linux/arch/arm64/kernel/cpufeature.c
Linus Torvalds 2a190b22aa x86:
* Fixes for the new scalable MMU
 * Fixes for migration of nested hypervisors on AMD
 * Fix for clang integrated assembler
 * Fix for left shift by 64 (UBSAN)
 * Small cleanups
 * Straggler SEV-ES patch
 
 ARM:
 * VM init cleanups
 * PSCI relay cleanups
 * Kill CONFIG_KVM_ARM_PMU
 * Fixup __init annotations
 * Fixup reg_to_encoding()
 * Fix spurious PMCR_EL0 access
 
 * selftests cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/4YOMUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMg0Qf/eGDOoLL18KhA9MpoPXusR5kU+82G
 AcbFj9siNW46EF7mL+sw/xAx+gZaqSpIEmn/f6BzgiaUBdFTv9CKX3B54e43e59G
 HAKD0NpqwvDIi1b0T6bcgC92mY3Qx/IDCc7/9JYjBs/iORfqyWW6xVtkF/Gfymxt
 eK+MnfMqqNZODgR/cZnCH1E48fuwOvRMxLqilLi3OOMSUfs2cQOSLTNfYQYqjeaJ
 dsQ4YeyPJO5JHtfHFr6VPIo/jDhowniac9CNvOomWWVIx2zPYVSl9d8ub6ESEPNF
 GM7UeBCOMmZG/a3qFEZPAUJ7znW4yYE85Z6pjxlrGhd1I54MJi4dd+RApw==
 =5Nfj
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:
 "x86:
   - Fixes for the new scalable MMU
   - Fixes for migration of nested hypervisors on AMD
   - Fix for clang integrated assembler
   - Fix for left shift by 64 (UBSAN)
   - Small cleanups
   - Straggler SEV-ES patch

  ARM:
   - VM init cleanups
   - PSCI relay cleanups
   - Kill CONFIG_KVM_ARM_PMU
   - Fixup __init annotations
   - Fixup reg_to_encoding()
   - Fix spurious PMCR_EL0 access

  Misc:
   - selftests cleanups"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (38 commits)
  KVM: x86: __kvm_vcpu_halt can be static
  KVM: SVM: Add support for booting APs in an SEV-ES guest
  KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES on nested vmexit
  KVM: nSVM: mark vmcb as dirty when forcingly leaving the guest mode
  KVM: nSVM: correctly restore nested_run_pending on migration
  KVM: x86/mmu: Clarify TDP MMU page list invariants
  KVM: x86/mmu: Ensure TDP MMU roots are freed after yield
  kvm: check tlbs_dirty directly
  KVM: x86: change in pv_eoi_get_pending() to make code more readable
  MAINTAINERS: Really update email address for Sean Christopherson
  KVM: x86: fix shift out of bounds reported by UBSAN
  KVM: selftests: Implement perf_test_util more conventionally
  KVM: selftests: Use vm_create_with_vcpus in create_vm
  KVM: selftests: Factor out guest mode code
  KVM/SVM: Remove leftover __svm_vcpu_run prototype from svm.c
  KVM: SVM: Add register operand to vmsave call in sev_es_vcpu_load
  KVM: x86/mmu: Optimize not-present/MMIO SPTE check in get_mmio_spte()
  KVM: x86/mmu: Use raw level to index into MMIO walks' sptes array
  KVM: x86/mmu: Get root level from walkers when retrieving MMIO SPTE
  KVM: x86/mmu: Use -1 to flag an undefined spte in get_mmio_spte()
  ...
2021-01-08 15:06:02 -08:00

2884 lines
97 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Contains CPU feature definitions
*
* Copyright (C) 2015 ARM Ltd.
*
* A note for the weary kernel hacker: the code here is confusing and hard to
* follow! That's partly because it's solving a nasty problem, but also because
* there's a little bit of over-abstraction that tends to obscure what's going
* on behind a maze of helper functions and macros.
*
* The basic problem is that hardware folks have started gluing together CPUs
* with distinct architectural features; in some cases even creating SoCs where
* user-visible instructions are available only on a subset of the available
* cores. We try to address this by snapshotting the feature registers of the
* boot CPU and comparing these with the feature registers of each secondary
* CPU when bringing them up. If there is a mismatch, then we update the
* snapshot state to indicate the lowest-common denominator of the feature,
* known as the "safe" value. This snapshot state can be queried to view the
* "sanitised" value of a feature register.
*
* The sanitised register values are used to decide which capabilities we
* have in the system. These may be in the form of traditional "hwcaps"
* advertised to userspace or internal "cpucaps" which are used to configure
* things like alternative patching and static keys. While a feature mismatch
* may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
* may prevent a CPU from being onlined at all.
*
* Some implementation details worth remembering:
*
* - Mismatched features are *always* sanitised to a "safe" value, which
* usually indicates that the feature is not supported.
*
* - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
* warning when onlining an offending CPU and the kernel will be tainted
* with TAINT_CPU_OUT_OF_SPEC.
*
* - Features marked as FTR_VISIBLE have their sanitised value visible to
* userspace. FTR_VISIBLE features in registers that are only visible
* to EL0 by trapping *must* have a corresponding HWCAP so that late
* onlining of CPUs cannot lead to features disappearing at runtime.
*
* - A "feature" is typically a 4-bit register field. A "capability" is the
* high-level description derived from the sanitised field value.
*
* - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
* scheme for fields in ID registers") to understand when feature fields
* may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
*
* - KVM exposes its own view of the feature registers to guest operating
* systems regardless of FTR_VISIBLE. This is typically driven from the
* sanitised register values to allow virtual CPUs to be migrated between
* arbitrary physical CPUs, but some features not present on the host are
* also advertised and emulated. Look at sys_reg_descs[] for the gory
* details.
*
* - If the arm64_ftr_bits[] for a register has a missing field, then this
* field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
* This is stronger than FTR_HIDDEN and can be used to hide features from
* KVM guests.
*/
#define pr_fmt(fmt) "CPU features: " fmt
#include <linux/bsearch.h>
#include <linux/cpumask.h>
#include <linux/crash_dump.h>
#include <linux/sort.h>
#include <linux/stop_machine.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/cpu.h>
#include <linux/kasan.h>
#include <asm/cpu.h>
#include <asm/cpufeature.h>
#include <asm/cpu_ops.h>
#include <asm/fpsimd.h>
#include <asm/kvm_host.h>
#include <asm/mmu_context.h>
#include <asm/mte.h>
#include <asm/processor.h>
#include <asm/sysreg.h>
#include <asm/traps.h>
#include <asm/virt.h>
/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
static unsigned long elf_hwcap __read_mostly;
#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT \
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif
DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcaps);
static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
/* Need also bit for ARM64_CB_PATCH */
DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
bool arm64_use_ng_mappings = false;
EXPORT_SYMBOL(arm64_use_ng_mappings);
/*
* Flag to indicate if we have computed the system wide
* capabilities based on the boot time active CPUs. This
* will be used to determine if a new booting CPU should
* go through the verification process to make sure that it
* supports the system capabilities, without using a hotplug
* notifier. This is also used to decide if we could use
* the fast path for checking constant CPU caps.
*/
DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
EXPORT_SYMBOL(arm64_const_caps_ready);
static inline void finalize_system_capabilities(void)
{
static_branch_enable(&arm64_const_caps_ready);
}
void dump_cpu_features(void)
{
/* file-wide pr_fmt adds "CPU features: " prefix */
pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
}
DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
{ \
.sign = SIGNED, \
.visible = VISIBLE, \
.strict = STRICT, \
.type = TYPE, \
.shift = SHIFT, \
.width = WIDTH, \
.safe_val = SAFE_VAL, \
}
/* Define a feature with unsigned values */
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
/* Define a feature with a signed value */
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
#define ARM64_FTR_END \
{ \
.width = 0, \
}
static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
static bool __system_matches_cap(unsigned int n);
/*
* NOTE: Any changes to the visibility of features should be kept in
* sync with the documentation of the CPU feature register ABI.
