74d47d75be
I think we can get rid of the spinlock protecting the kthread from being interrupted by a wakeup in certain parts. Even with the current implementation of the kthread the only lost wakeup scenario could happen if the wakeup occurs between the kfifo_len check and setting the state to TASK_INTERRUPTIBLE. In the changed version we could lose a wakeup if it occurs between processing the fifo content and setting the state to TASK_INTERRUPTIBLE. This scenario is covered by an additional check for available events in the fifo and setting the state to TASK_RUNNING in this case. In addition the changed version flushes the kfifo before ending when the kthread is stopped. With this patch we gain: - Get rid of the spinlock - Simplify code - Don't grep / release the mutex for each individual event but just once for the complete fifo content. This reduces overhead if a driver e.g. triggers processing after writing the content of a hw fifo to the kfifo. Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com> Signed-off-by: Sean Young <sean@mess.org> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
173 lines
4.0 KiB
C
173 lines
4.0 KiB
C
/*
|
|
* Remote Controller core raw events header
|
|
*
|
|
* Copyright (C) 2010 by Mauro Carvalho Chehab
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#ifndef _RC_CORE_PRIV
|
|
#define _RC_CORE_PRIV
|
|
|
|
/* Define the max number of pulse/space transitions to buffer */
|
|
#define MAX_IR_EVENT_SIZE 512
|
|
|
|
#include <linux/slab.h>
|
|
#include <media/rc-core.h>
|
|
|
|
struct ir_raw_handler {
|
|
struct list_head list;
|
|
|
|
u64 protocols; /* which are handled by this handler */
|
|
int (*decode)(struct rc_dev *dev, struct ir_raw_event event);
|
|
|
|
/* These two should only be used by the lirc decoder */
|
|
int (*raw_register)(struct rc_dev *dev);
|
|
int (*raw_unregister)(struct rc_dev *dev);
|
|
};
|
|
|
|
struct ir_raw_event_ctrl {
|
|
struct list_head list; /* to keep track of raw clients */
|
|
struct task_struct *thread;
|
|
/* fifo for the pulse/space durations */
|
|
DECLARE_KFIFO(kfifo, struct ir_raw_event, MAX_IR_EVENT_SIZE);
|
|
ktime_t last_event; /* when last event occurred */
|
|
enum raw_event_type last_type; /* last event type */
|
|
struct rc_dev *dev; /* pointer to the parent rc_dev */
|
|
|
|
/* raw decoder state follows */
|
|
struct ir_raw_event prev_ev;
|
|
struct ir_raw_event this_ev;
|
|
struct nec_dec {
|
|
int state;
|
|
unsigned count;
|
|
u32 bits;
|
|
bool is_nec_x;
|
|
bool necx_repeat;
|
|
} nec;
|
|
struct rc5_dec {
|
|
int state;
|
|
u32 bits;
|
|
unsigned count;
|
|
bool is_rc5x;
|
|
} rc5;
|
|
struct rc6_dec {
|
|
int state;
|
|
u8 header;
|
|
u32 body;
|
|
bool toggle;
|
|
unsigned count;
|
|
unsigned wanted_bits;
|
|
} rc6;
|
|
struct sony_dec {
|
|
int state;
|
|
u32 bits;
|
|
unsigned count;
|
|
} sony;
|
|
struct jvc_dec {
|
|
int state;
|
|
u16 bits;
|
|
u16 old_bits;
|
|
unsigned count;
|
|
bool first;
|
|
bool toggle;
|
|
} jvc;
|
|
struct sanyo_dec {
|
|
int state;
|
|
unsigned count;
|
|
u64 bits;
|
|
} sanyo;
|
|
struct sharp_dec {
|
|
int state;
|
|
unsigned count;
|
|
u32 bits;
|
|
unsigned int pulse_len;
|
|
} sharp;
|
|
struct mce_kbd_dec {
|
|
struct input_dev *idev;
|
|
struct timer_list rx_timeout;
|
|
char name[64];
|
|
char phys[64];
|
|
int state;
|
|
u8 header;
|
|
u32 body;
|
|
unsigned count;
|
|
unsigned wanted_bits;
|
|
} mce_kbd;
|
|
struct lirc_codec {
|
|
struct rc_dev *dev;
|
|
struct lirc_driver *drv;
|
|
int carrier_low;
|
|
|
|
ktime_t gap_start;
|
|
u64 gap_duration;
|
|
bool gap;
|
|
bool send_timeout_reports;
|
|
|
|
} lirc;
|
|
struct xmp_dec {
|
|
int state;
|
|
unsigned count;
|
|
u32 durations[16];
|
|
} xmp;
|
|
};
|
|
|
|
/* macros for IR decoders */
|
|
static inline bool geq_margin(unsigned d1, unsigned d2, unsigned margin)
|
|
{
|
|
return d1 > (d2 - margin);
|
|
}
|
|
|
|
static inline bool eq_margin(unsigned d1, unsigned d2, unsigned margin)
|
|
{
|
|
return ((d1 > (d2 - margin)) && (d1 < (d2 + margin)));
|
|
}
|
|
|
|
static inline bool is_transition(struct ir_raw_event *x, struct ir_raw_event *y)
|
|
{
|
|
return x->pulse != y->pulse;
|
|
}
|
|
|
|
static inline void decrease_duration(struct ir_raw_event *ev, unsigned duration)
|
|
{
|
|
if (duration > ev->duration)
|
|
ev->duration = 0;
|
|
else
|
|
ev->duration -= duration;
|
|
}
|
|
|
|
/* Returns true if event is normal pulse/space event */
|
|
static inline bool is_timing_event(struct ir_raw_event ev)
|
|
{
|
|
return !ev.carrier_report && !ev.reset;
|
|
}
|
|
|
|
#define TO_US(duration) DIV_ROUND_CLOSEST((duration), 1000)
|
|
#define TO_STR(is_pulse) ((is_pulse) ? "pulse" : "space")
|
|
|
|
/*
|
|
* Routines from rc-raw.c to be used internally and by decoders
|
|
*/
|
|
u64 ir_raw_get_allowed_protocols(void);
|
|
int ir_raw_event_register(struct rc_dev *dev);
|
|
void ir_raw_event_unregister(struct rc_dev *dev);
|
|
int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler);
|
|
void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler);
|
|
void ir_raw_init(void);
|
|
|
|
/*
|
|
* Decoder initialization code
|
|
*
|
|
* Those load logic are called during ir-core init, and automatically
|
|
* loads the compiled decoders for their usage with IR raw events
|
|
*/
|
|
|
|
#endif /* _RC_CORE_PRIV */
|