1ecb146f7c
Use a hook in the new writeback code's retry algorithm to rotate the keys once all the outstanding subreqs have failed rather than doing it separately on each subreq. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org
809 lines
24 KiB
C
809 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Network filesystem write subrequest result collection, assessment
|
|
* and retrying.
|
|
*
|
|
* Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include "internal.h"
|
|
|
|
/* Notes made in the collector */
|
|
#define HIT_PENDING 0x01 /* A front op was still pending */
|
|
#define SOME_EMPTY 0x02 /* One of more streams are empty */
|
|
#define ALL_EMPTY 0x04 /* All streams are empty */
|
|
#define MAYBE_DISCONTIG 0x08 /* A front op may be discontiguous (rounded to PAGE_SIZE) */
|
|
#define NEED_REASSESS 0x10 /* Need to loop round and reassess */
|
|
#define REASSESS_DISCONTIG 0x20 /* Reassess discontiguity if contiguity advances */
|
|
#define MADE_PROGRESS 0x40 /* Made progress cleaning up a stream or the folio set */
|
|
#define BUFFERED 0x80 /* The pagecache needs cleaning up */
|
|
#define NEED_RETRY 0x100 /* A front op requests retrying */
|
|
#define SAW_FAILURE 0x200 /* One stream or hit a permanent failure */
|
|
|
|
/*
|
|
* Successful completion of write of a folio to the server and/or cache. Note
|
|
* that we are not allowed to lock the folio here on pain of deadlocking with
|
|
* truncate.
|
|
*/
|
|
int netfs_folio_written_back(struct folio *folio)
|
|
{
|
|
enum netfs_folio_trace why = netfs_folio_trace_clear;
|
|
struct netfs_folio *finfo;
|
|
struct netfs_group *group = NULL;
|
|
int gcount = 0;
|
|
|
|
if ((finfo = netfs_folio_info(folio))) {
|
|
/* Streaming writes cannot be redirtied whilst under writeback,
|
|
* so discard the streaming record.
|
|
*/
|
|
folio_detach_private(folio);
|
|
group = finfo->netfs_group;
|
|
gcount++;
|
|
kfree(finfo);
|
|
why = netfs_folio_trace_clear_s;
|
|
goto end_wb;
|
|
}
|
|
|
|
if ((group = netfs_folio_group(folio))) {
|
|
if (group == NETFS_FOLIO_COPY_TO_CACHE) {
|
|
why = netfs_folio_trace_clear_cc;
|
|
folio_detach_private(folio);
|
|
goto end_wb;
|
|
}
|
|
|
|
/* Need to detach the group pointer if the page didn't get
|
|
* redirtied. If it has been redirtied, then it must be within
|
|
* the same group.
|
|
*/
|
|
why = netfs_folio_trace_redirtied;
|
|
if (!folio_test_dirty(folio)) {
|
|
folio_detach_private(folio);
|
|
gcount++;
|
|
why = netfs_folio_trace_clear_g;
|
|
}
|
|
}
|
|
|
|
end_wb:
|
|
trace_netfs_folio(folio, why);
|
|
folio_end_writeback(folio);
|
|
return gcount;
|
|
}
|
|
|
|
/*
|
|
* Get hold of a folio we have under writeback. We don't want to get the
|
|
* refcount on it.
|
|
*/
|
|
static struct folio *netfs_writeback_lookup_folio(struct netfs_io_request *wreq, loff_t pos)
|
|
{
|
|
XA_STATE(xas, &wreq->mapping->i_pages, pos / PAGE_SIZE);
|
|
struct folio *folio;
|
|
|
|
rcu_read_lock();
|
|
|
|
for (;;) {
|
|
xas_reset(&xas);
|
|
folio = xas_load(&xas);
|
|
if (xas_retry(&xas, folio))
|
|
continue;
|
|
|
|
if (!folio || xa_is_value(folio))
|
|
kdebug("R=%08x: folio %lx (%llx) not present",
|
|
wreq->debug_id, xas.xa_index, pos / PAGE_SIZE);
|
|
BUG_ON(!folio || xa_is_value(folio));
|
|
|
|
if (folio == xas_reload(&xas))
|
|
break;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
if (WARN_ONCE(!folio_test_writeback(folio),
|
|
"R=%08x: folio %lx is not under writeback\n",
|
|
wreq->debug_id, folio->index)) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_not_under_wback);
|
|
}
|
|
return folio;
|
|
}
|
|
|
|
/*
|
|
* Unlock any folios we've finished with.
