50c6b58a81
In kTLS MSG_PEEK behavior is currently failing, strace example: [pid 2430] socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 3 [pid 2430] socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 4 [pid 2430] bind(4, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("0.0.0.0")}, 16) = 0 [pid 2430] listen(4, 10) = 0 [pid 2430] getsockname(4, {sa_family=AF_INET, sin_port=htons(38855), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0 [pid 2430] connect(3, {sa_family=AF_INET, sin_port=htons(38855), sin_addr=inet_addr("0.0.0.0")}, 16) = 0 [pid 2430] setsockopt(3, SOL_TCP, 0x1f /* TCP_??? */, [7564404], 4) = 0 [pid 2430] setsockopt(3, 0x11a /* SOL_?? */, 1, "\3\0033\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 40) = 0 [pid 2430] accept(4, {sa_family=AF_INET, sin_port=htons(49636), sin_addr=inet_addr("127.0.0.1")}, [16]) = 5 [pid 2430] setsockopt(5, SOL_TCP, 0x1f /* TCP_??? */, [7564404], 4) = 0 [pid 2430] setsockopt(5, 0x11a /* SOL_?? */, 2, "\3\0033\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 40) = 0 [pid 2430] close(4) = 0 [pid 2430] sendto(3, "test_read_peek", 14, 0, NULL, 0) = 14 [pid 2430] sendto(3, "_mult_recs\0", 11, 0, NULL, 0) = 11 [pid 2430] recvfrom(5, "test_read_peektest_read_peektest"..., 64, MSG_PEEK, NULL, NULL) = 64 As can be seen from strace, there are two TLS records sent, i) 'test_read_peek' and ii) '_mult_recs\0' where we end up peeking 'test_read_peektest_read_peektest'. This is clearly wrong, and what happens is that given peek cannot call into tls_sw_advance_skb() to unpause strparser and proceed with the next skb, we end up looping over the current one, copying the 'test_read_peek' over and over into the user provided buffer. Here, we can only peek into the currently held skb (current, full TLS record) as otherwise we would end up having to hold all the original skb(s) (depending on the peek depth) in a separate queue when unpausing strparser to process next records, minimally intrusive is to return only up to the current record's size (which likely was what c46234ebb4d1 ("tls: RX path for ktls") originally intended as well). Thus, after patch we properly peek the first record: [pid 2046] wait4(2075, <unfinished ...> [pid 2075] socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 3 [pid 2075] socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 4 [pid 2075] bind(4, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("0.0.0.0")}, 16) = 0 [pid 2075] listen(4, 10) = 0 [pid 2075] getsockname(4, {sa_family=AF_INET, sin_port=htons(55115), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0 [pid 2075] connect(3, {sa_family=AF_INET, sin_port=htons(55115), sin_addr=inet_addr("0.0.0.0")}, 16) = 0 [pid 2075] setsockopt(3, SOL_TCP, 0x1f /* TCP_??? */, [7564404], 4) = 0 [pid 2075] setsockopt(3, 0x11a /* SOL_?? */, 1, "\3\0033\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 40) = 0 [pid 2075] accept(4, {sa_family=AF_INET, sin_port=htons(45732), sin_addr=inet_addr("127.0.0.1")}, [16]) = 5 [pid 2075] setsockopt(5, SOL_TCP, 0x1f /* TCP_??? */, [7564404], 4) = 0 [pid 2075] setsockopt(5, 0x11a /* SOL_?? */, 2, "\3\0033\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 40) = 0 [pid 2075] close(4) = 0 [pid 2075] sendto(3, "test_read_peek", 14, 0, NULL, 0) = 14 [pid 2075] sendto(3, "_mult_recs\0", 11, 0, NULL, 0) = 11 [pid 2075] recvfrom(5, "test_read_peek", 64, MSG_PEEK, NULL, NULL) = 14 Fixes: c46234ebb4d1 ("tls: RX path for ktls") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
1324 lines
32 KiB
C
1324 lines
32 KiB
C
/*
|
|
* Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
|
|
* Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
|
|
* Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
|
|
* Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
|
|
* Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/module.h>
|
|
#include <crypto/aead.h>
|
|
|
|
#include <net/strparser.h>
|
|
#include <net/tls.h>
|
|
|
|
#define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
|
|
|
|
static int tls_do_decryption(struct sock *sk,
|
|
struct scatterlist *sgin,
|
|
struct scatterlist *sgout,
|
|
char *iv_recv,
|
|
size_t data_len,
|
|
struct aead_request *aead_req)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
int ret;
|
|
|
|
aead_request_set_tfm(aead_req, ctx->aead_recv);
|
|
aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
|
|
aead_request_set_crypt(aead_req, sgin, sgout,
|
|
data_len + tls_ctx->rx.tag_size,
|
|
(u8 *)iv_recv);
