5212e11fde
BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
689 lines
18 KiB
C
689 lines
18 KiB
C
/*
|
|
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*/
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/io.h>
|
|
#include <linux/nd.h>
|
|
#include "nd-core.h"
|
|
#include "nd.h"
|
|
|
|
static DEFINE_IDA(region_ida);
|
|
|
|
static void nd_region_release(struct device *dev)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
u16 i;
|
|
|
|
for (i = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
|
|
put_device(&nvdimm->dev);
|
|
}
|
|
free_percpu(nd_region->lane);
|
|
ida_simple_remove(®ion_ida, nd_region->id);
|
|
kfree(nd_region);
|
|
}
|
|
|
|
static struct device_type nd_blk_device_type = {
|
|
.name = "nd_blk",
|
|
.release = nd_region_release,
|
|
};
|
|
|
|
static struct device_type nd_pmem_device_type = {
|
|
.name = "nd_pmem",
|
|
.release = nd_region_release,
|
|
};
|
|
|
|
static struct device_type nd_volatile_device_type = {
|
|
.name = "nd_volatile",
|
|
.release = nd_region_release,
|
|
};
|
|
|
|
bool is_nd_pmem(struct device *dev)
|
|
{
|
|
return dev ? dev->type == &nd_pmem_device_type : false;
|
|
}
|
|
|
|
bool is_nd_blk(struct device *dev)
|
|
{
|
|
return dev ? dev->type == &nd_blk_device_type : false;
|
|
}
|
|
|
|
struct nd_region *to_nd_region(struct device *dev)
|
|
{
|
|
struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
|
|
|
|
WARN_ON(dev->type->release != nd_region_release);
|
|
return nd_region;
|
|
}
|
|
EXPORT_SYMBOL_GPL(to_nd_region);
|
|
|
|
/**
|
|
* nd_region_to_nstype() - region to an integer namespace type
|
|
* @nd_region: region-device to interrogate
|
|
*
|
|
* This is the 'nstype' attribute of a region as well, an input to the
|
|
* MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
|
|
* namespace devices with namespace drivers.
|
|
*/
|
|
int nd_region_to_nstype(struct nd_region *nd_region)
|
|
{
|
|
if (is_nd_pmem(&nd_region->dev)) {
|
|
u16 i, alias;
|
|
|
|
for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
|
|
if (nvdimm->flags & NDD_ALIASING)
|
|
alias++;
|
|
}
|
|
if (alias)
|
|
return ND_DEVICE_NAMESPACE_PMEM;
|
|
else
|
|
return ND_DEVICE_NAMESPACE_IO;
|
|
} else if (is_nd_blk(&nd_region->dev)) {
|
|
return ND_DEVICE_NAMESPACE_BLK;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(nd_region_to_nstype);
|
|
|
|
static int is_uuid_busy(struct device *dev, void *data)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev->parent);
|
|
u8 *uuid = data;
|
|
|
|
switch (nd_region_to_nstype(nd_region)) {
|
|
case ND_DEVICE_NAMESPACE_PMEM: {
|
|
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
|
|
|
|
if (!nspm->uuid)
|
|
break;
|
|
if (memcmp(uuid, nspm->uuid, NSLABEL_UUID_LEN) == 0)
|
|
return -EBUSY;
|
|
break;
|
|
}
|
|
case ND_DEVICE_NAMESPACE_BLK: {
|
|
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
|
|
|
|
if (!nsblk->uuid)
|
|
break;
|
|
if (memcmp(uuid, nsblk->uuid, NSLABEL_UUID_LEN) == 0)
|
|
return -EBUSY;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int is_namespace_uuid_busy(struct device *dev, void *data)
|
|
{
|
|
if (is_nd_pmem(dev) || is_nd_blk(dev))
|
|
return device_for_each_child(dev, data, is_uuid_busy);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nd_is_uuid_unique - verify that no other namespace has @uuid
|
|
* @dev: any device on a nvdimm_bus
|
|
* @uuid: uuid to check
|
|
*/
|
|
bool nd_is_uuid_unique(struct device *dev, u8 *uuid)
|
|
{
|
|
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
|
|
|
|
if (!nvdimm_bus)
|
|
return false;
|
|
WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm_bus->dev));
|
|
if (device_for_each_child(&nvdimm_bus->dev, uuid,
|
|
