f9c589e142
If the last trb before a link is not packet size aligned, and is not splittable then use a bounce buffer for that chunk of max packet size unalignable data. Allocate a max packet size bounce buffer for every segment of a bulk endpoint ring at the same time as allocating the ring. If we need to align the data before the link trb in that segment then copy the data to the segment bounce buffer, dma map it, and enqueue it. Once the td finishes, or is cancelled, unmap it. For in transfers we need to first map the bounce buffer, then queue it, after it finishes, copy the bounce buffer to the original sg list, and finally unmap it Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
5077 lines
150 KiB
C
5077 lines
150 KiB
C
/*
|
|
* xHCI host controller driver
|
|
*
|
|
* Copyright (C) 2008 Intel Corp.
|
|
*
|
|
* Author: Sarah Sharp
|
|
* Some code borrowed from the Linux EHCI driver.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "xhci.h"
|
|
#include "xhci-trace.h"
|
|
#include "xhci-mtk.h"
|
|
|
|
#define DRIVER_AUTHOR "Sarah Sharp"
|
|
#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
|
|
|
|
#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
|
|
|
|
/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
|
|
static int link_quirk;
|
|
module_param(link_quirk, int, S_IRUGO | S_IWUSR);
|
|
MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
|
|
|
|
static unsigned int quirks;
|
|
module_param(quirks, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
|
|
|
|
/* TODO: copied from ehci-hcd.c - can this be refactored? */
|
|
/*
|
|
* xhci_handshake - spin reading hc until handshake completes or fails
|
|
* @ptr: address of hc register to be read
|
|
* @mask: bits to look at in result of read
|
|
* @done: value of those bits when handshake succeeds
|
|
* @usec: timeout in microseconds
|
|
*
|
|
* Returns negative errno, or zero on success
|
|
*
|
|
* Success happens when the "mask" bits have the specified value (hardware
|
|
* handshake done). There are two failure modes: "usec" have passed (major
|
|
* hardware flakeout), or the register reads as all-ones (hardware removed).
|
|
*/
|
|
int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
|
|
{
|
|
u32 result;
|
|
|
|
do {
|
|
result = readl(ptr);
|
|
if (result == ~(u32)0) /* card removed */
|
|
return -ENODEV;
|
|
result &= mask;
|
|
if (result == done)
|
|
return 0;
|
|
udelay(1);
|
|
usec--;
|
|
} while (usec > 0);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/*
|
|
* Disable interrupts and begin the xHCI halting process.
|
|
*/
|
|
void xhci_quiesce(struct xhci_hcd *xhci)
|
|
{
|
|
u32 halted;
|
|
u32 cmd;
|
|
u32 mask;
|
|
|
|
mask = ~(XHCI_IRQS);
|
|
halted = readl(&xhci->op_regs->status) & STS_HALT;
|
|
if (!halted)
|
|
mask &= ~CMD_RUN;
|
|
|
|
cmd = readl(&xhci->op_regs->command);
|
|
cmd &= mask;
|
|
writel(cmd, &xhci->op_regs->command);
|
|
}
|
|
|
|
/*
|
|
* Force HC into halt state.
|
|
*
|
|
* Disable any IRQs and clear the run/stop bit.
|
|
* HC will complete any current and actively pipelined transactions, and
|
|
* should halt within 16 ms of the run/stop bit being cleared.
|
|
* Read HC Halted bit in the status register to see when the HC is finished.
|
|
*/
|
|
int xhci_halt(struct xhci_hcd *xhci)
|
|
{
|
|
int ret;
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
|
|
xhci_quiesce(xhci);
|
|
|
|
ret = xhci_handshake(&xhci->op_regs->status,
|
|
STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
|
|
if (!ret) {
|
|
xhci->xhc_state |= XHCI_STATE_HALTED;
|
|
xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
|
|
} else
|
|
xhci_warn(xhci, "Host not halted after %u microseconds.\n",
|
|
XHCI_MAX_HALT_USEC);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set the run bit and wait for the host to be running.