|
|
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &ctx->async_wait);
|
|
|
|
ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait);
|
|
return ret;
|
|
}
|
|
|
|
static void trim_sg(struct sock *sk, struct scatterlist *sg,
|
|
int *sg_num_elem, unsigned int *sg_size, int target_size)
|
|
{
|
|
int i = *sg_num_elem - 1;
|
|
int trim = *sg_size - target_size;
|
|
|
|
if (trim <= 0) {
|
|
WARN_ON(trim < 0);
|
|
return;
|
|
}
|
|
|
|
*sg_size = target_size;
|
|
while (trim >= sg[i].length) {
|
|
trim -= sg[i].length;
|
|
sk_mem_uncharge(sk, sg[i].length);
|
|
put_page(sg_page(&sg[i]));
|
|
i--;
|
|
|
|
if (i < 0)
|
|
goto out;
|
|
}
|
|
|
|
sg[i].length -= trim;
|
|
sk_mem_uncharge(sk, trim);
|
|
|
|
out:
|
|
*sg_num_elem = i + 1;
|
|
}
|
|
|
|
static void trim_both_sgl(struct sock *sk, int target_size)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
|
|
trim_sg(sk, ctx->sg_plaintext_data,
|
|
&ctx->sg_plaintext_num_elem,
|
|
&ctx->sg_plaintext_size,
|
|
target_size);
|
|
|
|
if (target_size > 0)
|
|
target_size += tls_ctx->tx.overhead_size;
|
|
|
|
trim_sg(sk, ctx->sg_encrypted_data,
|
|
&ctx->sg_encrypted_num_elem,
|
|
&ctx->sg_encrypted_size,
|
|
target_size);
|
|
}
|
|
|
|
static int alloc_encrypted_sg(struct sock *sk, int len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
int rc = 0;
|
|
|
|
rc = sk_alloc_sg(sk, len,
|
|
ctx->sg_encrypted_data, 0,
|
|
&ctx->sg_encrypted_num_elem,
|
|
&ctx->sg_encrypted_size, 0);
|
|
|
|
if (rc == -ENOSPC)
|
|
ctx->sg_encrypted_num_elem = ARRAY_SIZE(ctx->sg_encrypted_data);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int alloc_plaintext_sg(struct sock *sk, int len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
int rc = 0;
|
|
|
|
rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0,
|
|
&ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size,
|
|
tls_ctx->pending_open_record_frags);
|
|
|
|
if (rc == -ENOSPC)
|
|
ctx->sg_plaintext_num_elem = ARRAY_SIZE(ctx->sg_plaintext_data);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void free_sg(struct sock *sk, struct scatterlist *sg,
|
|
int *sg_num_elem, unsigned int *sg_size)
|
|
{
|
|
int i, n = *sg_num_elem;
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
sk_mem_uncharge(sk, sg[i].length);
|
|
put_page(sg_page(&sg[i]));
|
|
}
|
|
*sg_num_elem = 0;
|
|
*sg_size = 0;
|
|
}
|
|
|
|
static void tls_free_both_sg(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
|
|
free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem,
|
|
&ctx->sg_encrypted_size);
|
|
|
|
free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
|
|
&ctx->sg_plaintext_size);
|
|
}
|
|
|
|
static int tls_do_encryption(struct tls_context *tls_ctx,
|
|
struct tls_sw_context_tx *ctx,
|
|
struct aead_request *aead_req,
|
|
size_t data_len)
|
|
{
|
|
int rc;
|
|
|
|
ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size;
|
|
ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size;
|
|
|
|
aead_request_set_tfm(aead_req, ctx->aead_send);
|
|
aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
|
|
aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out,
|
|
data_len, tls_ctx->tx.iv);
|
|
|
|
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &ctx->async_wait);
|
|
|
|
rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait);
|
|
|
|
ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size;
|
|
ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int tls_push_record(struct sock *sk, int flags,
|
|
unsigned char record_type)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct aead_request *req;
|
|
int rc;
|
|
|
|
req = aead_request_alloc(ctx->aead_send, sk->sk_allocation);
|
|
if (!req)
|
|
return -ENOMEM;
|
|
|
|
sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1);
|
|
sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1);
|
|
|
|
tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size,
|
|
tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
|
|
record_type);
|
|
|
|
tls_fill_prepend(tls_ctx,
|
|
page_address(sg_page(&ctx->sg_encrypted_data[0])) +
|
|
ctx->sg_encrypted_data[0].offset,
|
|
ctx->sg_plaintext_size, record_type);
|
|
|
|
tls_ctx->pending_open_record_frags = 0;
|
|
set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags);
|
|
|
|
rc = tls_do_encryption(tls_ctx, ctx, req, ctx->sg_plaintext_size);
|
|
if (rc < 0) {
|
|
/* If we are called from write_space and
|
|
* we fail, we need to set this SOCK_NOSPACE
|
|
* to trigger another write_space in the future.