is_namespace_uuid_busy) != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static ssize_t size_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
unsigned long long size = 0;
|
|
|
|
if (is_nd_pmem(dev)) {
|
|
size = nd_region->ndr_size;
|
|
} else if (nd_region->ndr_mappings == 1) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
|
|
|
|
size = nd_mapping->size;
|
|
}
|
|
|
|
return sprintf(buf, "%llu\n", size);
|
|
}
|
|
static DEVICE_ATTR_RO(size);
|
|
|
|
static ssize_t mappings_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
return sprintf(buf, "%d\n", nd_region->ndr_mappings);
|
|
}
|
|
static DEVICE_ATTR_RO(mappings);
|
|
|
|
static ssize_t nstype_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
|
|
}
|
|
static DEVICE_ATTR_RO(nstype);
|
|
|
|
static ssize_t set_cookie_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
struct nd_interleave_set *nd_set = nd_region->nd_set;
|
|
|
|
if (is_nd_pmem(dev) && nd_set)
|
|
/* pass, should be precluded by region_visible */;
|
|
else
|
|
return -ENXIO;
|
|
|
|
return sprintf(buf, "%#llx\n", nd_set->cookie);
|
|
}
|
|
static DEVICE_ATTR_RO(set_cookie);
|
|
|
|
resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
|
|
{
|
|
resource_size_t blk_max_overlap = 0, available, overlap;
|
|
int i;
|
|
|
|
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
|
|
|
|
retry:
|
|
available = 0;
|
|
overlap = blk_max_overlap;
|
|
for (i = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
|
|
|
|
/* if a dimm is disabled the available capacity is zero */
|
|
if (!ndd)
|
|
return 0;
|
|
|
|
if (is_nd_pmem(&nd_region->dev)) {
|
|
available += nd_pmem_available_dpa(nd_region,
|
|
nd_mapping, &overlap);
|
|
if (overlap > blk_max_overlap) {
|
|
blk_max_overlap = overlap;
|
|
goto retry;
|
|
}
|
|
} else if (is_nd_blk(&nd_region->dev)) {
|
|
available += nd_blk_available_dpa(nd_mapping);
|
|
}
|
|
}
|
|
|
|
return available;
|
|
}
|
|
|
|
static ssize_t available_size_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
unsigned long long available = 0;
|
|
|
|
/*
|
|
* Flush in-flight updates and grab a snapshot of the available
|
|
* size. Of course, this value is potentially invalidated the
|
|
* memory nvdimm_bus_lock() is dropped, but that's userspace's
|
|
* problem to not race itself.
|
|
*/
|
|
nvdimm_bus_lock(dev);
|
|
wait_nvdimm_bus_probe_idle(dev);
|
|
available = nd_region_available_dpa(nd_region);
|
|
nvdimm_bus_unlock(dev);
|
|
|
|
return sprintf(buf, "%llu\n", available);
|
|
}
|
|
static DEVICE_ATTR_RO(available_size);
|
|
|
|
static ssize_t init_namespaces_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region_namespaces *num_ns = dev_get_drvdata(dev);
|
|
ssize_t rc;
|
|
|
|
nvdimm_bus_lock(dev);
|
|
if (num_ns)
|
|
rc = sprintf(buf, "%d/%d\n", num_ns->active, num_ns->count);
|
|
else
|
|
rc = -ENXIO;
|
|
nvdimm_bus_unlock(dev);
|
|
|
|
return rc;
|
|
}
|
|
static DEVICE_ATTR_RO(init_namespaces);
|
|
|
|
static ssize_t namespace_seed_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
ssize_t rc;
|
|
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->ns_seed)
|
|
rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
|
|
else
|
|
rc = sprintf(buf, "\n");
|
|
nvdimm_bus_unlock(dev);
|
|
return rc;
|
|
}
|
|
static DEVICE_ATTR_RO(namespace_seed);
|
|
|
|
static ssize_t btt_seed_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
ssize_t rc;
|
|
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->btt_seed)
|
|
rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
|
|
else
|
|
rc = sprintf(buf, "\n");
|
|
nvdimm_bus_unlock(dev);
|
|
|
|
return rc;
|
|
}
|
|
static DEVICE_ATTR_RO(btt_seed);
|
|
|
|