|
|
*/
|
|
static int xhci_start(struct xhci_hcd *xhci)
|
|
{
|
|
u32 temp;
|
|
int ret;
|
|
|
|
temp = readl(&xhci->op_regs->command);
|
|
temp |= (CMD_RUN);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
|
|
temp);
|
|
writel(temp, &xhci->op_regs->command);
|
|
|
|
/*
|
|
* Wait for the HCHalted Status bit to be 0 to indicate the host is
|
|
* running.
|
|
*/
|
|
ret = xhci_handshake(&xhci->op_regs->status,
|
|
STS_HALT, 0, XHCI_MAX_HALT_USEC);
|
|
if (ret == -ETIMEDOUT)
|
|
xhci_err(xhci, "Host took too long to start, "
|
|
"waited %u microseconds.\n",
|
|
XHCI_MAX_HALT_USEC);
|
|
if (!ret)
|
|
/* clear state flags. Including dying, halted or removing */
|
|
xhci->xhc_state = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Reset a halted HC.
|
|
*
|
|
* This resets pipelines, timers, counters, state machines, etc.
|
|
* Transactions will be terminated immediately, and operational registers
|
|
* will be set to their defaults.
|
|
*/
|
|
int xhci_reset(struct xhci_hcd *xhci)
|
|
{
|
|
u32 command;
|
|
u32 state;
|
|
int ret, i;
|
|
|
|
state = readl(&xhci->op_regs->status);
|
|
if ((state & STS_HALT) == 0) {
|
|
xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
|
|
return 0;
|
|
}
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
|
|
command = readl(&xhci->op_regs->command);
|
|
command |= CMD_RESET;
|
|
writel(command, &xhci->op_regs->command);
|
|
|
|
/* Existing Intel xHCI controllers require a delay of 1 mS,
|
|
* after setting the CMD_RESET bit, and before accessing any
|
|
* HC registers. This allows the HC to complete the
|
|
* reset operation and be ready for HC register access.
|
|
* Without this delay, the subsequent HC register access,
|
|
* may result in a system hang very rarely.
|
|
*/
|
|
if (xhci->quirks & XHCI_INTEL_HOST)
|
|
udelay(1000);
|
|
|
|
ret = xhci_handshake(&xhci->op_regs->command,
|
|
CMD_RESET, 0, 10 * 1000 * 1000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"Wait for controller to be ready for doorbell rings");
|
|
/*
|
|
* xHCI cannot write to any doorbells or operational registers other
|
|
* than status until the "Controller Not Ready" flag is cleared.
|
|
*/
|
|
ret = xhci_handshake(&xhci->op_regs->status,
|
|
STS_CNR, 0, 10 * 1000 * 1000);
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
xhci->bus_state[i].port_c_suspend = 0;
|
|
xhci->bus_state[i].suspended_ports = 0;
|
|
xhci->bus_state[i].resuming_ports = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI
|
|
static int xhci_free_msi(struct xhci_hcd *xhci)
|
|
{
|
|
int i;
|
|
|
|
if (!xhci->msix_entries)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < xhci->msix_count; i++)
|
|
if (xhci->msix_entries[i].vector)
|
|
free_irq(xhci->msix_entries[i].vector,
|
|
xhci_to_hcd(xhci));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up MSI
|
|
*/
|
|
static int xhci_setup_msi(struct xhci_hcd *xhci)
|
|
{
|
|
int ret;
|
|
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
|
|
|
ret = pci_enable_msi(pdev);
|
|
if (ret) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"failed to allocate MSI entry");
|
|
return ret;
|
|
}
|
|
|
|
ret = request_irq(pdev->irq, xhci_msi_irq,
|
|
0, "xhci_hcd", xhci_to_hcd(xhci));
|
|
if (ret) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"disable MSI interrupt");
|
|
pci_disable_msi(pdev);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Free IRQs
|
|
* free all IRQs request
|
|
*/
|
|
static void xhci_free_irq(struct xhci_hcd *xhci)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
|
int ret;
|
|
|
|
/* return if using legacy interrupt */
|
|
if (xhci_to_hcd(xhci)->irq > 0)
|
|
return;
|
|
|
|
ret = xhci_free_msi(xhci);
|
|
if (!ret)
|
|
return;
|
|
if (pdev->irq > 0)
|
|
free_irq(pdev->irq, xhci_to_hcd(xhci));
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set up MSI-X
|
|
*/
|
|
static int xhci_setup_msix(struct xhci_hcd *xhci)
|
|
{
|
|
int i, ret = 0;
|
|
struct usb_hcd *hcd = xhci_to_hcd(xhci);
|
|
struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
|
|
|
|
/*
|
|
* calculate number of msi-x vectors supported.