|
|
*/
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
goto out_req;
|
|
}
|
|
|
|
free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
|
|
&ctx->sg_plaintext_size);
|
|
|
|
ctx->sg_encrypted_num_elem = 0;
|
|
ctx->sg_encrypted_size = 0;
|
|
|
|
/* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
|
|
rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags);
|
|
if (rc < 0 && rc != -EAGAIN)
|
|
tls_err_abort(sk, EBADMSG);
|
|
|
|
tls_advance_record_sn(sk, &tls_ctx->tx);
|
|
out_req:
|
|
aead_request_free(req);
|
|
return rc;
|
|
}
|
|
|
|
static int tls_sw_push_pending_record(struct sock *sk, int flags)
|
|
{
|
|
return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA);
|
|
}
|
|
|
|
static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
|
|
int length, int *pages_used,
|
|
unsigned int *size_used,
|
|
struct scatterlist *to, int to_max_pages,
|
|
bool charge)
|
|
{
|
|
struct page *pages[MAX_SKB_FRAGS];
|
|
|
|
size_t offset;
|
|
ssize_t copied, use;
|
|
int i = 0;
|
|
unsigned int size = *size_used;
|
|
int num_elem = *pages_used;
|
|
int rc = 0;
|
|
int maxpages;
|
|
|
|
while (length > 0) {
|
|
i = 0;
|
|
maxpages = to_max_pages - num_elem;
|
|
if (maxpages == 0) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
copied = iov_iter_get_pages(from, pages,
|
|
length,
|
|
maxpages, &offset);
|
|
if (copied <= 0) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
iov_iter_advance(from, copied);
|
|
|
|
length -= copied;
|
|
size += copied;
|
|
while (copied) {
|
|
use = min_t(int, copied, PAGE_SIZE - offset);
|
|
|
|
sg_set_page(&to[num_elem],
|
|
pages[i], use, offset);
|
|
sg_unmark_end(&to[num_elem]);
|
|
if (charge)
|
|
sk_mem_charge(sk, use);
|
|
|
|
offset = 0;
|
|
copied -= use;
|
|
|
|
++i;
|
|
++num_elem;
|
|
}
|
|
}
|
|
|
|
/* Mark the end in the last sg entry if newly added */
|
|
if (num_elem > *pages_used)
|
|
sg_mark_end(&to[num_elem - 1]);
|
|
out:
|
|
if (rc)
|
|
iov_iter_revert(from, size - *size_used);
|
|
*size_used = size;
|
|
*pages_used = num_elem;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int memcopy_from_iter(struct sock *sk, struct iov_iter *from,
|
|
int bytes)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct scatterlist *sg = ctx->sg_plaintext_data;
|
|
int copy, i, rc = 0;
|
|
|
|
for (i = tls_ctx->pending_open_record_frags;
|
|
i < ctx->sg_plaintext_num_elem; ++i) {
|
|
copy = sg[i].length;
|
|
if (copy_from_iter(
|
|
page_address(sg_page(&sg[i])) + sg[i].offset,
|
|
copy, from) != copy) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
bytes -= copy;
|
|
|
|
++tls_ctx->pending_open_record_frags;
|
|
|
|
if (!bytes)
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
int ret = 0;
|
|
int required_size;
|
|
long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
|
|
bool eor = !(msg->msg_flags & MSG_MORE);
|
|
size_t try_to_copy, copied = 0;
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
int record_room;
|
|
bool full_record;
|
|
int orig_size;
|
|
bool is_kvec = msg->msg_iter.type & ITER_KVEC;
|
|
|
|
if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
|
|
return -ENOTSUPP;
|
|
|
|
lock_sock(sk);
|
|
|
|
if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo))
|
|
goto send_end;
|
|
|
|
if (unlikely(msg->msg_controllen)) {
|
|
ret = tls_proccess_cmsg(sk, msg, &record_type);
|
|
if (ret)
|
|
goto send_end;
|
|
}
|
|
|
|
while (msg_data_left(msg)) {
|
|
if (sk->sk_err) {
|
|
ret = -sk->sk_err;
|
|
goto send_end;
|
|
}
|
|
|
|
orig_size = ctx->sg_plaintext_size;
|
|
full_record = false;
|
|
try_to_copy = msg_data_left(msg);
|
|
record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
|
|
if (try_to_copy >= record_room) {
|
|
try_to_copy = record_room;
|
|
full_record = true;
|
|
}
|
|
|
|
required_size = ctx->sg_plaintext_size + try_to_copy +
|
|
tls_ctx->tx.overhead_size;
|
|
|
|
if (!sk_stream_memory_free(sk))
|
|
goto wait_for_sndbuf;
|
|
alloc_encrypted:
|
|
ret = alloc_encrypted_sg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto wait_for_memory;
|
|
|
|
/* Adjust try_to_copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
try_to_copy -= required_size - ctx->sg_encrypted_size;
|
|
full_record = true;
|
|
}
|
|
if (!is_kvec && (full_record || eor)) {
|
|
ret = zerocopy_from_iter(sk, &msg->msg_iter,
|
|
try_to_copy, &ctx->sg_plaintext_num_elem,
|
|
&ctx->sg_plaintext_size,
|
|
ctx->sg_plaintext_data,
|
|
ARRAY_SIZE(ctx->sg_plaintext_data),
|
|
true);
|
|
if (ret)
|
|
goto fallback_to_reg_send;
|
|
|
|
copied += try_to_copy;
|
|
ret = tls_push_record(sk, msg->msg_flags, record_type);
|
|
if (ret)
|
|
goto send_end;
|
|
continue;
|
|
|
|
fallback_to_reg_send:
|
|
trim_sg(sk, ctx->sg_plaintext_data,
|
|
&ctx->sg_plaintext_num_elem,
|
|
&ctx->sg_plaintext_size,
|
|
orig_size);
|
|
}
|
|
|
|
required_size = ctx->sg_plaintext_size + try_to_copy;
|
|
alloc_plaintext:
|
|
ret = alloc_plaintext_sg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto wait_for_memory;
|
|
|
|
/* Adjust try_to_copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
try_to_copy -= required_size - ctx->sg_plaintext_size;
|
|
full_record = true;
|
|
|
|
trim_sg(sk, ctx->sg_encrypted_data,
|