*/
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
/*
* Page size not being supported at Stage-2 is not fatal. You
* just give up KVM if PAGE_SIZE isn't supported there. Go fix
* your favourite nesting hypervisor.
*
* There is a small corner case where the hypervisor explicitly
* advertises a given granule size at Stage-2 (value 2) on some
* vCPUs, and uses the fallback to Stage-1 (value 0) for other
* vCPUs. Although this is not forbidden by the architecture, it
* indicates that the hypervisor is being silly (or buggy).
*
* We make no effort to cope with this and pretend that if these
* fields are inconsistent across vCPUs, then it isn't worth
* trying to bring KVM up.
*/
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
/*
* We already refuse to boot CPUs that don't support our configured
* page size, so we can only detect mismatches for a page size other
* than the one we're currently using. Unfortunately, SoCs like this
* exist in the wild so, even though we don't like it, we'll have to go
* along with it and treat them as non-strict.
*/
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
/* Linux shouldn't care about secure memory */
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
/*
* Differing PARange is fine as long as all peripherals and memory are mapped
* within the minimum PARange of all CPUs
*/
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_ctr[] = {
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
/*
* Linux can handle differing I-cache policies. Userspace JITs will
* make use of *minLine.
* If we have differing I-cache policies, report it as the weakest - VIPT.
*/
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT), /* L1Ip */
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
ARM64_FTR_END,
};
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
.name = "SYS_CTR_EL0",
.ftr_bits = ftr_ctr
};
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
/*
* We can instantiate multiple PMU instances with different levels
* of support.
*/
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_mvfr2[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_dczid[] = {
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_isar0[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_isar5[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
/*
* SpecSEI = 1 indicates that the PE might generate an SError on an
* external abort on speculative read. It is safe to assume that an
* SError might be generated than it will not be. Hence it has been
* classified as FTR_HIGHER_SAFE.
*/
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_isar4[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_isar6[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_pfr1[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_pfr2[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
/* [31:28] TraceFilt */
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_id_dfr1[] = {
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_zcr[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
ARM64_FTR_END,
};
/*
* Common ftr bits for a 32bit register with all hidden, strict
* attributes, with 4bit feature fields and a default safe value of
* 0. Covers the following 32bit registers:
* id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
*/
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
ARM64_FTR_END,
};
/* Table for a single 32bit feature value */
static const struct arm64_ftr_bits ftr_single32[] = {
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
ARM64_FTR_END,
};
static const struct arm64_ftr_bits ftr_raz[] = {
ARM64_FTR_END,
};
#define ARM64_FTR_REG(id, table) { \
.sys_id = id, \
.reg = &(struct arm64_ftr_reg){ \
.name = #id, \
.ftr_bits = &((table)[0]), \
}}
static const struct __ftr_reg_entry {
u32 sys_id;
struct arm64_ftr_reg *reg;
} arm64_ftr_regs[] = {
/* Op1 = 0, CRn = 0, CRm = 1 */
ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
/* Op1 = 0, CRn = 0, CRm = 2 */
ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
/* Op1 = 0, CRn = 0, CRm = 3 */
ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
/* Op1 = 0, CRn = 0, CRm = 4 */
ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
/* Op1 = 0, CRn = 0, CRm = 5 */
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
/* Op1 = 0, CRn = 0, CRm = 6 */
ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
/* Op1 = 0, CRn = 0, CRm = 7 */
ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
/* Op1 = 0, CRn = 1, CRm = 2 */
ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
/* Op1 = 3, CRn = 0, CRm = 0 */
{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
/* Op1 = 3, CRn = 14, CRm = 0 */
ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
};
static int search_cmp_ftr_reg(const void *id, const void *regp)
{
return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
}
/*
* get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
* its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
* ascending order of sys_id, we use binary search to find a matching
* entry.
*
* returns - Upon success, matching ftr_reg entry for id.
* - NULL on failure. It is upto the caller to decide
* the impact of a failure.
*/
static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
{
const struct __ftr_reg_entry *ret;
ret = bsearch((const void *)(unsigned long)sys_id,
arm64_ftr_regs,
ARRAY_SIZE(arm64_ftr_regs),
sizeof(arm64_ftr_regs[0]),
search_cmp_ftr_reg);
if (ret)
return ret->reg;
return NULL;
}
/*
* get_arm64_ftr_reg - Looks up a feature register entry using
* its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
*
* returns - Upon success, matching ftr_reg entry for id.
* - NULL on failure but with an WARN_ON().
*/
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
struct arm64_ftr_reg *reg;
reg = get_arm64_ftr_reg_nowarn(sys_id);
/*
* Requesting a non-existent register search is an error. Warn
* and let the caller handle it.
*/
WARN_ON(!reg);
return reg;
}
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
s64 ftr_val)
{
u64 mask = arm64_ftr_mask(ftrp);
reg &= ~mask;
reg |= (ftr_val << ftrp->shift) & mask;
return reg;
}
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
s64 cur)
{
s64 ret = 0;
switch (ftrp->type) {
case FTR_EXACT:
ret = ftrp->safe_val;
break;
case FTR_LOWER_SAFE:
ret = new < cur ? new : cur;
break;
case FTR_HIGHER_OR_ZERO_SAFE:
if (!cur || !new)
break;
fallthrough;
case FTR_HIGHER_SAFE:
ret = new > cur ? new : cur;
break;
default:
BUG();
}
return ret;
}
static void __init sort_ftr_regs(void)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
unsigned int j = 0;
/*
* Features here must be sorted in descending order with respect
* to their shift values and should not overlap with each other.
*/
for (; ftr_bits->width != 0; ftr_bits++, j++) {
unsigned int width = ftr_reg->ftr_bits[j].width;
unsigned int shift = ftr_reg->ftr_bits[j].shift;
unsigned int prev_shift;
WARN((shift + width) > 64,
"%s has invalid feature at shift %d\n",
ftr_reg->name, shift);
/*
* Skip the first feature. There is nothing to
* compare against for now.
*/
if (j == 0)
continue;
prev_shift = ftr_reg->ftr_bits[j - 1].shift;
WARN((shift + width) > prev_shift,
"%s has feature overlap at shift %d\n",
ftr_reg->name, shift);
}
/*
* Skip the first register. There is nothing to
* compare against for now.
*/
if (i == 0)
continue;
/*
* Registers here must be sorted in ascending order with respect
* to sys_id for subsequent binary search in get_arm64_ftr_reg()
* to work correctly.
*/
BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
}
}
/*
* Initialise the CPU feature register from Boot CPU values.
* Also initiliases the strict_mask for the register.
* Any bits that are not covered by an arm64_ftr_bits entry are considered
* RES0 for the system-wide value, and must strictly match.