|
|
* - HCS_MAX_INTRS: the max number of interrupts the host can handle,
|
|
* with max number of interrupters based on the xhci HCSPARAMS1.
|
|
* - num_online_cpus: maximum msi-x vectors per CPUs core.
|
|
* Add additional 1 vector to ensure always available interrupt.
|
|
*/
|
|
xhci->msix_count = min(num_online_cpus() + 1,
|
|
HCS_MAX_INTRS(xhci->hcs_params1));
|
|
|
|
xhci->msix_entries =
|
|
kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
|
|
GFP_KERNEL);
|
|
if (!xhci->msix_entries) {
|
|
xhci_err(xhci, "Failed to allocate MSI-X entries\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < xhci->msix_count; i++) {
|
|
xhci->msix_entries[i].entry = i;
|
|
xhci->msix_entries[i].vector = 0;
|
|
}
|
|
|
|
ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
|
|
if (ret) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"Failed to enable MSI-X");
|
|
goto free_entries;
|
|
}
|
|
|
|
for (i = 0; i < xhci->msix_count; i++) {
|
|
ret = request_irq(xhci->msix_entries[i].vector,
|
|
xhci_msi_irq,
|
|
0, "xhci_hcd", xhci_to_hcd(xhci));
|
|
if (ret)
|
|
goto disable_msix;
|
|
}
|
|
|
|
hcd->msix_enabled = 1;
|
|
return ret;
|
|
|
|
disable_msix:
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
|
|
xhci_free_irq(xhci);
|
|
pci_disable_msix(pdev);
|
|
free_entries:
|
|
kfree(xhci->msix_entries);
|
|
xhci->msix_entries = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/* Free any IRQs and disable MSI-X */
|
|
static void xhci_cleanup_msix(struct xhci_hcd *xhci)
|
|
{
|
|
struct usb_hcd *hcd = xhci_to_hcd(xhci);
|
|
struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
|
|
|
|
if (xhci->quirks & XHCI_PLAT)
|
|
return;
|
|
|
|
xhci_free_irq(xhci);
|
|
|
|
if (xhci->msix_entries) {
|
|
pci_disable_msix(pdev);
|
|
kfree(xhci->msix_entries);
|
|
xhci->msix_entries = NULL;
|
|
} else {
|
|
pci_disable_msi(pdev);
|
|
}
|
|
|
|
hcd->msix_enabled = 0;
|
|
return;
|
|
}
|
|
|
|
static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
|
|
{
|
|
int i;
|
|
|
|
if (xhci->msix_entries) {
|
|
for (i = 0; i < xhci->msix_count; i++)
|
|
synchronize_irq(xhci->msix_entries[i].vector);
|
|
}
|
|
}
|
|
|
|
static int xhci_try_enable_msi(struct usb_hcd *hcd)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
struct pci_dev *pdev;
|
|
int ret;
|
|
|
|
/* The xhci platform device has set up IRQs through usb_add_hcd. */
|
|
if (xhci->quirks & XHCI_PLAT)
|
|
return 0;
|
|
|
|
pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
|
/*
|
|
* Some Fresco Logic host controllers advertise MSI, but fail to
|
|
* generate interrupts. Don't even try to enable MSI.