|
|
*/
|
|
static void netfs_writeback_unlock_folios(struct netfs_io_request *wreq,
|
|
unsigned long long collected_to,
|
|
unsigned int *notes)
|
|
{
|
|
for (;;) {
|
|
struct folio *folio;
|
|
struct netfs_folio *finfo;
|
|
unsigned long long fpos, fend;
|
|
size_t fsize, flen;
|
|
|
|
folio = netfs_writeback_lookup_folio(wreq, wreq->cleaned_to);
|
|
|
|
fpos = folio_pos(folio);
|
|
fsize = folio_size(folio);
|
|
finfo = netfs_folio_info(folio);
|
|
flen = finfo ? finfo->dirty_offset + finfo->dirty_len : fsize;
|
|
|
|
fend = min_t(unsigned long long, fpos + flen, wreq->i_size);
|
|
|
|
trace_netfs_collect_folio(wreq, folio, fend, collected_to);
|
|
|
|
if (fpos + fsize > wreq->contiguity) {
|
|
trace_netfs_collect_contig(wreq, fpos + fsize,
|
|
netfs_contig_trace_unlock);
|
|
wreq->contiguity = fpos + fsize;
|
|
}
|
|
|
|
/* Unlock any folio we've transferred all of. */
|
|
if (collected_to < fend)
|
|
break;
|
|
|
|
wreq->nr_group_rel += netfs_folio_written_back(folio);
|
|
wreq->cleaned_to = fpos + fsize;
|
|
*notes |= MADE_PROGRESS;
|
|
|
|
if (fpos + fsize >= collected_to)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform retries on the streams that need it.
|
|
*/
|
|
static void netfs_retry_write_stream(struct netfs_io_request *wreq,
|
|
struct netfs_io_stream *stream)
|
|
{
|
|
struct list_head *next;
|
|
|
|
_enter("R=%x[%x:]", wreq->debug_id, stream->stream_nr);
|
|
|
|
if (list_empty(&stream->subrequests))
|
|
return;
|
|
|
|
if (stream->source == NETFS_UPLOAD_TO_SERVER &&
|
|
wreq->netfs_ops->retry_request)
|
|
wreq->netfs_ops->retry_request(wreq, stream);
|
|
|
|
if (unlikely(stream->failed))
|
|
return;
|
|
|
|
/* If there's no renegotiation to do, just resend each failed subreq. */
|
|
if (!stream->prepare_write) {
|
|
struct netfs_io_subrequest *subreq;
|
|
|
|
list_for_each_entry(subreq, &stream->subrequests, rreq_link) {
|
|
if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
|
|
break;
|
|
if (__test_and_clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags)) {
|
|
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
|
netfs_reissue_write(stream, subreq);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
next = stream->subrequests.next;
|
|
|
|
do {
|
|
struct netfs_io_subrequest *subreq = NULL, *from, *to, *tmp;
|
|
unsigned long long start, len;
|
|
size_t part;
|
|
bool boundary = false;
|
|
|
|
/* Go through the stream and find the next span of contiguous
|
|
* data that we then rejig (cifs, for example, needs the wsize
|
|
* renegotiating) and reissue.