*/
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
u64 val = 0;
u64 strict_mask = ~0x0ULL;
u64 user_mask = 0;
u64 valid_mask = 0;
const struct arm64_ftr_bits *ftrp;
struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
if (!reg)
return;
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
u64 ftr_mask = arm64_ftr_mask(ftrp);
s64 ftr_new = arm64_ftr_value(ftrp, new);
val = arm64_ftr_set_value(ftrp, val, ftr_new);
valid_mask |= ftr_mask;
if (!ftrp->strict)
strict_mask &= ~ftr_mask;
if (ftrp->visible)
user_mask |= ftr_mask;
else
reg->user_val = arm64_ftr_set_value(ftrp,
reg->user_val,
ftrp->safe_val);
}
val &= valid_mask;
reg->sys_val = val;
reg->strict_mask = strict_mask;
reg->user_mask = user_mask;
}
extern const struct arm64_cpu_capabilities arm64_errata[];
static const struct arm64_cpu_capabilities arm64_features[];
static void __init
init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
{
for (; caps->matches; caps++) {
if (WARN(caps->capability >= ARM64_NCAPS,
"Invalid capability %d\n", caps->capability))
continue;
if (WARN(cpu_hwcaps_ptrs[caps->capability],
"Duplicate entry for capability %d\n",
caps->capability))
continue;
cpu_hwcaps_ptrs[caps->capability] = caps;
}
}
static void __init init_cpu_hwcaps_indirect_list(void)
{
init_cpu_hwcaps_indirect_list_from_array(arm64_features);
init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
}
static void __init setup_boot_cpu_capabilities(void);
void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
/* Before we start using the tables, make sure it is sorted */
sort_ftr_regs();
init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
}
if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
sve_init_vq_map();
}
/*
* Initialize the indirect array of CPU hwcaps capabilities pointers
* before we handle the boot CPU below.
*/
init_cpu_hwcaps_indirect_list();
/*
* Detect and enable early CPU capabilities based on the boot CPU,
* after we have initialised the CPU feature infrastructure.
*/
setup_boot_cpu_capabilities();
}
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
{
const struct arm64_ftr_bits *ftrp;
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
s64 ftr_new = arm64_ftr_value(ftrp, new);
if (ftr_cur == ftr_new)
continue;
/* Find a safe value */
ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
}
}
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
{
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
if (!regp)
return 0;
update_cpu_ftr_reg(regp, val);
if ((boot & regp->strict_mask) == (val & regp->strict_mask))
return 0;
pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
regp->name, boot, cpu, val);
return 1;
}
static void relax_cpu_ftr_reg(u32 sys_id, int field)
{
const struct arm64_ftr_bits *ftrp;
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
if (!regp)
return;
for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
if (ftrp->shift == field) {
regp->strict_mask &= ~arm64_ftr_mask(ftrp);
break;
}
}
/* Bogus field? */
WARN_ON(!ftrp->width);
}
static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
struct cpuinfo_arm64 *boot)
{
int taint = 0;
u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
/*
* If we don't have AArch32 at all then skip the checks entirely
* as the register values may be UNKNOWN and we're not going to be
* using them for anything.
*/
if (!id_aa64pfr0_32bit_el0(pfr0))
return taint;
/*
* If we don't have AArch32 at EL1, then relax the strictness of
* EL1-dependent register fields to avoid spurious sanity check fails.
*/
if (!id_aa64pfr0_32bit_el1(pfr0)) {
relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
}
taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
info->reg_id_dfr0, boot->reg_id_dfr0);
taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
info->reg_id_dfr1, boot->reg_id_dfr1);
taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
info->reg_id_isar0, boot->reg_id_isar0);
taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
info->reg_id_isar1, boot->reg_id_isar1);
taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
info->reg_id_isar2, boot->reg_id_isar2);
taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
info->reg_id_isar3, boot->reg_id_isar3);
taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
info->reg_id_isar4, boot->reg_id_isar4);
taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
info->reg_id_isar5, boot->reg_id_isar5);
taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
info->reg_id_isar6, boot->reg_id_isar6);
/*
* Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
* ACTLR formats could differ across CPUs and therefore would have to
* be trapped for virtualization anyway.
*/
taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
info->reg_id_mmfr0, boot->reg_id_mmfr0);
taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
info->reg_id_mmfr1, boot->reg_id_mmfr1);
taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
info->reg_id_mmfr2, boot->reg_id_mmfr2);
taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
info->reg_id_mmfr3, boot->reg_id_mmfr3);
taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
info->reg_id_mmfr4, boot->reg_id_mmfr4);
taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
info->reg_id_mmfr5, boot->reg_id_mmfr5);
taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
info->reg_id_pfr0, boot->reg_id_pfr0);
taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
info->reg_id_pfr1, boot->reg_id_pfr1);
taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
info->reg_id_pfr2, boot->reg_id_pfr2);
taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
info->reg_mvfr0, boot->reg_mvfr0);
taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
info->reg_mvfr1, boot->reg_mvfr1);
taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
info->reg_mvfr2, boot->reg_mvfr2);
return taint;
}
/*
* Update system wide CPU feature registers with the values from a
* non-boot CPU. Also performs SANITY checks to make sure that there
* aren't any insane variations from that of the boot CPU.
*/
void update_cpu_features(int cpu,
struct cpuinfo_arm64 *info,
struct cpuinfo_arm64 *boot)
{
int taint = 0;
/*
* The kernel can handle differing I-cache policies, but otherwise
* caches should look identical. Userspace JITs will make use of
* *minLine.
*/
taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
info->reg_ctr, boot->reg_ctr);
/*
* Userspace may perform DC ZVA instructions. Mismatched block sizes
* could result in too much or too little memory being zeroed if a
* process is preempted and migrated between CPUs.
*/
taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
info->reg_dczid, boot->reg_dczid);
/* If different, timekeeping will be broken (especially with KVM) */
taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
info->reg_cntfrq, boot->reg_cntfrq);
/*
* The kernel uses self-hosted debug features and expects CPUs to
* support identical debug features. We presently need CTX_CMPs, WRPs,
* and BRPs to be identical.
* ID_AA64DFR1 is currently RES0.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
/*
* Even in big.LITTLE, processors should be identical instruction-set
* wise.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
/*
* Differing PARange support is fine as long as all peripherals and
* memory are mapped within the minimum PARange of all CPUs.
* Linux should not care about secure memory.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
info->reg_zcr, boot->reg_zcr);
/* Probe vector lengths, unless we already gave up on SVE */
if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
!system_capabilities_finalized())
sve_update_vq_map();
}
/*
* This relies on a sanitised view of the AArch64 ID registers
* (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
*/
taint |= update_32bit_cpu_features(cpu, info, boot);
/*
* Mismatched CPU features are a recipe for disaster. Don't even
* pretend to support them.