|
|
*/
|
|
if (xhci->quirks & XHCI_BROKEN_MSI)
|
|
goto legacy_irq;
|
|
|
|
/* unregister the legacy interrupt */
|
|
if (hcd->irq)
|
|
free_irq(hcd->irq, hcd);
|
|
hcd->irq = 0;
|
|
|
|
ret = xhci_setup_msix(xhci);
|
|
if (ret)
|
|
/* fall back to msi*/
|
|
ret = xhci_setup_msi(xhci);
|
|
|
|
if (!ret)
|
|
/* hcd->irq is 0, we have MSI */
|
|
return 0;
|
|
|
|
if (!pdev->irq) {
|
|
xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
legacy_irq:
|
|
if (!strlen(hcd->irq_descr))
|
|
snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
|
|
hcd->driver->description, hcd->self.busnum);
|
|
|
|
/* fall back to legacy interrupt*/
|
|
ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
|
|
hcd->irq_descr, hcd);
|
|
if (ret) {
|
|
xhci_err(xhci, "request interrupt %d failed\n",
|
|
pdev->irq);
|
|
return ret;
|
|
}
|
|
hcd->irq = pdev->irq;
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
|
|
{
|
|
}
|
|
|
|
static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
static void compliance_mode_recovery(unsigned long arg)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct usb_hcd *hcd;
|
|
u32 temp;
|
|
int i;
|
|
|
|
xhci = (struct xhci_hcd *)arg;
|
|
|
|
for (i = 0; i < xhci->num_usb3_ports; i++) {
|
|
temp = readl(xhci->usb3_ports[i]);
|
|
if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
|
|
/*
|
|
* Compliance Mode Detected. Letting USB Core
|
|
* handle the Warm Reset
|
|
*/
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Compliance mode detected->port %d",
|
|
i + 1);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Attempting compliance mode recovery");
|
|
hcd = xhci->shared_hcd;
|
|
|
|
if (hcd->state == HC_STATE_SUSPENDED)
|
|
usb_hcd_resume_root_hub(hcd);
|
|
|
|
usb_hcd_poll_rh_status(hcd);
|
|
}
|
|
}
|
|
|
|
if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
|
|
mod_timer(&xhci->comp_mode_recovery_timer,
|
|
jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
|
|
}
|
|
|
|
/*
|
|
* Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
|
|
* that causes ports behind that hardware to enter compliance mode sometimes.
|
|
* The quirk creates a timer that polls every 2 seconds the link state of
|
|
* each host controller's port and recovers it by issuing a Warm reset
|
|
* if Compliance mode is detected, otherwise the port will become "dead" (no
|
|
* device connections or disconnections will be detected anymore). Becasue no
|
|
* status event is generated when entering compliance mode (per xhci spec),
|
|
* this quirk is needed on systems that have the failing hardware installed.
|
|
*/
|
|
static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
|
|
{
|
|
xhci->port_status_u0 = 0;
|
|
setup_timer(&xhci->comp_mode_recovery_timer,
|
|
compliance_mode_recovery, (unsigned long)xhci);
|
|
xhci->comp_mode_recovery_timer.expires = jiffies +
|
|
msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
|
|
|
|
set_timer_slack(&xhci->comp_mode_recovery_timer,
|
|
msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
|
|
add_timer(&xhci->comp_mode_recovery_timer);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Compliance mode recovery timer initialized");
|
|
}
|
|
|
|
/*
|
|
* This function identifies the systems that have installed the SN65LVPE502CP
|
|
* USB3.0 re-driver and that need the Compliance Mode Quirk.
|
|
* Systems:
|
|
* Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
|
|
*/
|
|
static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
|
|
{
|
|
const char *dmi_product_name, *dmi_sys_vendor;
|
|
|
|
dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
|
|
dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
|
|
if (!dmi_product_name || !dmi_sys_vendor)
|
|
return false;
|
|
|
|
if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
|
|
return false;
|
|
|
|
if (strstr(dmi_product_name, "Z420") ||
|
|
strstr(dmi_product_name, "Z620") ||
|
|
strstr(dmi_product_name, "Z820") ||
|
|
strstr(dmi_product_name, "Z1 Workstation"))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
|
|
{
|
|
return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize memory for HCD and xHC (one-time init).
|
|
*
|
|
* Program the PAGESIZE register, initialize the device context array, create
|
|
* device contexts (?), set up a command ring segment (or two?), create event
|
|
* ring (one for now).