|
&ctx->sg_encrypted_num_elem,
|
|
&ctx->sg_encrypted_size,
|
|
ctx->sg_plaintext_size +
|
|
tls_ctx->tx.overhead_size);
|
|
}
|
|
|
|
ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy);
|
|
if (ret)
|
|
goto trim_sgl;
|
|
|
|
copied += try_to_copy;
|
|
if (full_record || eor) {
|
|
push_record:
|
|
ret = tls_push_record(sk, msg->msg_flags, record_type);
|
|
if (ret) {
|
|
if (ret == -ENOMEM)
|
|
goto wait_for_memory;
|
|
|
|
goto send_end;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
|
|
wait_for_sndbuf:
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
wait_for_memory:
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
if (ret) {
|
|
trim_sgl:
|
|
trim_both_sgl(sk, orig_size);
|
|
goto send_end;
|
|
}
|
|
|
|
if (tls_is_pending_closed_record(tls_ctx))
|
|
goto push_record;
|
|
|
|
if (ctx->sg_encrypted_size < required_size)
|
|
goto alloc_encrypted;
|
|
|
|
goto alloc_plaintext;
|
|
}
|
|
|
|
send_end:
|
|
ret = sk_stream_error(sk, msg->msg_flags, ret);
|
|
|
|
release_sock(sk);
|
|
return copied ? copied : ret;
|
|
}
|
|
|
|
int tls_sw_sendpage(struct sock *sk, struct page *page,
|
|
int offset, size_t size, int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
int ret = 0;
|
|
long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
|
|
bool eor;
|
|
size_t orig_size = size;
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
struct scatterlist *sg;
|
|
bool full_record;
|
|
int record_room;
|
|
|
|
if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
|
|
MSG_SENDPAGE_NOTLAST))
|
|
return -ENOTSUPP;
|
|
|
|
/* No MSG_EOR from splice, only look at MSG_MORE */
|
|
eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
|
|
|
|
lock_sock(sk);
|
|
|
|
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
|
|
|
|
if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo))
|
|
goto sendpage_end;
|
|
|
|
/* Call the sk_stream functions to manage the sndbuf mem. */
|
|
while (size > 0) {
|
|
size_t copy, required_size;
|
|
|
|
if (sk->sk_err) {
|
|
ret = -sk->sk_err;
|
|
goto sendpage_end;
|
|
}
|
|
|
|
full_record = false;
|
|
record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
|
|
copy = size;
|
|
if (copy >= record_room) {
|
|
copy = record_room;
|
|
full_record = true;
|
|
}
|
|
required_size = ctx->sg_plaintext_size + copy +
|
|
tls_ctx->tx.overhead_size;
|
|
|
|
if (!sk_stream_memory_free(sk))
|
|
goto wait_for_sndbuf;
|
|
alloc_payload:
|
|
ret = alloc_encrypted_sg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto wait_for_memory;
|
|
|
|
/* Adjust copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
copy -= required_size - ctx->sg_plaintext_size;
|
|
full_record = true;
|
|
}
|
|
|
|
get_page(page);
|
|
sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem;
|
|
sg_set_page(sg, page, copy, offset);
|
|
sg_unmark_end(sg);
|
|
|
|
ctx->sg_plaintext_num_elem++;
|
|
|
|
sk_mem_charge(sk, copy);
|
|
offset += copy;
|
|
size -= copy;
|
|
ctx->sg_plaintext_size += copy;
|
|
tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem;
|
|
|
|
if (full_record || eor ||
|
|
ctx->sg_plaintext_num_elem ==
|
|
ARRAY_SIZE(ctx->sg_plaintext_data)) {
|
|
push_record:
|
|
ret = tls_push_record(sk, flags, record_type);
|
|
if (ret) {
|
|
if (ret == -ENOMEM)
|
|
goto wait_for_memory;
|
|
|
|
goto sendpage_end;
|
|
}
|
|
}
|
|
continue;
|
|
wait_for_sndbuf:
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
wait_for_memory:
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
if (ret) {
|
|
trim_both_sgl(sk, ctx->sg_plaintext_size);
|
|
goto sendpage_end;
|
|
}
|
|
|
|
if (tls_is_pending_closed_record(tls_ctx))
|
|
goto push_record;
|
|
|
|
goto alloc_payload;
|
|
}
|
|
|
|
sendpage_end:
|
|
if (orig_size > size)
|
|
ret = orig_size - size;
|
|
else
|
|
ret = sk_stream_error(sk, flags, ret);
|
|
|
|
release_sock(sk);
|
|
return ret;
|
|
}
|
|
|
|
static struct sk_buff *tls_wait_data(struct sock *sk, int flags,
|
|
long timeo, int *err)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct sk_buff *skb;
|
|
DEFINE_WAIT_FUNC(wait, woken_wake_function);
|
|
|
|
while (!(skb = ctx->recv_pkt)) {
|
|
if (sk->sk_err) {
|
|
*err = sock_error(sk);
|
|
return NULL;
|
|
}
|
|
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN)
|
|
return NULL;
|
|
|
|
if (sock_flag(sk, SOCK_DONE))
|
|
return NULL;
|
|
|
|
if ((flags & MSG_DONTWAIT) || !timeo) {
|
|
*err = -EAGAIN;
|
|
return NULL;
|
|
}
|
|
|
|
add_wait_queue(sk_sleep(sk), &wait);
|
|
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
|
|
sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait);
|
|
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
|
|
remove_wait_queue(sk_sleep(sk), &wait);
|
|
|
|
/* Handle signals */
|
|
if (signal_pending(current)) {
|
|
*err = sock_intr_errno(timeo);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
/* This function decrypts the input skb into either out_iov or in out_sg
|
|
* or in skb buffers itself. The input parameter 'zc' indicates if
|
|
* zero-copy mode needs to be tried or not. With zero-copy mode, either
|
|
* out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
|
|
* NULL, then the decryption happens inside skb buffers itself, i.e.