*/
if (taint) {
pr_warn_once("Unsupported CPU feature variation detected.\n");
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
}
}
u64 read_sanitised_ftr_reg(u32 id)
{
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
if (!regp)
return 0;
return regp->sys_val;
}
EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
#define read_sysreg_case(r) \
case r: return read_sysreg_s(r)
/*
* __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
* Read the system register on the current CPU
*/
static u64 __read_sysreg_by_encoding(u32 sys_id)
{
switch (sys_id) {
read_sysreg_case(SYS_ID_PFR0_EL1);
read_sysreg_case(SYS_ID_PFR1_EL1);
read_sysreg_case(SYS_ID_PFR2_EL1);
read_sysreg_case(SYS_ID_DFR0_EL1);
read_sysreg_case(SYS_ID_DFR1_EL1);
read_sysreg_case(SYS_ID_MMFR0_EL1);
read_sysreg_case(SYS_ID_MMFR1_EL1);
read_sysreg_case(SYS_ID_MMFR2_EL1);
read_sysreg_case(SYS_ID_MMFR3_EL1);
read_sysreg_case(SYS_ID_MMFR4_EL1);
read_sysreg_case(SYS_ID_MMFR5_EL1);
read_sysreg_case(SYS_ID_ISAR0_EL1);
read_sysreg_case(SYS_ID_ISAR1_EL1);
read_sysreg_case(SYS_ID_ISAR2_EL1);
read_sysreg_case(SYS_ID_ISAR3_EL1);
read_sysreg_case(SYS_ID_ISAR4_EL1);
read_sysreg_case(SYS_ID_ISAR5_EL1);
read_sysreg_case(SYS_ID_ISAR6_EL1);
read_sysreg_case(SYS_MVFR0_EL1);
read_sysreg_case(SYS_MVFR1_EL1);
read_sysreg_case(SYS_MVFR2_EL1);
read_sysreg_case(SYS_ID_AA64PFR0_EL1);
read_sysreg_case(SYS_ID_AA64PFR1_EL1);
read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
read_sysreg_case(SYS_ID_AA64DFR0_EL1);
read_sysreg_case(SYS_ID_AA64DFR1_EL1);
read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
read_sysreg_case(SYS_CNTFRQ_EL0);
read_sysreg_case(SYS_CTR_EL0);
read_sysreg_case(SYS_DCZID_EL0);
default:
BUG();
return 0;
}
}
#include <linux/irqchip/arm-gic-v3.h>
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
return val >= entry->min_field_value;
}
static bool
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
{
u64 val;
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
if (scope == SCOPE_SYSTEM)
val = read_sanitised_ftr_reg(entry->sys_reg);
else
val = __read_sysreg_by_encoding(entry->sys_reg);
return feature_matches(val, entry);
}
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
{
bool has_sre;
if (!has_cpuid_feature(entry, scope))
return false;
has_sre = gic_enable_sre();
if (!has_sre)
pr_warn_once("%s present but disabled by higher exception level\n",
entry->desc);
return has_sre;
}
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
{
u32 midr = read_cpuid_id();
/* Cavium ThunderX pass 1.x and 2.x */
return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
MIDR_CPU_VAR_REV(0, 0),
MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
}
static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
{
u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
return cpuid_feature_extract_signed_field(pfr0,
ID_AA64PFR0_FP_SHIFT) < 0;
}
static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
int scope)
{
u64 ctr;
if (scope == SCOPE_SYSTEM)
ctr = arm64_ftr_reg_ctrel0.sys_val;
else
ctr = read_cpuid_effective_cachetype();
return ctr & BIT(CTR_IDC_SHIFT);
}
static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
{
/*
* If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
* CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
* to the CTR_EL0 on this CPU and emulate it with the real/safe
* value.
*/
if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
}
static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
int scope)
{
u64 ctr;
if (scope == SCOPE_SYSTEM)
ctr = arm64_ftr_reg_ctrel0.sys_val;
else
ctr = read_cpuid_cachetype();
return ctr & BIT(CTR_DIC_SHIFT);
}
static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
{
/*
* Kdump isn't guaranteed to power-off all secondary CPUs, CNP
* may share TLB entries with a CPU stuck in the crashed
* kernel.
*/
if (is_kdump_kernel())
return false;
return has_cpuid_feature(entry, scope);
}
/*
* This check is triggered during the early boot before the cpufeature
* is initialised. Checking the status on the local CPU allows the boot
* CPU to detect the need for non-global mappings and thus avoiding a
* pagetable re-write after all the CPUs are booted. This check will be
* anyway run on individual CPUs, allowing us to get the consistent
* state once the SMP CPUs are up and thus make the switch to non-global
* mappings if required.
*/
bool kaslr_requires_kpti(void)
{
if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
return false;
/*
* E0PD does a similar job to KPTI so can be used instead
* where available.
*/
if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
if (cpuid_feature_extract_unsigned_field(mmfr2,
ID_AA64MMFR2_E0PD_SHIFT))
return false;
}
/*
* Systems affected by Cavium erratum 24756 are incompatible
* with KPTI.
*/
if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
extern const struct midr_range cavium_erratum_27456_cpus[];
if (is_midr_in_range_list(read_cpuid_id(),
cavium_erratum_27456_cpus))
return false;
}
return kaslr_offset() > 0;
}
static bool __meltdown_safe = true;
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
int scope)
{
/* List of CPUs that are not vulnerable and don't need KPTI */
static const struct midr_range kpti_safe_list[] = {
MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
{ /* sentinel */ }
};
char const *str = "kpti command line option";
bool meltdown_safe;
meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
/* Defer to CPU feature registers */
if (has_cpuid_feature(entry, scope))
meltdown_safe = true;
if (!meltdown_safe)
__meltdown_safe = false;
/*
* For reasons that aren't entirely clear, enabling KPTI on Cavium
* ThunderX leads to apparent I-cache corruption of kernel text, which
* ends as well as you might imagine. Don't even try.
*/
if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
str = "ARM64_WORKAROUND_CAVIUM_27456";
__kpti_forced = -1;
}
/* Useful for KASLR robustness */
if (kaslr_requires_kpti()) {
if (!__kpti_forced) {
str = "KASLR";
__kpti_forced = 1;
}
}
if (cpu_mitigations_off() && !__kpti_forced) {
str = "mitigations=off";
__kpti_forced = -1;
}
if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
pr_info_once("kernel page table isolation disabled by kernel configuration\n");
return false;
}
/* Forced? */
if (__kpti_forced) {
pr_info_once("kernel page table isolation forced %s by %s\n",
__kpti_forced > 0 ? "ON" : "OFF", str);
return __kpti_forced > 0;
}
return !meltdown_safe;
}
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
{
typedef void (kpti_remap_fn)(int, int, phys_addr_t);
extern kpti_remap_fn idmap_kpti_install_ng_mappings;
kpti_remap_fn *remap_fn;
int cpu = smp_processor_id();
/*
* We don't need to rewrite the page-tables if either we've done
* it already or we have KASLR enabled and therefore have not
* created any global mappings at all.
*/
if (arm64_use_ng_mappings)
return;
remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
cpu_install_idmap();
remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
cpu_uninstall_idmap();
if (!cpu)
arm64_use_ng_mappings = true;
return;
}
#else
static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
{
}
#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
static int __init parse_kpti(char *str)
{
bool enabled;
int ret = strtobool(str, &enabled);
if (ret)
return ret;
__kpti_forced = enabled ? 1 : -1;
return 0;
}
early_param("kpti", parse_kpti);
#ifdef CONFIG_ARM64_HW_AFDBM
static inline void __cpu_enable_hw_dbm(void)
{
u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
write_sysreg(tcr, tcr_el1);
isb();
local_flush_tlb_all();
}
static bool cpu_has_broken_dbm(void)
{
/* List of CPUs which have broken DBM support. */
static const struct midr_range cpus[] = {
#ifdef CONFIG_ARM64_ERRATUM_1024718
MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
/* Kryo4xx Silver (rdpe => r1p0) */
MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
#endif
{},
};
return is_midr_in_range_list(read_cpuid_id(), cpus);
}
static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
{
return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
!cpu_has_broken_dbm();
}
static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
{
if (cpu_can_use_dbm(cap))
__cpu_enable_hw_dbm();
}
static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
int __unused)
{
static bool detected = false;
/*
* DBM is a non-conflicting feature. i.e, the kernel can safely
* run a mix of CPUs with and without the feature. So, we
* unconditionally enable the capability to allow any late CPU
* to use the feature. We only enable the control bits on the
* CPU, if it actually supports.
*
* We have to make sure we print the "feature" detection only
* when at least one CPU actually uses it. So check if this CPU
* can actually use it and print the message exactly once.
*
* This is safe as all CPUs (including secondary CPUs - due to the
* LOCAL_CPU scope - and the hotplugged CPUs - via verification)
* goes through the "matches" check exactly once. Also if a CPU
* matches the criteria, it is guaranteed that the CPU will turn
* the DBM on, as the capability is unconditionally enabled.
*/
if (!detected && cpu_can_use_dbm(cap)) {
detected = true;
pr_info("detected: Hardware dirty bit management\n");
}
return true;
}
#endif
#ifdef CONFIG_ARM64_AMU_EXTN
/*
* The "amu_cpus" cpumask only signals that the CPU implementation for the
* flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
* information regarding all the events that it supports. When a CPU bit is
* set in the cpumask, the user of this feature can only rely on the presence
* of the 4 fixed counters for that CPU. But this does not guarantee that the
* counters are enabled or access to these counters is enabled by code
* executed at higher exception levels (firmware).