|
|
*/
|
|
from = list_entry(next, struct netfs_io_subrequest, rreq_link);
|
|
to = from;
|
|
start = from->start + from->transferred;
|
|
len = from->len - from->transferred;
|
|
|
|
if (test_bit(NETFS_SREQ_FAILED, &from->flags) ||
|
|
!test_bit(NETFS_SREQ_NEED_RETRY, &from->flags))
|
|
return;
|
|
|
|
list_for_each_continue(next, &stream->subrequests) {
|
|
subreq = list_entry(next, struct netfs_io_subrequest, rreq_link);
|
|
if (subreq->start + subreq->transferred != start + len ||
|
|
test_bit(NETFS_SREQ_BOUNDARY, &subreq->flags) ||
|
|
!test_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags))
|
|
break;
|
|
to = subreq;
|
|
len += to->len;
|
|
}
|
|
|
|
/* Work through the sublist. */
|
|
subreq = from;
|
|
list_for_each_entry_from(subreq, &stream->subrequests, rreq_link) {
|
|
if (!len)
|
|
break;
|
|
/* Renegotiate max_len (wsize) */
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_retry);
|
|
__clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
|
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
|
stream->prepare_write(subreq);
|
|
|
|
part = min(len, subreq->max_len);
|
|
subreq->len = part;
|
|
subreq->start = start;
|
|
subreq->transferred = 0;
|
|
len -= part;
|
|
start += part;
|
|
if (len && subreq == to &&
|
|
__test_and_clear_bit(NETFS_SREQ_BOUNDARY, &to->flags))
|
|
boundary = true;
|
|
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
|
netfs_reissue_write(stream, subreq);
|
|
if (subreq == to)
|
|
break;
|
|
}
|
|
|
|
/* If we managed to use fewer subreqs, we can discard the
|
|
* excess; if we used the same number, then we're done.
|
|
*/
|
|
if (!len) {
|
|
if (subreq == to)
|
|
continue;
|
|
list_for_each_entry_safe_from(subreq, tmp,
|
|
&stream->subrequests, rreq_link) {
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_discard);
|
|
list_del(&subreq->rreq_link);
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_done);
|
|
if (subreq == to)
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* We ran out of subrequests, so we need to allocate some more
|
|
* and insert them after.
|
|
*/
|
|
do {
|
|
subreq = netfs_alloc_subrequest(wreq);
|
|
subreq->source = to->source;
|
|
subreq->start = start;
|
|
subreq->max_len = len;
|
|
subreq->max_nr_segs = INT_MAX;
|
|
subreq->debug_index = atomic_inc_return(&wreq->subreq_counter);
|
|
subreq->stream_nr = to->stream_nr;
|
|
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
|
|
|
trace_netfs_sreq_ref(wreq->debug_id, subreq->debug_index,
|
|
refcount_read(&subreq->ref),
|
|
netfs_sreq_trace_new);
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
|
|
|
list_add(&subreq->rreq_link, &to->rreq_link);
|
|
to = list_next_entry(to, rreq_link);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_retry);
|
|
|
|
switch (stream->source) {
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
netfs_stat(&netfs_n_wh_upload);
|
|
subreq->max_len = min(len, wreq->wsize);
|
|
break;
|
|
case NETFS_WRITE_TO_CACHE:
|
|
netfs_stat(&netfs_n_wh_write);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
stream->prepare_write(subreq);
|
|
|
|
part = min(len, subreq->max_len);
|
|
subreq->len = subreq->transferred + part;
|
|
len -= part;
|
|
start += part;
|
|
if (!len && boundary) {
|
|
__set_bit(NETFS_SREQ_BOUNDARY, &to->flags);
|
|
boundary = false;
|
|
}
|
|
|
|
netfs_reissue_write(stream, subreq);
|
|
if (!len)
|
|
break;
|
|
|
|
} while (len);
|
|
|
|
} while (!list_is_head(next, &stream->subrequests));
|
|
}
|
|
|
|
/*
|
|
* Perform retries on the streams that need it. If we're doing content
|
|
* encryption and the server copy changed due to a third-party write, we may
|
|
* need to do an RMW cycle and also rewrite the data to the cache.
|
|
*/
|
|
static void netfs_retry_writes(struct netfs_io_request *wreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
struct netfs_io_stream *stream;
|
|
int s;
|
|
|
|
/* Wait for all outstanding I/O to quiesce before performing retries as
|
|
* we may need to renegotiate the I/O sizes.
|
|
*/
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (!stream->active)
|
|
continue;
|
|
|
|
list_for_each_entry(subreq, &stream->subrequests, rreq_link) {
|
|
wait_on_bit(&subreq->flags, NETFS_SREQ_IN_PROGRESS,
|
|
TASK_UNINTERRUPTIBLE);
|
|
}
|
|
}
|
|
|
|
// TODO: Enc: Fetch changed partial pages
|
|
// TODO: Enc: Reencrypt content if needed.
|
|
// TODO: Enc: Wind back transferred point.
|
|
// TODO: Enc: Mark cache pages for retry.