|
|
* zero-copy gets disabled and 'zc' is updated.
|
|
*/
|
|
|
|
static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
|
|
struct iov_iter *out_iov,
|
|
struct scatterlist *out_sg,
|
|
int *chunk, bool *zc)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
|
|
struct aead_request *aead_req;
|
|
struct sk_buff *unused;
|
|
u8 *aad, *iv, *mem = NULL;
|
|
struct scatterlist *sgin = NULL;
|
|
struct scatterlist *sgout = NULL;
|
|
const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
|
|
|
|
if (*zc && (out_iov || out_sg)) {
|
|
if (out_iov)
|
|
n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
|
|
else
|
|
n_sgout = sg_nents(out_sg);
|
|
} else {
|
|
n_sgout = 0;
|
|
*zc = false;
|
|
}
|
|
|
|
n_sgin = skb_cow_data(skb, 0, &unused);
|
|
if (n_sgin < 1)
|
|
return -EBADMSG;
|
|
|
|
/* Increment to accommodate AAD */
|
|
n_sgin = n_sgin + 1;
|
|
|
|
nsg = n_sgin + n_sgout;
|
|
|
|
aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
|
|
mem_size = aead_size + (nsg * sizeof(struct scatterlist));
|
|
mem_size = mem_size + TLS_AAD_SPACE_SIZE;
|
|
mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
|
|
|
|
/* Allocate a single block of memory which contains
|
|
* aead_req || sgin[] || sgout[] || aad || iv.
|
|
* This order achieves correct alignment for aead_req, sgin, sgout.
|
|
*/
|
|
mem = kmalloc(mem_size, sk->sk_allocation);
|
|
if (!mem)
|
|
return -ENOMEM;
|
|
|
|
/* Segment the allocated memory */
|
|
aead_req = (struct aead_request *)mem;
|
|
sgin = (struct scatterlist *)(mem + aead_size);
|
|
sgout = sgin + n_sgin;
|
|
aad = (u8 *)(sgout + n_sgout);
|
|
iv = aad + TLS_AAD_SPACE_SIZE;
|
|
|
|
/* Prepare IV */
|
|
err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
|
|
iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
|
|
tls_ctx->rx.iv_size);
|
|
if (err < 0) {
|
|
kfree(mem);
|
|
return err;
|
|
}
|
|
memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
|
|
|
|
/* Prepare AAD */
|
|
tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
|
|
tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
|
|
ctx->control);
|
|
|
|
/* Prepare sgin */
|
|
sg_init_table(sgin, n_sgin);
|
|
sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
|
|
err = skb_to_sgvec(skb, &sgin[1],
|
|
rxm->offset + tls_ctx->rx.prepend_size,
|
|
rxm->full_len - tls_ctx->rx.prepend_size);
|
|
if (err < 0) {
|
|
kfree(mem);
|
|
return err;
|
|
}
|
|
|
|
if (n_sgout) {
|
|
if (out_iov) {
|
|
sg_init_table(sgout, n_sgout);
|
|
sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
|
|
|
|
*chunk = 0;
|
|
err = zerocopy_from_iter(sk, out_iov, data_len, &pages,
|
|
chunk, &sgout[1],
|
|
(n_sgout - 1), false);
|
|
if (err < 0)
|
|
goto fallback_to_reg_recv;
|
|
} else if (out_sg) {
|
|
memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
|
|
} else {
|
|
goto fallback_to_reg_recv;
|
|
}
|
|
} else {
|
|
fallback_to_reg_recv:
|
|
sgout = sgin;
|
|
pages = 0;
|
|
*chunk = 0;
|
|
*zc = false;
|
|
}
|
|
|
|
/* Prepare and submit AEAD request */
|
|
err = tls_do_decryption(sk, sgin, sgout, iv, data_len, aead_req);
|
|
|
|
/* Release the pages in case iov was mapped to pages */
|
|
for (; pages > 0; pages--)
|
|
put_page(sg_page(&sgout[pages]));
|
|
|
|
kfree(mem);
|
|
return err;
|
|
}
|
|
|
|
static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
|
|
struct iov_iter *dest, int *chunk, bool *zc)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
int err = 0;
|
|
|
|
#ifdef CONFIG_TLS_DEVICE
|
|
err = tls_device_decrypted(sk, skb);
|
|
if (err < 0)
|
|
return err;
|
|
#endif
|
|
if (!ctx->decrypted) {
|
|
err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
|
|
if (err < 0)
|
|
return err;
|
|
} else {
|
|
*zc = false;
|
|
}
|
|
|
|
rxm->offset += tls_ctx->rx.prepend_size;
|
|
rxm->full_len -= tls_ctx->rx.overhead_size;
|
|
tls_advance_record_sn(sk, &tls_ctx->rx);
|
|
ctx->decrypted = true;
|
|
ctx->saved_data_ready(sk);
|
|
|
|
return err;
|
|
}
|
|
|
|
int decrypt_skb(struct sock *sk, struct sk_buff *skb,
|
|
struct scatterlist *sgout)
|
|
{
|
|