static struct attribute *nd_region_attributes[] = {
|
|
&dev_attr_size.attr,
|
|
&dev_attr_nstype.attr,
|
|
&dev_attr_mappings.attr,
|
|
&dev_attr_btt_seed.attr,
|
|
&dev_attr_set_cookie.attr,
|
|
&dev_attr_available_size.attr,
|
|
&dev_attr_namespace_seed.attr,
|
|
&dev_attr_init_namespaces.attr,
|
|
NULL,
|
|
};
|
|
|
|
static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
|
|
{
|
|
struct device *dev = container_of(kobj, typeof(*dev), kobj);
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
struct nd_interleave_set *nd_set = nd_region->nd_set;
|
|
int type = nd_region_to_nstype(nd_region);
|
|
|
|
if (a != &dev_attr_set_cookie.attr
|
|
&& a != &dev_attr_available_size.attr)
|
|
return a->mode;
|
|
|
|
if ((type == ND_DEVICE_NAMESPACE_PMEM
|
|
|| type == ND_DEVICE_NAMESPACE_BLK)
|
|
&& a == &dev_attr_available_size.attr)
|
|
return a->mode;
|
|
else if (is_nd_pmem(dev) && nd_set)
|
|
return a->mode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct attribute_group nd_region_attribute_group = {
|
|
.attrs = nd_region_attributes,
|
|
.is_visible = region_visible,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nd_region_attribute_group);
|
|
|
|
u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
|
|
{
|
|
struct nd_interleave_set *nd_set = nd_region->nd_set;
|
|
|
|
if (nd_set)
|
|
return nd_set->cookie;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Upon successful probe/remove, take/release a reference on the
|
|
* associated interleave set (if present), and plant new btt + namespace
|
|
* seeds.
|
|
*/
|
|
static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
|
|
struct device *dev, bool probe)
|
|
{
|
|
struct nd_region *nd_region;
|
|
|
|
if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
|
|
int i;
|
|
|
|
nd_region = to_nd_region(dev);
|
|
for (i = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm_drvdata *ndd = nd_mapping->ndd;
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
|
|
kfree(nd_mapping->labels);
|
|
nd_mapping->labels = NULL;
|
|
put_ndd(ndd);
|
|
nd_mapping->ndd = NULL;
|
|
atomic_dec(&nvdimm->busy);
|
|
}
|
|
}
|
|
if (dev->parent && is_nd_blk(dev->parent) && probe) {
|
|
nd_region = to_nd_region(dev->parent);
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->ns_seed == dev)
|
|
nd_region_create_blk_seed(nd_region);
|
|
nvdimm_bus_unlock(dev);
|
|
}
|
|
if (is_nd_btt(dev) && probe) {
|
|
nd_region = to_nd_region(dev->parent);
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->btt_seed == dev)
|
|
nd_region_create_btt_seed(nd_region);
|
|
nvdimm_bus_unlock(dev);
|
|
}
|
|
}
|
|
|
|
void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
|
|
{
|
|
nd_region_notify_driver_action(nvdimm_bus, dev, true);
|
|
}
|
|
|
|
void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
|
|
{
|
|
nd_region_notify_driver_action(nvdimm_bus, dev, false);
|
|
}
|
|
|
|
static ssize_t mappingN(struct device *dev, char *buf, int n)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
struct nd_mapping *nd_mapping;
|
|
struct nvdimm *nvdimm;
|
|
|
|
if (n >= nd_region->ndr_mappings)
|
|
return -ENXIO;
|
|
nd_mapping = &nd_region->mapping[n];
|
|
nvdimm = nd_mapping->nvdimm;
|
|
|
|
return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
|
|
nd_mapping->start, nd_mapping->size);
|
|
}
|
|
|
|
#define REGION_MAPPING(idx) \
|
|
static ssize_t mapping##idx##_show(struct device *dev, \
|
|
struct device_attribute *attr, char *buf) \
|
|
{ \
|
|
return mappingN(dev, buf, idx); \
|
|
} \
|
|
static DEVICE_ATTR_RO(mapping##idx)
|
|
|
|
/*
|
|
* 32 should be enough for a while, even in the presence of socket
|
|
* interleave a 32-way interleave set is a degenerate case.