|
|
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->need_retry) {
|
|
stream->need_retry = false;
|
|
netfs_retry_write_stream(wreq, stream);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Collect and assess the results of various write subrequests. We may need to
|
|
* retry some of the results - or even do an RMW cycle for content crypto.
|
|
*
|
|
* Note that we have a number of parallel, overlapping lists of subrequests,
|
|
* one to the server and one to the local cache for example, which may not be
|
|
* the same size or starting position and may not even correspond in boundary
|
|
* alignment.
|
|
*/
|
|
static void netfs_collect_write_results(struct netfs_io_request *wreq)
|
|
{
|
|
struct netfs_io_subrequest *front, *remove;
|
|
struct netfs_io_stream *stream;
|
|
unsigned long long collected_to;
|
|
unsigned int notes;
|
|
int s;
|
|
|
|
_enter("%llx-%llx", wreq->start, wreq->start + wreq->len);
|
|
trace_netfs_collect(wreq);
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_collect);
|
|
|
|
reassess_streams:
|
|
smp_rmb();
|
|
collected_to = ULLONG_MAX;
|
|
if (wreq->origin == NETFS_WRITEBACK)
|
|
notes = ALL_EMPTY | BUFFERED | MAYBE_DISCONTIG;
|
|
else if (wreq->origin == NETFS_WRITETHROUGH)
|
|
notes = ALL_EMPTY | BUFFERED;
|
|
else
|
|
notes = ALL_EMPTY;
|
|
|
|
/* Remove completed subrequests from the front of the streams and
|
|
* advance the completion point on each stream. We stop when we hit
|
|
* something that's in progress. The issuer thread may be adding stuff
|
|
* to the tail whilst we're doing this.
|
|
*
|
|
* We must not, however, merge in discontiguities that span whole
|
|
* folios that aren't under writeback. This is made more complicated
|
|
* by the folios in the gap being of unpredictable sizes - if they even
|
|
* exist - but we don't want to look them up.
|
|
*/
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
loff_t rstart, rend;
|
|
|
|
stream = &wreq->io_streams[s];
|
|
/* Read active flag before list pointers */
|
|
if (!smp_load_acquire(&stream->active))
|
|
continue;
|
|
|
|
front = stream->front;
|
|
while (front) {
|
|
trace_netfs_collect_sreq(wreq, front);
|
|
//_debug("sreq [%x] %llx %zx/%zx",
|
|
// front->debug_index, front->start, front->transferred, front->len);
|
|
|
|
/* Stall if there may be a discontinuity. */
|
|
rstart = round_down(front->start, PAGE_SIZE);
|
|
if (rstart > wreq->contiguity) {
|
|
if (wreq->contiguity > stream->collected_to) {
|
|
trace_netfs_collect_gap(wreq, stream,
|
|
wreq->contiguity, 'D');
|
|
stream->collected_to = wreq->contiguity;
|
|
}
|
|
notes |= REASSESS_DISCONTIG;
|
|
break;
|
|
}
|
|
rend = round_up(front->start + front->len, PAGE_SIZE);
|
|
if (rend > wreq->contiguity) {
|
|
trace_netfs_collect_contig(wreq, rend,
|
|
netfs_contig_trace_collect);
|
|
wreq->contiguity = rend;
|
|
if (notes & REASSESS_DISCONTIG)
|
|
notes |= NEED_REASSESS;
|
|
}
|
|
notes &= ~MAYBE_DISCONTIG;
|
|
|
|
/* Stall if the front is still undergoing I/O. */
|
|
if (test_bit(NETFS_SREQ_IN_PROGRESS, &front->flags)) {
|
|
notes |= HIT_PENDING;
|
|
break;
|
|
}
|
|
smp_rmb(); /* Read counters after I-P flag. */
|
|
|
|
if (stream->failed) {
|
|
stream->collected_to = front->start + front->len;
|