bool zc = true;
|
|
int chunk;
|
|
|
|
return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
|
|
}
|
|
|
|
static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
|
|
unsigned int len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
|
|
if (len < rxm->full_len) {
|
|
rxm->offset += len;
|
|
rxm->full_len -= len;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Finished with message */
|
|
ctx->recv_pkt = NULL;
|
|
kfree_skb(skb);
|
|
__strp_unpause(&ctx->strp);
|
|
|
|
return true;
|
|
}
|
|
|
|
int tls_sw_recvmsg(struct sock *sk,
|
|
struct msghdr *msg,
|
|
size_t len,
|
|
int nonblock,
|
|
int flags,
|
|
int *addr_len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
unsigned char control;
|
|
struct strp_msg *rxm;
|
|
struct sk_buff *skb;
|
|
ssize_t copied = 0;
|
|
bool cmsg = false;
|
|
int target, err = 0;
|
|
long timeo;
|
|
bool is_kvec = msg->msg_iter.type & ITER_KVEC;
|
|
|
|
flags |= nonblock;
|
|
|
|
if (unlikely(flags & MSG_ERRQUEUE))
|
|
return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
|
|
|
|
lock_sock(sk);
|
|
|
|
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
|
|
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
do {
|
|
bool zc = false;
|
|
int chunk = 0;
|
|
|
|
skb = tls_wait_data(sk, flags, timeo, &err);
|
|
if (!skb)
|
|
goto recv_end;
|
|
|
|
rxm = strp_msg(skb);
|
|
if (!cmsg) {
|
|
int cerr;
|
|
|
|
cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
|
|
sizeof(ctx->control), &ctx->control);
|
|
cmsg = true;
|
|
control = ctx->control;
|
|
if (ctx->control != TLS_RECORD_TYPE_DATA) {
|
|
if (cerr || msg->msg_flags & MSG_CTRUNC) {
|
|
err = -EIO;
|
|
goto recv_end;
|
|
}
|
|
}
|
|
} else if (control != ctx->control) {
|
|
goto recv_end;
|
|
}
|
|
|
|
if (!ctx->decrypted) {
|
|
int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
|
|
|
|
if (!is_kvec && to_copy <= len &&
|
|
likely(!(flags & MSG_PEEK)))
|
|
zc = true;
|
|
|
|
err = decrypt_skb_update(sk, skb, &msg->msg_iter,
|
|
&chunk, &zc);
|
|
if (err < 0) {
|
|
tls_err_abort(sk, EBADMSG);
|
|
goto recv_end;
|
|
}
|
|
ctx->decrypted = true;
|
|
}
|
|
|
|
if (!zc) {
|
|
chunk = min_t(unsigned int, rxm->full_len, len);
|
|
err = skb_copy_datagram_msg(skb, rxm->offset, msg,
|
|
chunk);
|
|
if (err < 0)
|
|
goto recv_end;
|
|
}
|
|
|
|
copied += chunk;
|
|
len -= chunk;
|
|
if (likely(!(flags & MSG_PEEK))) {
|
|
u8 control = ctx->control;
|
|
|
|
if (tls_sw_advance_skb(sk, skb, chunk)) {
|
|
/* Return full control message to
|
|
* userspace before trying to parse
|
|
* another message type
|
|
*/
|
|
msg->msg_flags |= MSG_EOR;
|
|
if (control != TLS_RECORD_TYPE_DATA)
|
|
goto recv_end;
|
|
}
|
|
} else {
|
|
/* MSG_PEEK right now cannot look beyond current skb
|
|
* from strparser, meaning we cannot advance skb here
|
|
* and thus unpause strparser since we'd loose original
|
|
* one.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/* If we have a new message from strparser, continue now. */
|
|
if (copied >= target && !ctx->recv_pkt)
|
|
break;
|
|
} while (len);
|
|
|
|
recv_end:
|
|
release_sock(sk);
|
|
return copied ? : err;
|
|
}
|
|
|
|
ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
|
|
struct pipe_inode_info *pipe,
|
|
size_t len, unsigned int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct strp_msg *rxm = NULL;
|
|
struct sock *sk = sock->sk;
|
|
struct sk_buff *skb;
|
|
ssize_t copied = 0;
|
|
int err = 0;
|
|
long timeo;
|
|
int chunk;
|
|
bool zc = false;
|
|
|
|
lock_sock(sk);
|
|
|
|
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
|
|
skb = tls_wait_data(sk, flags, timeo, &err);
|
|
if (!skb)
|
|
goto splice_read_end;
|
|
|
|
/* splice does not support reading control messages */
|
|
if (ctx->control != TLS_RECORD_TYPE_DATA) {
|
|
err = -ENOTSUPP;
|
|
goto splice_read_end;
|
|
}
|
|
|
|
if (!ctx->decrypted) {
|
|
err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
|
|
|
|
if (err < 0) {
|
|
tls_err_abort(sk, EBADMSG);
|
|
goto splice_read_end;
|
|
}
|
|
ctx->decrypted = true;
|
|
}
|
|
rxm = strp_msg(skb);