|
|
*/
|
|
int xhci_init(struct usb_hcd *hcd)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
int retval = 0;
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
|
|
spin_lock_init(&xhci->lock);
|
|
if (xhci->hci_version == 0x95 && link_quirk) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"QUIRK: Not clearing Link TRB chain bits.");
|
|
xhci->quirks |= XHCI_LINK_TRB_QUIRK;
|
|
} else {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"xHCI doesn't need link TRB QUIRK");
|
|
}
|
|
retval = xhci_mem_init(xhci, GFP_KERNEL);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
|
|
|
|
/* Initializing Compliance Mode Recovery Data If Needed */
|
|
if (xhci_compliance_mode_recovery_timer_quirk_check()) {
|
|
xhci->quirks |= XHCI_COMP_MODE_QUIRK;
|
|
compliance_mode_recovery_timer_init(xhci);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
|
|
static int xhci_run_finished(struct xhci_hcd *xhci)
|
|
{
|
|
if (xhci_start(xhci)) {
|
|
xhci_halt(xhci);
|
|
return -ENODEV;
|
|
}
|
|
xhci->shared_hcd->state = HC_STATE_RUNNING;
|
|
xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
|
|
|
|
if (xhci->quirks & XHCI_NEC_HOST)
|
|
xhci_ring_cmd_db(xhci);
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"Finished xhci_run for USB3 roothub");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Start the HC after it was halted.
|
|
*
|
|
* This function is called by the USB core when the HC driver is added.
|
|
* Its opposite is xhci_stop().
|
|
*
|
|
* xhci_init() must be called once before this function can be called.
|
|
* Reset the HC, enable device slot contexts, program DCBAAP, and
|
|
* set command ring pointer and event ring pointer.
|
|
*
|
|
* Setup MSI-X vectors and enable interrupts.
|
|
*/
|
|
int xhci_run(struct usb_hcd *hcd)
|
|
{
|
|
u32 temp;
|
|
u64 temp_64;
|
|
int ret;
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
|
|
/* Start the xHCI host controller running only after the USB 2.0 roothub
|
|
* is setup.
|
|
*/
|
|
|
|
hcd->uses_new_polling = 1;
|
|
if (!usb_hcd_is_primary_hcd(hcd))
|
|
return xhci_run_finished(xhci);
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
|
|
|
|
ret = xhci_try_enable_msi(hcd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
xhci_dbg(xhci, "Command ring memory map follows:\n");
|
|
xhci_debug_ring(xhci, xhci->cmd_ring);
|
|
xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
|
|
xhci_dbg_cmd_ptrs(xhci);
|
|
|
|
xhci_dbg(xhci, "ERST memory map follows:\n");
|
|
xhci_dbg_erst(xhci, &xhci->erst);
|
|
xhci_dbg(xhci, "Event ring:\n");
|
|
xhci_debug_ring(xhci, xhci->event_ring);
|
|
xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
|
|
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
|
|
temp_64 &= ~ERST_PTR_MASK;
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"// Set the interrupt modulation register");
|
|
temp = readl(&xhci->ir_set->irq_control);
|
|
temp &= ~ER_IRQ_INTERVAL_MASK;
|
|
/*
|
|
* the increment interval is 8 times as much as that defined
|
|
* in xHCI spec on MTK's controller
|
|
*/
|
|
temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
|
|
writel(temp, &xhci->ir_set->irq_control);
|
|
|
|
/* Set the HCD state before we enable the irqs */
|
|
temp = readl(&xhci->op_regs->command);
|
|
temp |= (CMD_EIE);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"// Enable interrupts, cmd = 0x%x.", temp);
|
|
writel(temp, &xhci->op_regs->command);
|
|
|
|
temp = readl(&xhci->ir_set->irq_pending);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
|
|
xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
|
|
writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
|
|
xhci_print_ir_set(xhci, 0);
|
|
|
|
if (xhci->quirks & XHCI_NEC_HOST) {
|
|
struct xhci_command *command;
|
|
command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
|
|
if (!command)
|
|
return -ENOMEM;
|
|
xhci_queue_vendor_command(xhci, command, 0, 0, 0,
|
|
TRB_TYPE(TRB_NEC_GET_FW));
|
|
}
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"Finished xhci_run for USB2 roothub");
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xhci_run);
|
|
|
|
/*
|
|
* Stop xHCI driver.