|
notes |= MADE_PROGRESS | SAW_FAILURE;
|
|
goto cancel;
|
|
}
|
|
if (front->start + front->transferred > stream->collected_to) {
|
|
stream->collected_to = front->start + front->transferred;
|
|
stream->transferred = stream->collected_to - wreq->start;
|
|
notes |= MADE_PROGRESS;
|
|
}
|
|
if (test_bit(NETFS_SREQ_FAILED, &front->flags)) {
|
|
stream->failed = true;
|
|
stream->error = front->error;
|
|
if (stream->source == NETFS_UPLOAD_TO_SERVER)
|
|
mapping_set_error(wreq->mapping, front->error);
|
|
notes |= NEED_REASSESS | SAW_FAILURE;
|
|
break;
|
|
}
|
|
if (front->transferred < front->len) {
|
|
stream->need_retry = true;
|
|
notes |= NEED_RETRY | MADE_PROGRESS;
|
|
break;
|
|
}
|
|
|
|
cancel:
|
|
/* Remove if completely consumed. */
|
|
spin_lock(&wreq->lock);
|
|
|
|
remove = front;
|
|
list_del_init(&front->rreq_link);
|
|
front = list_first_entry_or_null(&stream->subrequests,
|
|
struct netfs_io_subrequest, rreq_link);
|
|
stream->front = front;
|
|
if (!front) {
|
|
unsigned long long jump_to = atomic64_read(&wreq->issued_to);
|
|
|
|
if (stream->collected_to < jump_to) {
|
|
trace_netfs_collect_gap(wreq, stream, jump_to, 'A');
|
|
stream->collected_to = jump_to;
|
|
}
|
|
}
|
|
|
|
spin_unlock(&wreq->lock);
|
|
netfs_put_subrequest(remove, false,
|
|
notes & SAW_FAILURE ?
|
|
netfs_sreq_trace_put_cancel :
|
|
netfs_sreq_trace_put_done);
|
|
}
|
|
|
|
if (front)
|
|
notes &= ~ALL_EMPTY;
|
|
else
|
|
notes |= SOME_EMPTY;
|
|
|
|
if (stream->collected_to < collected_to)
|
|
collected_to = stream->collected_to;
|
|
}
|
|
|
|
if (collected_to != ULLONG_MAX && collected_to > wreq->collected_to)
|
|
wreq->collected_to = collected_to;
|
|
|
|
/* If we have an empty stream, we need to jump it forward over any gap
|
|
* otherwise the collection point will never advance.
|
|
*
|
|
* Note that the issuer always adds to the stream with the lowest
|
|
* so-far submitted start, so if we see two consecutive subreqs in one
|
|
* stream with nothing between then in another stream, then the second
|
|
* stream has a gap that can be jumped.
|
|
*/
|
|
if (notes & SOME_EMPTY) {
|
|
unsigned long long jump_to = wreq->start + wreq->len;
|
|
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->active &&
|
|
stream->front &&
|
|
stream->front->start < jump_to)
|
|
jump_to = stream->front->start;
|
|
}
|
|
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->active &&
|
|
!stream->front &&
|
|
stream->collected_to < jump_to) {
|
|
trace_netfs_collect_gap(wreq, stream, jump_to, 'B');
|
|
stream->collected_to = jump_to;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->active)
|
|
trace_netfs_collect_stream(wreq, stream);
|
|
}
|
|
|
|
trace_netfs_collect_state(wreq, wreq->collected_to, notes);
|
|
|
|
/* Unlock any folios that we have now finished with. */
|
|
if (notes & BUFFERED) {
|
|
unsigned long long clean_to = min(wreq->collected_to, wreq->contiguity);
|
|
|
|
if (wreq->cleaned_to < clean_to)
|
|
netfs_writeback_unlock_folios(wreq, clean_to, ¬es);
|
|
} else {
|
|
wreq->cleaned_to = wreq->collected_to;
|
|
}
|
|
|
|
// TODO: Discard encryption buffers
|
|
|
|
/* If all streams are discontiguous with the last folio we cleared, we
|
|
* may need to skip a set of folios.