|
|
|
|
chunk = min_t(unsigned int, rxm->full_len, len);
|
|
copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
|
|
if (copied < 0)
|
|
goto splice_read_end;
|
|
|
|
if (likely(!(flags & MSG_PEEK)))
|
|
tls_sw_advance_skb(sk, skb, copied);
|
|
|
|
splice_read_end:
|
|
release_sock(sk);
|
|
return copied ? : err;
|
|
}
|
|
|
|
unsigned int tls_sw_poll(struct file *file, struct socket *sock,
|
|
struct poll_table_struct *wait)
|
|
{
|
|
unsigned int ret;
|
|
struct sock *sk = sock->sk;
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
/* Grab POLLOUT and POLLHUP from the underlying socket */
|
|
ret = ctx->sk_poll(file, sock, wait);
|
|
|
|
/* Clear POLLIN bits, and set based on recv_pkt */
|
|
ret &= ~(POLLIN | POLLRDNORM);
|
|
if (ctx->recv_pkt)
|
|
ret |= POLLIN | POLLRDNORM;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
size_t cipher_overhead;
|
|
size_t data_len = 0;
|
|
int ret;
|
|
|
|
/* Verify that we have a full TLS header, or wait for more data */
|
|
if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
|
|
return 0;
|
|
|
|
/* Sanity-check size of on-stack buffer. */
|
|
if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
|
|
ret = -EINVAL;
|
|
goto read_failure;
|
|
}
|
|
|
|
/* Linearize header to local buffer */
|
|
ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
|
|
|
|
if (ret < 0)
|
|
goto read_failure;
|
|
|
|
ctx->control = header[0];
|
|
|
|
data_len = ((header[4] & 0xFF) | (header[3] << 8));
|
|
|
|
cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
|
|
|
|
if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
|
|
ret = -EMSGSIZE;
|
|
goto read_failure;
|
|
}
|
|
if (data_len < cipher_overhead) {
|
|
ret = -EBADMSG;
|
|
goto read_failure;
|
|
}
|
|
|
|
if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
|
|
header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
|
|
ret = -EINVAL;
|
|
goto read_failure;
|
|
}
|
|
|
|
#ifdef CONFIG_TLS_DEVICE
|
|
handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
|
|
*(u64*)tls_ctx->rx.rec_seq);
|
|
#endif
|
|
return data_len + TLS_HEADER_SIZE;
|
|
|
|
read_failure:
|
|
tls_err_abort(strp->sk, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void tls_queue(struct strparser *strp, struct sk_buff *skb)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
ctx->decrypted = false;
|
|
|
|
ctx->recv_pkt = skb;
|
|
strp_pause(strp);
|
|
|
|
ctx->saved_data_ready(strp->sk);
|
|
}
|
|
|
|
static void tls_data_ready(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
strp_data_ready(&ctx->strp);
|
|
}
|
|
|
|
void tls_sw_free_resources_tx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
|
|
crypto_free_aead(ctx->aead_send);
|
|
tls_free_both_sg(sk);
|
|
|
|
kfree(ctx);
|
|
}
|
|
|
|
void tls_sw_release_resources_rx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
if (ctx->aead_recv) {
|
|
kfree_skb(ctx->recv_pkt);
|
|
ctx->recv_pkt = NULL;
|
|
crypto_free_aead(ctx->aead_recv);
|
|
strp_stop(&ctx->strp);
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sk->sk_data_ready = ctx->saved_data_ready;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
release_sock(sk);
|
|
strp_done(&ctx->strp);
|
|
lock_sock(sk);
|
|
}
|
|
}
|
|
|
|
void tls_sw_free_resources_rx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
tls_sw_release_resources_rx(sk);
|
|
|
|
kfree(ctx);
|
|
}
|
|
|
|
int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
|
|
{
|
|
struct tls_crypto_info *crypto_info;
|
|
struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
|
|
struct tls_sw_context_tx *sw_ctx_tx = NULL;
|
|
struct tls_sw_context_rx *sw_ctx_rx = NULL;
|
|
struct cipher_context *cctx;
|
|
struct crypto_aead **aead;
|
|
struct strp_callbacks cb;
|
|
u16 nonce_size, tag_size, iv_size, rec_seq_size;
|
|
char *iv, *rec_seq;
|
|
int rc = 0;
|
|
|
|
if (!ctx) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (tx) {
|
|
if (!ctx->priv_ctx_tx) {
|
|
sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
|
|
if (!sw_ctx_tx) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ctx->priv_ctx_tx = sw_ctx_tx;