|
|
*
|
|
* This function is called by the USB core when the HC driver is removed.
|
|
* Its opposite is xhci_run().
|
|
*
|
|
* Disable device contexts, disable IRQs, and quiesce the HC.
|
|
* Reset the HC, finish any completed transactions, and cleanup memory.
|
|
*/
|
|
void xhci_stop(struct usb_hcd *hcd)
|
|
{
|
|
u32 temp;
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
|
|
mutex_lock(&xhci->mutex);
|
|
|
|
if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
|
|
spin_lock_irq(&xhci->lock);
|
|
|
|
xhci->xhc_state |= XHCI_STATE_HALTED;
|
|
xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
|
|
xhci_halt(xhci);
|
|
xhci_reset(xhci);
|
|
|
|
spin_unlock_irq(&xhci->lock);
|
|
}
|
|
|
|
if (!usb_hcd_is_primary_hcd(hcd)) {
|
|
mutex_unlock(&xhci->mutex);
|
|
return;
|
|
}
|
|
|
|
xhci_cleanup_msix(xhci);
|
|
|
|
/* Deleting Compliance Mode Recovery Timer */
|
|
if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
|
|
(!(xhci_all_ports_seen_u0(xhci)))) {
|
|
del_timer_sync(&xhci->comp_mode_recovery_timer);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"%s: compliance mode recovery timer deleted",
|
|
__func__);
|
|
}
|
|
|
|
if (xhci->quirks & XHCI_AMD_PLL_FIX)
|
|
usb_amd_dev_put();
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"// Disabling event ring interrupts");
|
|
temp = readl(&xhci->op_regs->status);
|
|
writel(temp & ~STS_EINT, &xhci->op_regs->status);
|
|
temp = readl(&xhci->ir_set->irq_pending);
|
|
writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
|
|
xhci_print_ir_set(xhci, 0);
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
|
|
xhci_mem_cleanup(xhci);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"xhci_stop completed - status = %x",
|
|
readl(&xhci->op_regs->status));
|
|
mutex_unlock(&xhci->mutex);
|
|
}
|
|
|
|
/*
|
|
* Shutdown HC (not bus-specific)
|
|
*
|
|
* This is called when the machine is rebooting or halting. We assume that the
|
|
* machine will be powered off, and the HC's internal state will be reset.
|
|
* Don't bother to free memory.
|
|
*
|
|
* This will only ever be called with the main usb_hcd (the USB3 roothub).
|
|
*/
|
|
void xhci_shutdown(struct usb_hcd *hcd)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
|
|
if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
|
|
usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
|
|
|
|
spin_lock_irq(&xhci->lock);
|
|
xhci_halt(xhci);
|
|
/* Workaround for spurious wakeups at shutdown with HSW */
|
|
if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
|
|
xhci_reset(xhci);
|
|
spin_unlock_irq(&xhci->lock);
|
|
|
|
xhci_cleanup_msix(xhci);
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"xhci_shutdown completed - status = %x",
|
|
readl(&xhci->op_regs->status));
|
|
|
|
/* Yet another workaround for spurious wakeups at shutdown with HSW */
|
|
if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
|
|
pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static void xhci_save_registers(struct xhci_hcd *xhci)
|
|
{
|
|
xhci->s3.command = readl(&xhci->op_regs->command);
|
|
xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
|
|
xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
|
|
xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
|
|
xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
|
|
xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
|
|
xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
|
|
xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
|
|
xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
|
|
}
|
|
|
|
static void xhci_restore_registers(struct xhci_hcd *xhci)
|
|
{
|
|
writel(xhci->s3.command, &xhci->op_regs->command);
|
|
writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
|
|
xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
|
|
writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
|
|
writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
|
|
xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
|
|
xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
|
|
writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
|
|
writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
|
|
}
|
|
|
|
static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
|
|
{
|
|
u64 val_64;
|
|
|
|
/* step 2: initialize command ring buffer */
|
|
val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
|
|
val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
|
|
(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
|
|
xhci->cmd_ring->dequeue) &
|
|
(u64) ~CMD_RING_RSVD_BITS) |
|
|
xhci->cmd_ring->cycle_state;
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
|
|
"// Setting command ring address to 0x%llx",
|
|
(long unsigned long) val_64);
|
|
xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
|
|
}
|
|
|
|
/*
|
|
* The whole command ring must be cleared to zero when we suspend the host.