|
|
*/
|
|
if ((notes & (MAYBE_DISCONTIG | ALL_EMPTY)) == MAYBE_DISCONTIG) {
|
|
unsigned long long jump_to = ULLONG_MAX;
|
|
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->active && stream->front &&
|
|
stream->front->start < jump_to)
|
|
jump_to = stream->front->start;
|
|
}
|
|
|
|
trace_netfs_collect_contig(wreq, jump_to, netfs_contig_trace_jump);
|
|
wreq->contiguity = jump_to;
|
|
wreq->cleaned_to = jump_to;
|
|
wreq->collected_to = jump_to;
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->collected_to < jump_to)
|
|
stream->collected_to = jump_to;
|
|
}
|
|
//cond_resched();
|
|
notes |= MADE_PROGRESS;
|
|
goto reassess_streams;
|
|
}
|
|
|
|
if (notes & NEED_RETRY)
|
|
goto need_retry;
|
|
if ((notes & MADE_PROGRESS) && test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_unpause);
|
|
clear_bit_unlock(NETFS_RREQ_PAUSE, &wreq->flags);
|
|
wake_up_bit(&wreq->flags, NETFS_RREQ_PAUSE);
|
|
}
|
|
|
|
if (notes & NEED_REASSESS) {
|
|
//cond_resched();
|
|
goto reassess_streams;
|
|
}
|
|
if (notes & MADE_PROGRESS) {
|
|
//cond_resched();
|
|
goto reassess_streams;
|
|
}
|
|
|
|
out:
|
|
netfs_put_group_many(wreq->group, wreq->nr_group_rel);
|
|
wreq->nr_group_rel = 0;
|
|
_leave(" = %x", notes);
|
|
return;
|
|
|
|
need_retry:
|
|
/* Okay... We're going to have to retry one or both streams. Note
|
|
* that any partially completed op will have had any wholly transferred
|
|
* folios removed from it.
|
|
*/
|
|
_debug("retry");
|
|
netfs_retry_writes(wreq);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Perform the collection of subrequests, folios and encryption buffers.
|
|
*/
|
|
void netfs_write_collection_worker(struct work_struct *work)
|
|
{
|
|
struct netfs_io_request *wreq = container_of(work, struct netfs_io_request, work);
|
|
struct netfs_inode *ictx = netfs_inode(wreq->inode);
|
|
size_t transferred;
|
|
int s;
|
|
|
|
_enter("R=%x", wreq->debug_id);
|
|
|
|
netfs_see_request(wreq, netfs_rreq_trace_see_work);
|
|
if (!test_bit(NETFS_RREQ_IN_PROGRESS, &wreq->flags)) {
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
|
|
return;
|
|
}
|
|
|
|
netfs_collect_write_results(wreq);
|
|
|
|
/* We're done when the app thread has finished posting subreqs and all
|
|
* the queues in all the streams are empty.
|
|
*/
|
|
if (!test_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags)) {
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
|
|
return;
|
|
}
|
|
smp_rmb(); /* Read ALL_QUEUED before lists. */
|
|
|
|
transferred = LONG_MAX;
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
struct netfs_io_stream *stream = &wreq->io_streams[s];
|
|
if (!stream->active)
|
|
continue;
|
|
if (!list_empty(&stream->subrequests)) {
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
|
|
return;
|
|
}
|
|
if (stream->transferred < transferred)
|
|
transferred = stream->transferred;
|
|
}
|
|
|
|
/* Okay, declare that all I/O is complete. */
|
|
wreq->transferred = transferred;
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_write_done);
|
|
|
|
if (wreq->io_streams[1].active &&
|
|
wreq->io_streams[1].failed) {
|
|
/* Cache write failure doesn't prevent writeback completion
|
|
* unless we're in disconnected mode.
|
|
*/
|
|
ictx->ops->invalidate_cache(wreq);
|
|
}
|
|
|
|
if (wreq->cleanup)
|
|
wreq->cleanup(wreq);
|
|
|
|
if (wreq->origin == NETFS_DIO_WRITE &&
|
|
wreq->mapping->nrpages) {
|
|
/* mmap may have got underfoot and we may now have folios
|
|
* locally covering the region we just wrote. Attempt to
|
|
* discard the folios, but leave in place any modified locally.
|
|
* ->write_iter() is prevented from interfering by the DIO
|
|
* counter.
|
|
*/
|
|
pgoff_t first = wreq->start >> PAGE_SHIFT;
|
|
pgoff_t last = (wreq->start + wreq->transferred - 1) >> PAGE_SHIFT;
|
|
invalidate_inode_pages2_range(wreq->mapping, first, last);
|
|
}
|
|
|
|
if (wreq->origin == NETFS_DIO_WRITE)
|
|
inode_dio_end(wreq->inode);
|
|
|
|
_debug("finished");
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_wake_ip);
|
|
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &wreq->flags);
|
|
wake_up_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS);
|
|
|
|
if (wreq->iocb) {
|
|
wreq->iocb->ki_pos += wreq->transferred;
|
|
if (wreq->iocb->ki_complete)
|
|
wreq->iocb->ki_complete(
|
|
wreq->iocb, wreq->error ? wreq->error : wreq->transferred);
|
|
wreq->iocb = VFS_PTR_POISON;
|
|
}
|
|
|
|
netfs_clear_subrequests(wreq, false);
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_work_complete);
|
|
}
|
|
|
|
/*
|
|
* Wake the collection work item.