|
|
*/
|
|
REGION_MAPPING(0);
|
|
REGION_MAPPING(1);
|
|
REGION_MAPPING(2);
|
|
REGION_MAPPING(3);
|
|
REGION_MAPPING(4);
|
|
REGION_MAPPING(5);
|
|
REGION_MAPPING(6);
|
|
REGION_MAPPING(7);
|
|
REGION_MAPPING(8);
|
|
REGION_MAPPING(9);
|
|
REGION_MAPPING(10);
|
|
REGION_MAPPING(11);
|
|
REGION_MAPPING(12);
|
|
REGION_MAPPING(13);
|
|
REGION_MAPPING(14);
|
|
REGION_MAPPING(15);
|
|
REGION_MAPPING(16);
|
|
REGION_MAPPING(17);
|
|
REGION_MAPPING(18);
|
|
REGION_MAPPING(19);
|
|
REGION_MAPPING(20);
|
|
REGION_MAPPING(21);
|
|
REGION_MAPPING(22);
|
|
REGION_MAPPING(23);
|
|
REGION_MAPPING(24);
|
|
REGION_MAPPING(25);
|
|
REGION_MAPPING(26);
|
|
REGION_MAPPING(27);
|
|
REGION_MAPPING(28);
|
|
REGION_MAPPING(29);
|
|
REGION_MAPPING(30);
|
|
REGION_MAPPING(31);
|
|
|
|
static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
|
|
{
|
|
struct device *dev = container_of(kobj, struct device, kobj);
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
if (n < nd_region->ndr_mappings)
|
|
return a->mode;
|
|
return 0;
|
|
}
|
|
|
|
static struct attribute *mapping_attributes[] = {
|
|
&dev_attr_mapping0.attr,
|
|
&dev_attr_mapping1.attr,
|
|
&dev_attr_mapping2.attr,
|
|
&dev_attr_mapping3.attr,
|
|
&dev_attr_mapping4.attr,
|
|
&dev_attr_mapping5.attr,
|
|
&dev_attr_mapping6.attr,
|
|
&dev_attr_mapping7.attr,
|
|
&dev_attr_mapping8.attr,
|
|
&dev_attr_mapping9.attr,
|
|
&dev_attr_mapping10.attr,
|
|
&dev_attr_mapping11.attr,
|
|
&dev_attr_mapping12.attr,
|
|
&dev_attr_mapping13.attr,
|
|
&dev_attr_mapping14.attr,
|
|
&dev_attr_mapping15.attr,
|
|
&dev_attr_mapping16.attr,
|
|
&dev_attr_mapping17.attr,
|
|
&dev_attr_mapping18.attr,
|
|
&dev_attr_mapping19.attr,
|
|
&dev_attr_mapping20.attr,
|
|
&dev_attr_mapping21.attr,
|
|
&dev_attr_mapping22.attr,
|
|
&dev_attr_mapping23.attr,
|
|
&dev_attr_mapping24.attr,
|
|
&dev_attr_mapping25.attr,
|
|
&dev_attr_mapping26.attr,
|
|
&dev_attr_mapping27.attr,
|
|
&dev_attr_mapping28.attr,
|
|
&dev_attr_mapping29.attr,
|
|
&dev_attr_mapping30.attr,
|
|
&dev_attr_mapping31.attr,
|
|
NULL,
|
|
};
|
|
|
|
struct attribute_group nd_mapping_attribute_group = {
|
|
.is_visible = mapping_visible,
|
|
.attrs = mapping_attributes,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
|
|
|
|
void *nd_region_provider_data(struct nd_region *nd_region)
|
|
{
|
|
return nd_region->provider_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nd_region_provider_data);
|
|
|
|
/**
|
|
* nd_region_acquire_lane - allocate and lock a lane
|
|
* @nd_region: region id and number of lanes possible
|
|
*
|
|
* A lane correlates to a BLK-data-window and/or a log slot in the BTT.
|
|
* We optimize for the common case where there are 256 lanes, one
|
|
* per-cpu. For larger systems we need to lock to share lanes. For now
|
|
* this implementation assumes the cost of maintaining an allocator for
|
|
* free lanes is on the order of the lock hold time, so it implements a
|
|
* static lane = cpu % num_lanes mapping.
|
|
*
|
|
* In the case of a BTT instance on top of a BLK namespace a lane may be
|
|
* acquired recursively. We lock on the first instance.
|
|
*
|
|
* In the case of a BTT instance on top of PMEM, we only acquire a lane
|
|
* for the BTT metadata updates.