*/
static struct cpumask amu_cpus __read_mostly;
bool cpu_has_amu_feat(int cpu)
{
return cpumask_test_cpu(cpu, &amu_cpus);
}
int get_cpu_with_amu_feat(void)
{
return cpumask_any(&amu_cpus);
}
static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
{
if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
smp_processor_id());
cpumask_set_cpu(smp_processor_id(), &amu_cpus);
update_freq_counters_refs();
}
}
static bool has_amu(const struct arm64_cpu_capabilities *cap,
int __unused)
{
/*
* The AMU extension is a non-conflicting feature: the kernel can
* safely run a mix of CPUs with and without support for the
* activity monitors extension. Therefore, unconditionally enable
* the capability to allow any late CPU to use the feature.
*
* With this feature unconditionally enabled, the cpu_enable
* function will be called for all CPUs that match the criteria,
* including secondary and hotplugged, marking this feature as
* present on that respective CPU. The enable function will also
* print a detection message.
*/
return true;
}
#else
int get_cpu_with_amu_feat(void)
{
return nr_cpu_ids;
}
#endif
#ifdef CONFIG_ARM64_VHE
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
{
return is_kernel_in_hyp_mode();
}
static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
{
/*
* Copy register values that aren't redirected by hardware.
*
* Before code patching, we only set tpidr_el1, all CPUs need to copy
* this value to tpidr_el2 before we patch the code. Once we've done
* that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
* do anything here.
*/
if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
}
#endif
static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
{
u64 val = read_sysreg_s(SYS_CLIDR_EL1);
/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
WARN_ON(val & (7 << 27 | 7 << 21));
}
#ifdef CONFIG_ARM64_PAN
static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
{
/*
* We modify PSTATE. This won't work from irq context as the PSTATE
* is discarded once we return from the exception.
*/
WARN_ON_ONCE(in_interrupt());
sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
set_pstate_pan(1);
}
#endif /* CONFIG_ARM64_PAN */
#ifdef CONFIG_ARM64_RAS_EXTN
static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
{
/* Firmware may have left a deferred SError in this register. */
write_sysreg_s(0, SYS_DISR_EL1);
}
#endif /* CONFIG_ARM64_RAS_EXTN */
#ifdef CONFIG_ARM64_PTR_AUTH
static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
{
int boot_val, sec_val;
/* We don't expect to be called with SCOPE_SYSTEM */
WARN_ON(scope == SCOPE_SYSTEM);
/*
* The ptr-auth feature levels are not intercompatible with lower
* levels. Hence we must match ptr-auth feature level of the secondary
* CPUs with that of the boot CPU. The level of boot cpu is fetched
* from the sanitised register whereas direct register read is done for
* the secondary CPUs.
* The sanitised feature state is guaranteed to match that of the
* boot CPU as a mismatched secondary CPU is parked before it gets
* a chance to update the state, with the capability.
*/
boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
entry->field_pos, entry->sign);
if (scope & SCOPE_BOOT_CPU)
return boot_val >= entry->min_field_value;
/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
entry->field_pos, entry->sign);
return sec_val == boot_val;
}
static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
int scope)
{
return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
}
static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
int __unused)
{
return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
__system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
}
#endif /* CONFIG_ARM64_PTR_AUTH */
#ifdef CONFIG_ARM64_E0PD
static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
{
if (this_cpu_has_cap(ARM64_HAS_E0PD))
sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
}
#endif /* CONFIG_ARM64_E0PD */
#ifdef CONFIG_ARM64_PSEUDO_NMI
static bool enable_pseudo_nmi;
static int __init early_enable_pseudo_nmi(char *p)
{
return strtobool(p, &enable_pseudo_nmi);
}
early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
int scope)
{
return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
}
#endif
#ifdef CONFIG_ARM64_BTI
static void bti_enable(const struct arm64_cpu_capabilities *__unused)
{
/*
* Use of X16/X17 for tail-calls and trampolines that jump to
* function entry points using BR is a requirement for
* marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
* So, be strict and forbid other BRs using other registers to
* jump onto a PACIxSP instruction:
*/
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
isb();
}
#endif /* CONFIG_ARM64_BTI */
#ifdef CONFIG_ARM64_MTE
static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
{
static bool cleared_zero_page = false;
/*
* Clear the tags in the zero page. This needs to be done via the
* linear map which has the Tagged attribute.
*/
if (!cleared_zero_page) {
cleared_zero_page = true;
mte_clear_page_tags(lm_alias(empty_zero_page));
}
kasan_init_hw_tags_cpu();
}
#endif /* CONFIG_ARM64_MTE */
#ifdef CONFIG_KVM
static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
{
if (kvm_get_mode() != KVM_MODE_PROTECTED)
return false;
if (is_kernel_in_hyp_mode()) {
pr_warn("Protected KVM not available with VHE\n");
return false;
}
return true;
}
#endif /* CONFIG_KVM */
/* Internal helper functions to match cpu capability type */
static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
{
return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
}
static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
{
return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
}
static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
{
return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
}
static const struct arm64_cpu_capabilities arm64_features[] = {
{
.desc = "GIC system register CPU interface",
.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
.matches = has_useable_gicv3_cpuif,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.field_pos = ID_AA64PFR0_GIC_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = 1,
},
#ifdef CONFIG_ARM64_PAN
{
.desc = "Privileged Access Never",
.capability = ARM64_HAS_PAN,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64MMFR1_EL1,
.field_pos = ID_AA64MMFR1_PAN_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = 1,
.cpu_enable = cpu_enable_pan,
},
#endif /* CONFIG_ARM64_PAN */
#ifdef CONFIG_ARM64_LSE_ATOMICS
{
.desc = "LSE atomic instructions",
.capability = ARM64_HAS_LSE_ATOMICS,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR0_EL1,
.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = 2,
},
#endif /* CONFIG_ARM64_LSE_ATOMICS */
{
.desc = "Software prefetching using PRFM",
.capability = ARM64_HAS_NO_HW_PREFETCH,
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
.matches = has_no_hw_prefetch,
},
#ifdef CONFIG_ARM64_VHE
{
.desc = "Virtualization Host Extensions",
.capability = ARM64_HAS_VIRT_HOST_EXTN,
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
.matches = runs_at_el2,
.cpu_enable = cpu_copy_el2regs,
},
#endif /* CONFIG_ARM64_VHE */
{
.desc = "32-bit EL0 Support",
.capability = ARM64_HAS_32BIT_EL0,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64PFR0_EL0_SHIFT,
.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
},
#ifdef CONFIG_KVM
{
.desc = "32-bit EL1 Support",
.capability = ARM64_HAS_32BIT_EL1,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64PFR0_EL1_SHIFT,
.min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
},
{
.desc = "Protected KVM",
.capability = ARM64_KVM_PROTECTED_MODE,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = is_kvm_protected_mode,
},
#endif
{
.desc = "Kernel page table isolation (KPTI)",
.capability = ARM64_UNMAP_KERNEL_AT_EL0,
.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
/*
* The ID feature fields below are used to indicate that
* the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
* more details.