|
|
*/
|
|
void netfs_wake_write_collector(struct netfs_io_request *wreq, bool was_async)
|
|
{
|
|
if (!work_pending(&wreq->work)) {
|
|
netfs_get_request(wreq, netfs_rreq_trace_get_work);
|
|
if (!queue_work(system_unbound_wq, &wreq->work))
|
|
netfs_put_request(wreq, was_async, netfs_rreq_trace_put_work_nq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_write_subrequest_terminated - Note the termination of a write operation.
|
|
* @_op: The I/O request that has terminated.
|
|
* @transferred_or_error: The amount of data transferred or an error code.
|
|
* @was_async: The termination was asynchronous
|
|
*
|
|
* This tells the library that a contributory write I/O operation has
|
|
* terminated, one way or another, and that it should collect the results.
|
|
*
|
|
* The caller indicates in @transferred_or_error the outcome of the operation,
|
|
* supplying a positive value to indicate the number of bytes transferred or a
|
|
* negative error code. The library will look after reissuing I/O operations
|
|
* as appropriate and writing downloaded data to the cache.
|
|
*
|
|
* If @was_async is true, the caller might be running in softirq or interrupt
|
|
* context and we can't sleep.
|
|
*
|
|
* When this is called, ownership of the subrequest is transferred back to the
|
|
* library, along with a ref.
|
|
*
|
|
* Note that %_op is a void* so that the function can be passed to
|
|
* kiocb::term_func without the need for a casting wrapper.
|
|
*/
|
|
void netfs_write_subrequest_terminated(void *_op, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *subreq = _op;
|
|
struct netfs_io_request *wreq = subreq->rreq;
|
|
struct netfs_io_stream *stream = &wreq->io_streams[subreq->stream_nr];
|
|
|
|
_enter("%x[%x] %zd", wreq->debug_id, subreq->debug_index, transferred_or_error);
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
netfs_stat(&netfs_n_wh_upload_done);
|
|
break;
|
|
case NETFS_WRITE_TO_CACHE:
|
|
netfs_stat(&netfs_n_wh_write_done);
|
|
break;
|
|
case NETFS_INVALID_WRITE:
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
subreq->error = transferred_or_error;
|
|
if (subreq->error == -EAGAIN)
|
|
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
|
else
|
|
set_bit(NETFS_SREQ_FAILED, &subreq->flags);
|
|
trace_netfs_failure(wreq, subreq, transferred_or_error, netfs_fail_write);
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_WRITE_TO_CACHE:
|
|
netfs_stat(&netfs_n_wh_write_failed);
|
|
break;
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
netfs_stat(&netfs_n_wh_upload_failed);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_set_pause);
|
|
set_bit(NETFS_RREQ_PAUSE, &wreq->flags);
|
|
} else {
|
|
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
|
|
"Subreq excess write: R=%x[%x] %zd > %zu - %zu",
|
|
wreq->debug_id, subreq->debug_index,
|
|
transferred_or_error, subreq->len, subreq->transferred))
|
|
transferred_or_error = subreq->len - subreq->transferred;
|
|
|
|
subreq->error = 0;
|
|
subreq->transferred += transferred_or_error;
|
|
|
|
if (subreq->transferred < subreq->len)
|
|
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
|
}
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
|
|
|
clear_bit_unlock(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
|
|
wake_up_bit(&subreq->flags, NETFS_SREQ_IN_PROGRESS);
|
|
|
|
/* If we are at the head of the queue, wake up the collector,
|
|
* transferring a ref to it if we were the ones to do so.
|
|
*/
|
|
if (list_is_first(&subreq->rreq_link, &stream->subrequests))
|
|
netfs_wake_write_collector(wreq, was_async);
|
|
|
|
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
|
}
|
|
EXPORT_SYMBOL(netfs_write_subrequest_terminated);
|