|
|
*/
|
|
unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
|
|
{
|
|
unsigned int cpu, lane;
|
|
|
|
cpu = get_cpu();
|
|
if (nd_region->num_lanes < nr_cpu_ids) {
|
|
struct nd_percpu_lane *ndl_lock, *ndl_count;
|
|
|
|
lane = cpu % nd_region->num_lanes;
|
|
ndl_count = per_cpu_ptr(nd_region->lane, cpu);
|
|
ndl_lock = per_cpu_ptr(nd_region->lane, lane);
|
|
if (ndl_count->count++ == 0)
|
|
spin_lock(&ndl_lock->lock);
|
|
} else
|
|
lane = cpu;
|
|
|
|
return lane;
|
|
}
|
|
EXPORT_SYMBOL(nd_region_acquire_lane);
|
|
|
|
void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
|
|
{
|
|
if (nd_region->num_lanes < nr_cpu_ids) {
|
|
unsigned int cpu = get_cpu();
|
|
struct nd_percpu_lane *ndl_lock, *ndl_count;
|
|
|
|
ndl_count = per_cpu_ptr(nd_region->lane, cpu);
|
|
ndl_lock = per_cpu_ptr(nd_region->lane, lane);
|
|
if (--ndl_count->count == 0)
|
|
spin_unlock(&ndl_lock->lock);
|
|
put_cpu();
|
|
}
|
|
put_cpu();
|
|
}
|
|
EXPORT_SYMBOL(nd_region_release_lane);
|
|
|
|
static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
|
|
struct nd_region_desc *ndr_desc, struct device_type *dev_type,
|
|
const char *caller)
|
|
{
|
|
struct nd_region *nd_region;
|
|
struct device *dev;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ndr_desc->num_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
|
|
if ((nd_mapping->start | nd_mapping->size) % SZ_4K) {
|
|
dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
|
|
caller, dev_name(&nvdimm->dev), i);
|
|
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
nd_region = kzalloc(sizeof(struct nd_region)
|
|
+ sizeof(struct nd_mapping) * ndr_desc->num_mappings,
|
|
GFP_KERNEL);
|
|
if (!nd_region)
|
|
return NULL;
|
|
nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL);
|
|
if (nd_region->id < 0)
|
|
goto err_id;
|
|
|
|
nd_region->lane = alloc_percpu(struct nd_percpu_lane);
|
|
if (!nd_region->lane)
|
|
goto err_percpu;
|
|
|
|
for (i = 0; i < nr_cpu_ids; i++) {
|
|
struct nd_percpu_lane *ndl;
|
|
|
|
ndl = per_cpu_ptr(nd_region->lane, i);
|
|
spin_lock_init(&ndl->lock);
|
|
ndl->count = 0;
|
|
}
|
|
|
|
memcpy(nd_region->mapping, ndr_desc->nd_mapping,
|
|
sizeof(struct nd_mapping) * ndr_desc->num_mappings);
|
|
for (i = 0; i < ndr_desc->num_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
|
|
get_device(&nvdimm->dev);
|
|
}
|
|
nd_region->ndr_mappings = ndr_desc->num_mappings;
|
|
nd_region->provider_data = ndr_desc->provider_data;
|
|
nd_region->nd_set = ndr_desc->nd_set;
|
|
nd_region->num_lanes = ndr_desc->num_lanes;
|
|
ida_init(&nd_region->ns_ida);
|
|
ida_init(&nd_region->btt_ida);
|
|
dev = &nd_region->dev;
|
|
dev_set_name(dev, "region%d", nd_region->id);
|
|
dev->parent = &nvdimm_bus->dev;
|
|
dev->type = dev_type;
|
|
dev->groups = ndr_desc->attr_groups;
|
|
nd_region->ndr_size = resource_size(ndr_desc->res);
|
|
nd_region->ndr_start = ndr_desc->res->start;
|
|
nd_device_register(dev);
|
|
|
|
return nd_region;
|
|
|
|
err_percpu:
|
|
ida_simple_remove(®ion_ida, nd_region->id);
|
|
err_id:
|
|
kfree(nd_region);
|
|
return NULL;
|
|
}
|
|
|
|
struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
|
|
struct nd_region_desc *ndr_desc)
|
|
{
|
|
ndr_desc->num_lanes = ND_MAX_LANES;
|
|
return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
|
|
__func__);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
|
|
|
|
struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
|
|
struct nd_region_desc *ndr_desc)
|
|
{
|
|
if (ndr_desc->num_mappings > 1)
|
|
return NULL;
|
|
ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
|
|
return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
|
|
__func__);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
|
|
|
|
struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
|
|
struct nd_region_desc *ndr_desc)
|
|
{
|
|
ndr_desc->num_lanes = ND_MAX_LANES;
|
|
return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
|
|
__func__);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
|