"
|
|
" \n\t"
|
|
" .macro\tirq_disable_hazard \n\t"
|
|
" .endm");
|
|
|
|
#define irq_enable_hazard() do { } while (0)
|
|
#define irq_disable_hazard() do { } while (0)
|
|
|
|
#define back_to_back_c0_hazard() do { } while (0)
|
|
|
|
#else
|
|
|
|
/*
|
|
* Default for classic MIPS processors. Assume worst case hazards but don't
|
|
* care about the irq_enable_hazard - sooner or later the hardware will
|
|
* enable it and we don't care when exactly.
|
|
*/
|
|
|
|
__asm__(
|
|
" # \n\t"
|
|
" # There is a hazard but we do not care \n\t"
|
|
" # \n\t"
|
|
" .macro\tirq_enable_hazard \n\t"
|
|
" .endm \n\t"
|
|
" \n\t"
|
|
" .macro\tirq_disable_hazard \n\t"
|
|
" _ssnop; _ssnop; _ssnop \n\t"
|
|
" .endm");
|
|
|
|
#define irq_enable_hazard() do { } while (0)
|
|
#define irq_disable_hazard() \
|
|
__asm__ __volatile__( \
|
|
"_ssnop; _ssnop; _ssnop;\t\t# irq_disable_hazard")
|
|
|
|
#define back_to_back_c0_hazard() \
|
|
__asm__ __volatile__( \
|
|
" .set noreorder \n" \
|
|
" nop; nop; nop \n" \
|
|
" .set reorder \n")
|
|
|
|
#endif
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_HAZARDS_H */
|