*/
.sys_reg = SYS_ID_AA64PFR0_EL1,
.field_pos = ID_AA64PFR0_CSV3_SHIFT,
.min_field_value = 1,
.matches = unmap_kernel_at_el0,
.cpu_enable = kpti_install_ng_mappings,
},
{
/* FP/SIMD is not implemented */
.capability = ARM64_HAS_NO_FPSIMD,
.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
.min_field_value = 0,
.matches = has_no_fpsimd,
},
#ifdef CONFIG_ARM64_PMEM
{
.desc = "Data cache clean to Point of Persistence",
.capability = ARM64_HAS_DCPOP,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR1_EL1,
.field_pos = ID_AA64ISAR1_DPB_SHIFT,
.min_field_value = 1,
},
{
.desc = "Data cache clean to Point of Deep Persistence",
.capability = ARM64_HAS_DCPODP,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR1_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64ISAR1_DPB_SHIFT,
.min_field_value = 2,
},
#endif
#ifdef CONFIG_ARM64_SVE
{
.desc = "Scalable Vector Extension",
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.capability = ARM64_SVE,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64PFR0_SVE_SHIFT,
.min_field_value = ID_AA64PFR0_SVE,
.matches = has_cpuid_feature,
.cpu_enable = sve_kernel_enable,
},
#endif /* CONFIG_ARM64_SVE */
#ifdef CONFIG_ARM64_RAS_EXTN
{
.desc = "RAS Extension Support",
.capability = ARM64_HAS_RAS_EXTN,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64PFR0_RAS_SHIFT,
.min_field_value = ID_AA64PFR0_RAS_V1,
.cpu_enable = cpu_clear_disr,
},
#endif /* CONFIG_ARM64_RAS_EXTN */
#ifdef CONFIG_ARM64_AMU_EXTN
{
/*
* The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
* Therefore, don't provide .desc as we don't want the detection
* message to be shown until at least one CPU is detected to
* support the feature.
*/
.capability = ARM64_HAS_AMU_EXTN,
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
.matches = has_amu,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64PFR0_AMU_SHIFT,
.min_field_value = ID_AA64PFR0_AMU,
.cpu_enable = cpu_amu_enable,
},
#endif /* CONFIG_ARM64_AMU_EXTN */
{
.desc = "Data cache clean to the PoU not required for I/D coherence",
.capability = ARM64_HAS_CACHE_IDC,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cache_idc,
.cpu_enable = cpu_emulate_effective_ctr,
},
{
.desc = "Instruction cache invalidation not required for I/D coherence",
.capability = ARM64_HAS_CACHE_DIC,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cache_dic,
},
{
.desc = "Stage-2 Force Write-Back",
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.capability = ARM64_HAS_STAGE2_FWB,
.sys_reg = SYS_ID_AA64MMFR2_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64MMFR2_FWB_SHIFT,
.min_field_value = 1,
.matches = has_cpuid_feature,
.cpu_enable = cpu_has_fwb,
},
{
.desc = "ARMv8.4 Translation Table Level",
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.capability = ARM64_HAS_ARMv8_4_TTL,
.sys_reg = SYS_ID_AA64MMFR2_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64MMFR2_TTL_SHIFT,
.min_field_value = 1,
.matches = has_cpuid_feature,
},
{
.desc = "TLB range maintenance instructions",
.capability = ARM64_HAS_TLB_RANGE,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR0_EL1,
.field_pos = ID_AA64ISAR0_TLB_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = ID_AA64ISAR0_TLB_RANGE,
},
#ifdef CONFIG_ARM64_HW_AFDBM
{
/*
* Since we turn this on always, we don't want the user to
* think that the feature is available when it may not be.
* So hide the description.
*
* .desc = "Hardware pagetable Dirty Bit Management",
*
*/
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
.capability = ARM64_HW_DBM,
.sys_reg = SYS_ID_AA64MMFR1_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
.min_field_value = 2,
.matches = has_hw_dbm,
.cpu_enable = cpu_enable_hw_dbm,
},
#endif
{
.desc = "CRC32 instructions",
.capability = ARM64_HAS_CRC32,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR0_EL1,
.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
.min_field_value = 1,
},
{
.desc = "Speculative Store Bypassing Safe (SSBS)",
.capability = ARM64_SSBS,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64PFR1_EL1,
.field_pos = ID_AA64PFR1_SSBS_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
},
#ifdef CONFIG_ARM64_CNP
{
.desc = "Common not Private translations",
.capability = ARM64_HAS_CNP,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_useable_cnp,
.sys_reg = SYS_ID_AA64MMFR2_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64MMFR2_CNP_SHIFT,
.min_field_value = 1,
.cpu_enable = cpu_enable_cnp,
},
#endif
{
.desc = "Speculation barrier (SB)",
.capability = ARM64_HAS_SB,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR1_EL1,
.field_pos = ID_AA64ISAR1_SB_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = 1,
},
#ifdef CONFIG_ARM64_PTR_AUTH
{
.desc = "Address authentication (architected algorithm)",
.capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
.sys_reg = SYS_ID_AA64ISAR1_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64ISAR1_APA_SHIFT,
.min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
.matches = has_address_auth_cpucap,
},
{
.desc = "Address authentication (IMP DEF algorithm)",
.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
.sys_reg = SYS_ID_AA64ISAR1_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64ISAR1_API_SHIFT,
.min_field_value = ID_AA64ISAR1_API_IMP_DEF,
.matches = has_address_auth_cpucap,
},
{
.capability = ARM64_HAS_ADDRESS_AUTH,
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
.matches = has_address_auth_metacap,
},
{
.desc = "Generic authentication (architected algorithm)",
.capability = ARM64_HAS_GENERIC_AUTH_ARCH,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.sys_reg = SYS_ID_AA64ISAR1_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64ISAR1_GPA_SHIFT,
.min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
.matches = has_cpuid_feature,
},
{
.desc = "Generic authentication (IMP DEF algorithm)",
.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.sys_reg = SYS_ID_AA64ISAR1_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64ISAR1_GPI_SHIFT,
.min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
.matches = has_cpuid_feature,
},
{
.capability = ARM64_HAS_GENERIC_AUTH,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_generic_auth,
},
#endif /* CONFIG_ARM64_PTR_AUTH */
#ifdef CONFIG_ARM64_PSEUDO_NMI
{
/*
* Depends on having GICv3
*/
.desc = "IRQ priority masking",
.capability = ARM64_HAS_IRQ_PRIO_MASKING,
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
.matches = can_use_gic_priorities,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.field_pos = ID_AA64PFR0_GIC_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = 1,
},
#endif
#ifdef CONFIG_ARM64_E0PD
{
.desc = "E0PD",
.capability = ARM64_HAS_E0PD,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.sys_reg = SYS_ID_AA64MMFR2_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64MMFR2_E0PD_SHIFT,
.matches = has_cpuid_feature,
.min_field_value = 1,
.cpu_enable = cpu_enable_e0pd,
},
#endif
#ifdef CONFIG_ARCH_RANDOM
{
.desc = "Random Number Generator",
.capability = ARM64_HAS_RNG,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR0_EL1,
.field_pos = ID_AA64ISAR0_RNDR_SHIFT,
.sign = FTR_UNSIGNED,
.min_field_value = 1,
},
#endif
#ifdef CONFIG_ARM64_BTI
{
.desc = "Branch Target Identification",
.capability = ARM64_BTI,
#ifdef CONFIG_ARM64_BTI_KERNEL
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
#else
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
#endif
.matches = has_cpuid_feature,
.cpu_enable = bti_enable,
.sys_reg = SYS_ID_AA64PFR1_EL1,
.field_pos = ID_AA64PFR1_BT_SHIFT,
.min_field_value = ID_AA64PFR1_BT_BTI,
.sign = FTR_UNSIGNED,
},
#endif
#ifdef CONFIG_ARM64_MTE
{
.desc = "Memory Tagging Extension",
.capability = ARM64_MTE,
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64PFR1_EL1,
.field_pos = ID_AA64PFR1_MTE_SHIFT,
.min_field_value = ID_AA64PFR1_MTE,
.sign = FTR_UNSIGNED,
.cpu_enable = cpu_enable_mte,
},
#endif /* CONFIG_ARM64_MTE */
{
.desc = "RCpc load-acquire (LDAPR)",
.capability = ARM64_HAS_LDAPR,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.sys_reg = SYS_ID_AA64ISAR1_EL1,
.sign = FTR_UNSIGNED,
.field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
.matches = has_cpuid_feature,
.min_field_value = 1,
},
{},
};
#define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
.matches = has_cpuid_feature, \
.sys_reg = reg, \
.field_pos = field, \
.sign = s, \
.min_field_value = min_value,
#define __HWCAP_CAP(name, cap_type, cap) \
.desc = name, \
.type = ARM64_CPUCAP_SYSTEM_FEATURE, \
.hwcap_type = cap_type, \
.hwcap = cap, \
#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
{ \
__HWCAP_CAP(#cap, cap_type, cap) \
HWCAP_CPUID_MATCH(reg, field, s, min_value) \
}
#define HWCAP_MULTI_CAP(list, cap_type, cap) \
{ \
__HWCAP_CAP(#cap, cap_type, cap) \
.matches = cpucap_multi_entry_cap_matches, \
.match_list = list, \
}
#define HWCAP_CAP_MATCH(match, cap_type, cap) \
{ \
__HWCAP_CAP(#cap, cap_type, cap) \
.matches = match, \
}
#ifdef CONFIG_ARM64_PTR_AUTH
static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
{
HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
},
{
HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
},
{},
};
static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
{
HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
},
{
HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
},
{},
};
#endif
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
#ifdef CONFIG_ARM64_SVE
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
#endif
HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
#ifdef CONFIG_ARM64_BTI
HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
#endif
#ifdef CONFIG_ARM64_PTR_AUTH
HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
#endif
#ifdef CONFIG_ARM64_MTE
HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
#endif /* CONFIG_ARM64_MTE */
{},
};
#ifdef CONFIG_COMPAT
static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
{
/*
* Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
* in line with that of arm32 as in vfp_init(). We make sure that the
* check is future proof, by making sure value is non-zero.