|
|
} else {
|
|
sw_ctx_tx =
|
|
(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
|
|
}
|
|
} else {
|
|
if (!ctx->priv_ctx_rx) {
|
|
sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
|
|
if (!sw_ctx_rx) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ctx->priv_ctx_rx = sw_ctx_rx;
|
|
} else {
|
|
sw_ctx_rx =
|
|
(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
|
|
}
|
|
}
|
|
|
|
if (tx) {
|
|
crypto_init_wait(&sw_ctx_tx->async_wait);
|
|
crypto_info = &ctx->crypto_send.info;
|
|
cctx = &ctx->tx;
|
|
aead = &sw_ctx_tx->aead_send;
|
|
} else {
|
|
crypto_init_wait(&sw_ctx_rx->async_wait);
|
|
crypto_info = &ctx->crypto_recv.info;
|
|
cctx = &ctx->rx;
|
|
aead = &sw_ctx_rx->aead_recv;
|
|
}
|
|
|
|
switch (crypto_info->cipher_type) {
|
|
case TLS_CIPHER_AES_GCM_128: {
|
|
nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
|
|
rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
|
|
rec_seq =
|
|
((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
|
|
gcm_128_info =
|
|
(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
|
|
break;
|
|
}
|
|
default:
|
|
rc = -EINVAL;
|
|
goto free_priv;
|
|
}
|
|
|
|
/* Sanity-check the IV size for stack allocations. */
|
|
if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
|
|
rc = -EINVAL;
|
|
goto free_priv;
|
|
}
|
|
|
|
cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
|
|
cctx->tag_size = tag_size;
|
|
cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
|
|
cctx->iv_size = iv_size;
|
|
cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
|
|
GFP_KERNEL);
|
|
if (!cctx->iv) {
|
|
rc = -ENOMEM;
|
|
goto free_priv;
|
|
}
|
|
memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
|
|
memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
|
|
cctx->rec_seq_size = rec_seq_size;
|
|
cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
|
|
if (!cctx->rec_seq) {
|
|
rc = -ENOMEM;
|
|
goto free_iv;
|
|
}
|
|
|
|
if (sw_ctx_tx) {
|
|
sg_init_table(sw_ctx_tx->sg_encrypted_data,
|
|
ARRAY_SIZE(sw_ctx_tx->sg_encrypted_data));
|
|
sg_init_table(sw_ctx_tx->sg_plaintext_data,
|
|
ARRAY_SIZE(sw_ctx_tx->sg_plaintext_data));
|
|
|
|
sg_init_table(sw_ctx_tx->sg_aead_in, 2);
|
|
sg_set_buf(&sw_ctx_tx->sg_aead_in[0], sw_ctx_tx->aad_space,
|
|
sizeof(sw_ctx_tx->aad_space));
|
|
sg_unmark_end(&sw_ctx_tx->sg_aead_in[1]);
|
|
sg_chain(sw_ctx_tx->sg_aead_in, 2,
|
|
sw_ctx_tx->sg_plaintext_data);
|
|
sg_init_table(sw_ctx_tx->sg_aead_out, 2);
|
|
sg_set_buf(&sw_ctx_tx->sg_aead_out[0], sw_ctx_tx->aad_space,
|
|
sizeof(sw_ctx_tx->aad_space));
|
|
sg_unmark_end(&sw_ctx_tx->sg_aead_out[1]);
|
|
sg_chain(sw_ctx_tx->sg_aead_out, 2,
|
|
sw_ctx_tx->sg_encrypted_data);
|
|
}
|
|
|
|
if (!*aead) {
|
|
*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
|
|
if (IS_ERR(*aead)) {
|
|
rc = PTR_ERR(*aead);
|
|
*aead = NULL;
|
|
goto free_rec_seq;
|
|
}
|
|
}
|
|
|
|
ctx->push_pending_record = tls_sw_push_pending_record;
|
|
|
|
rc = crypto_aead_setkey(*aead, gcm_128_info->key,
|
|
TLS_CIPHER_AES_GCM_128_KEY_SIZE);
|
|
if (rc)
|
|
goto free_aead;
|
|
|
|
rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
|
|
if (rc)
|
|
goto free_aead;
|
|
|
|
if (sw_ctx_rx) {
|
|
/* Set up strparser */
|
|
memset(&cb, 0, sizeof(cb));
|
|
cb.rcv_msg = tls_queue;
|
|
cb.parse_msg = tls_read_size;
|
|
|
|
strp_init(&sw_ctx_rx->strp, sk, &cb);
|
|
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
|
|
sk->sk_data_ready = tls_data_ready;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
|
|
sw_ctx_rx->sk_poll = sk->sk_socket->ops->poll;
|
|
|
|
strp_check_rcv(&sw_ctx_rx->strp);
|
|
}
|
|
|
|
goto out;
|
|
|
|
free_aead:
|
|
crypto_free_aead(*aead);
|
|
*aead = NULL;
|
|
free_rec_seq:
|
|
kfree(cctx->rec_seq);
|
|
cctx->rec_seq = NULL;
|
|
free_iv:
|
|
kfree(cctx->iv);
|
|
cctx->iv = NULL;
|
|
free_priv:
|
|
if (tx) {
|
|
kfree(ctx->priv_ctx_tx);
|
|
ctx->priv_ctx_tx = NULL;
|
|
} else {
|
|
kfree(ctx->priv_ctx_rx);
|
|
ctx->priv_ctx_rx = NULL;
|
|
}
|
|
out:
|
|
return rc;
|
|
}
|