*/
u32 mvfr1;
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
if (scope == SCOPE_SYSTEM)
mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
else
mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
}
#endif
static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
#ifdef CONFIG_COMPAT
HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
#endif
{},
};
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
{
switch (cap->hwcap_type) {
case CAP_HWCAP:
cpu_set_feature(cap->hwcap);
break;
#ifdef CONFIG_COMPAT
case CAP_COMPAT_HWCAP:
compat_elf_hwcap |= (u32)cap->hwcap;
break;
case CAP_COMPAT_HWCAP2:
compat_elf_hwcap2 |= (u32)cap->hwcap;
break;
#endif
default:
WARN_ON(1);
break;
}
}
/* Check if we have a particular HWCAP enabled */
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
{
bool rc;
switch (cap->hwcap_type) {
case CAP_HWCAP:
rc = cpu_have_feature(cap->hwcap);
break;
#ifdef CONFIG_COMPAT
case CAP_COMPAT_HWCAP:
rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
break;
case CAP_COMPAT_HWCAP2:
rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
break;
#endif
default:
WARN_ON(1);
rc = false;
}
return rc;
}
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
{
/* We support emulation of accesses to CPU ID feature registers */
cpu_set_named_feature(CPUID);
for (; hwcaps->matches; hwcaps++)
if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
cap_set_elf_hwcap(hwcaps);
}
static void update_cpu_capabilities(u16 scope_mask)
{
int i;
const struct arm64_cpu_capabilities *caps;
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
for (i = 0; i < ARM64_NCAPS; i++) {
caps = cpu_hwcaps_ptrs[i];
if (!caps || !(caps->type & scope_mask) ||
cpus_have_cap(caps->capability) ||
!caps->matches(caps, cpucap_default_scope(caps)))
continue;
if (caps->desc)
pr_info("detected: %s\n", caps->desc);
cpus_set_cap(caps->capability);
if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
set_bit(caps->capability, boot_capabilities);
}
}
/*
* Enable all the available capabilities on this CPU. The capabilities
* with BOOT_CPU scope are handled separately and hence skipped here.
*/
static int cpu_enable_non_boot_scope_capabilities(void *__unused)
{
int i;
u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
for_each_available_cap(i) {
const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
if (WARN_ON(!cap))
continue;
if (!(cap->type & non_boot_scope))
continue;
if (cap->cpu_enable)
cap->cpu_enable(cap);
}
return 0;
}
/*
* Run through the enabled capabilities and enable() it on all active
* CPUs
*/
static void __init enable_cpu_capabilities(u16 scope_mask)
{
int i;
const struct arm64_cpu_capabilities *caps;
bool boot_scope;
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
for (i = 0; i < ARM64_NCAPS; i++) {
unsigned int num;
caps = cpu_hwcaps_ptrs[i];
if (!caps || !(caps->type & scope_mask))
continue;
num = caps->capability;
if (!cpus_have_cap(num))
continue;
/* Ensure cpus_have_const_cap(num) works */
static_branch_enable(&cpu_hwcap_keys[num]);
if (boot_scope && caps->cpu_enable)
/*
* Capabilities with SCOPE_BOOT_CPU scope are finalised
* before any secondary CPU boots. Thus, each secondary
* will enable the capability as appropriate via
* check_local_cpu_capabilities(). The only exception is
* the boot CPU, for which the capability must be
* enabled here. This approach avoids costly
* stop_machine() calls for this case.
*/
caps->cpu_enable(caps);
}
/*
* For all non-boot scope capabilities, use stop_machine()
* as it schedules the work allowing us to modify PSTATE,
* instead of on_each_cpu() which uses an IPI, giving us a
* PSTATE that disappears when we return.
*/
if (!boot_scope)
stop_machine(cpu_enable_non_boot_scope_capabilities,
NULL, cpu_online_mask);
}
/*
* Run through the list of capabilities to check for conflicts.
* If the system has already detected a capability, take necessary
* action on this CPU.
*/
static void verify_local_cpu_caps(u16 scope_mask)
{
int i;
bool cpu_has_cap, system_has_cap;
const struct arm64_cpu_capabilities *caps;
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
for (i = 0; i < ARM64_NCAPS; i++) {
caps = cpu_hwcaps_ptrs[i];
if (!caps || !(caps->type & scope_mask))
continue;
cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
system_has_cap = cpus_have_cap(caps->capability);
if (system_has_cap) {
/*
* Check if the new CPU misses an advertised feature,
* which is not safe to miss.
*/
if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
break;
/*
* We have to issue cpu_enable() irrespective of
* whether the CPU has it or not, as it is enabeld
* system wide. It is upto the call back to take
* appropriate action on this CPU.
*/
if (caps->cpu_enable)
caps->cpu_enable(caps);
} else {
/*
* Check if the CPU has this capability if it isn't
* safe to have when the system doesn't.
*/
if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
break;
}
}
if (i < ARM64_NCAPS) {
pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
smp_processor_id(), caps->capability,
caps->desc, system_has_cap, cpu_has_cap);
if (cpucap_panic_on_conflict(caps))
cpu_panic_kernel();
else
cpu_die_early();
}
}
/*
* Check for CPU features that are used in early boot
* based on the Boot CPU value.
*/
static void check_early_cpu_features(void)
{
verify_cpu_asid_bits();
verify_local_cpu_caps(SCOPE_BOOT_CPU);
}
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{
for (; caps->matches; caps++)
if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
pr_crit("CPU%d: missing HWCAP: %s\n",
smp_processor_id(), caps->desc);
cpu_die_early();
}
}
static void verify_sve_features(void)
{
u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
u64 zcr = read_zcr_features();
unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
unsigned int len = zcr & ZCR_ELx_LEN_MASK;
if (len < safe_len || sve_verify_vq_map()) {
pr_crit("CPU%d: SVE: vector length support mismatch\n",
smp_processor_id());
cpu_die_early();
}
/* Add checks on other ZCR bits here if necessary */
}
static void verify_hyp_capabilities(void)
{
u64 safe_mmfr1, mmfr0, mmfr1;
int parange, ipa_max;
unsigned int safe_vmid_bits, vmid_bits;
if (!IS_ENABLED(CONFIG_KVM))
return;
safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
/* Verify VMID bits */
safe_vmid_bits = get_vmid_bits(safe_mmfr1);
vmid_bits = get_vmid_bits(mmfr1);
if (vmid_bits < safe_vmid_bits) {
pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
cpu_die_early();
}
/* Verify IPA range */
parange = cpuid_feature_extract_unsigned_field(mmfr0,
ID_AA64MMFR0_PARANGE_SHIFT);
ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
if (ipa_max < get_kvm_ipa_limit()) {
pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
cpu_die_early();
}
}
/*
* Run through the enabled system capabilities and enable() it on this CPU.
* The capabilities were decided based on the available CPUs at the boot time.
* Any new CPU should match the system wide status of the capability. If the
* new CPU doesn't have a capability which the system now has enabled, we
* cannot do anything to fix it up and could cause unexpected failures. So
* we park the CPU.
*/
static void verify_local_cpu_capabilities(void)
{
/*
* The capabilities with SCOPE_BOOT_CPU are checked from
* check_early_cpu_features(), as they need to be verified
* on all secondary CPUs.
*/
verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
verify_local_elf_hwcaps(arm64_elf_hwcaps);
if (system_supports_32bit_el0())
verify_local_elf_hwcaps(compat_elf_hwcaps);
if (system_supports_sve())
verify_sve_features();
if (is_hyp_mode_available())
verify_hyp_capabilities();
}
void check_local_cpu_capabilities(void)
{
/*
* All secondary CPUs should conform to the early CPU features
* in use by the kernel based on boot CPU.
*/
check_early_cpu_features();
/*
* If we haven't finalised the system capabilities, this CPU gets
* a chance to update the errata work arounds and local features.
* Otherwise, this CPU should verify that it has all the system
* advertised capabilities.
*/
if (!system_capabilities_finalized())
update_cpu_capabilities(SCOPE_LOCAL_CPU);
else
verify_local_cpu_capabilities();
}
static void __init setup_boot_cpu_capabilities(void)
{
/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
enable_cpu_capabilities(SCOPE_BOOT_CPU);
}
bool this_cpu_has_cap(unsigned int n)
{
if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
if (cap)
return cap->matches(cap, SCOPE_LOCAL_CPU);
}
return false;
}
/*
* This helper function is used in a narrow window when,
* - The system wide safe registers are set with all the SMP CPUs and,
* - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
* In all other cases cpus_have_{const_}cap() should be used.
*/
static bool __maybe_unused __system_matches_cap(unsigned int n)
{
if (n < ARM64_NCAPS) {
const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
if (cap)
return cap->matches(cap, SCOPE_SYSTEM);
}
return false;
}
void cpu_set_feature(unsigned int num)
{
WARN_ON(num >= MAX_CPU_FEATURES);
elf_hwcap |= BIT(num);
}
EXPORT_SYMBOL_GPL(cpu_set_feature);
bool cpu_have_feature(unsigned int num)
{
WARN_ON(num >= MAX_CPU_FEATURES);
return elf_hwcap & BIT(num);
}
EXPORT_SYMBOL_GPL(cpu_have_feature);
unsigned long cpu_get_elf_hwcap(void)
{
/*
* We currently only populate the first 32 bits of AT_HWCAP. Please
* note that for userspace compatibility we guarantee that bits 62
* and 63 will always be returned as 0.
*/
return lower_32_bits(elf_hwcap);
}
unsigned long cpu_get_elf_hwcap2(void)
{
return upper_32_bits(elf_hwcap);
}
static void __init setup_system_capabilities(void)
{
/*
* We have finalised the system-wide safe feature
* registers, finalise the capabilities that depend
* on it. Also enable all the available capabilities,
* that are not enabled already.
*/
update_cpu_capabilities(SCOPE_SYSTEM);
enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
}
void __init setup_cpu_features(void)
{
u32 cwg;
setup_system_capabilities();
setup_elf_hwcaps(arm64_elf_hwcaps);
if (system_supports_32bit_el0())
setup_elf_hwcaps(compat_elf_hwcaps);
if (system_uses_ttbr0_pan())
pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
sve_setup();
minsigstksz_setup();
/* Advertise that we have computed the system capabilities */
finalize_system_capabilities();
/*
* Check for sane CTR_EL0.CWG value.
*/
cwg = cache_type_cwg();
if (!cwg)
pr_warn("No Cache Writeback Granule information, assuming %d\n",
ARCH_DMA_MINALIGN);
}
static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
{
cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
}
/*
* We emulate only the following system register space.
* Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
* See Table C5-6 System instruction encodings for System register accesses,
* ARMv8 ARM(ARM DDI 0487A.f) for more details.
*/
static inline bool __attribute_const__ is_emulated(u32 id)
{
return (sys_reg_Op0(id) == 0x3 &&
sys_reg_CRn(id) == 0x0 &&
sys_reg_Op1(id) == 0x0 &&
(sys_reg_CRm(id) == 0 ||
((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
}
/*
* With CRm == 0, reg should be one of :
* MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
*/
static inline int emulate_id_reg(u32 id, u64 *valp)
{
switch (id) {
case SYS_MIDR_EL1:
*valp = read_cpuid_id();
break;
case SYS_MPIDR_EL1:
*valp = SYS_MPIDR_SAFE_VAL;
break;
case SYS_REVIDR_EL1:
/* IMPLEMENTATION DEFINED values are emulated with 0 */
*valp = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int emulate_sys_reg(u32 id, u64 *valp)
{
struct arm64_ftr_reg *regp;
if (!is_emulated(id))
return -EINVAL;
if (sys_reg_CRm(id) == 0)
return emulate_id_reg(id, valp);
regp = get_arm64_ftr_reg_nowarn(id);
if (regp)
*valp = arm64_ftr_reg_user_value(regp);
else
/*
* The untracked registers are either IMPLEMENTATION DEFINED
* (e.g, ID_AFR0_EL1) or reserved RAZ.
*/
*valp = 0;
return 0;
}
int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
{
int rc;
u64 val;
rc = emulate_sys_reg(sys_reg, &val);
if (!rc) {
pt_regs_write_reg(regs, rt, val);
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
}
return rc;
}
static int emulate_mrs(struct pt_regs *regs, u32 insn)
{
u32 sys_reg, rt;
/*
* sys_reg values are defined as used in mrs/msr instruction.
* shift the imm value to get the encoding.
*/
sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
return do_emulate_mrs(regs, sys_reg, rt);
}
static struct undef_hook mrs_hook = {
.instr_mask = 0xfff00000,
.instr_val = 0xd5300000,
.pstate_mask = PSR_AA32_MODE_MASK,
.pstate_val = PSR_MODE_EL0t,
.fn = emulate_mrs,
};
static int __init enable_mrs_emulation(void)
{
register_undef_hook(&mrs_hook);
return 0;
}
core_initcall(enable_mrs_emulation);
enum mitigation_state arm64_get_meltdown_state(void)
{
if (__meltdown_safe)
return SPECTRE_UNAFFECTED;
if (arm64_kernel_unmapped_at_el0())
return SPECTRE_MITIGATED;
return SPECTRE_VULNERABLE;
}
ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
char *buf)
{
switch (arm64_get_meltdown_state()) {
case SPECTRE_UNAFFECTED:
return sprintf(buf, "Not affected\n");
case SPECTRE_MITIGATED:
return sprintf(buf, "Mitigation: PTI\n");
default:
return sprintf(buf, "Vulnerable\n");
}
}