|
|
*
|
|
* The host doesn't save the command ring pointer in the suspend well, so we
|
|
* need to re-program it on resume. Unfortunately, the pointer must be 64-byte
|
|
* aligned, because of the reserved bits in the command ring dequeue pointer
|
|
* register. Therefore, we can't just set the dequeue pointer back in the
|
|
* middle of the ring (TRBs are 16-byte aligned).
|
|
*/
|
|
static void xhci_clear_command_ring(struct xhci_hcd *xhci)
|
|
{
|
|
struct xhci_ring *ring;
|
|
struct xhci_segment *seg;
|
|
|
|
ring = xhci->cmd_ring;
|
|
seg = ring->deq_seg;
|
|
do {
|
|
memset(seg->trbs, 0,
|
|
sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
|
|
seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
|
|
cpu_to_le32(~TRB_CYCLE);
|
|
seg = seg->next;
|
|
} while (seg != ring->deq_seg);
|
|
|
|
/* Reset the software enqueue and dequeue pointers */
|
|
ring->deq_seg = ring->first_seg;
|
|
ring->dequeue = ring->first_seg->trbs;
|
|
ring->enq_seg = ring->deq_seg;
|
|
ring->enqueue = ring->dequeue;
|
|
|
|
ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
|
|
/*
|
|
* Ring is now zeroed, so the HW should look for change of ownership
|
|
* when the cycle bit is set to 1.
|
|
*/
|
|
ring->cycle_state = 1;
|
|
|
|
/*
|
|
* Reset the hardware dequeue pointer.
|
|
* Yes, this will need to be re-written after resume, but we're paranoid
|
|
* and want to make sure the hardware doesn't access bogus memory
|
|
* because, say, the BIOS or an SMI started the host without changing
|
|
* the command ring pointers.
|
|
*/
|
|
xhci_set_cmd_ring_deq(xhci);
|
|
}
|
|
|
|
static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
|
|
{
|
|
int port_index;
|
|
__le32 __iomem **port_array;
|
|
unsigned long flags;
|
|
u32 t1, t2;
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
|
|
/* disble usb3 ports Wake bits*/
|
|
port_index = xhci->num_usb3_ports;
|
|
port_array = xhci->usb3_ports;
|
|
while (port_index--) {
|
|
t1 = readl(port_array[port_index]);
|
|
t1 = xhci_port_state_to_neutral(t1);
|
|
t2 = t1 & ~PORT_WAKE_BITS;
|
|
if (t1 != t2)
|
|
writel(t2, port_array[port_index]);
|
|
}
|
|
|
|
/* disble usb2 ports Wake bits*/
|
|
port_index = xhci->num_usb2_ports;
|
|
port_array = xhci->usb2_ports;
|
|
while (port_index--) {
|
|
t1 = readl(port_array[port_index]);
|
|
t1 = xhci_port_state_to_neutral(t1);
|
|
t2 = t1 & ~PORT_WAKE_BITS;
|
|
if (t1 != t2)
|
|
writel(t2, port_array[port_index]);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Stop HC (not bus-specific)
|
|
*
|
|
* This is called when the machine transition into S3/S4 mode.
|
|
*
|
|
*/
|
|
int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
|
|
{
|
|
int rc = 0;
|
|
unsigned int delay = XHCI_MAX_HALT_USEC;
|
|
struct usb_hcd *hcd = xhci_to_hcd(xhci);
|
|
u32 command;
|
|
|
|
if (!hcd->state)
|
|
return 0;
|
|
|
|
if (hcd->state != HC_STATE_SUSPENDED ||
|
|
xhci->shared_hcd->state != HC_STATE_SUSPENDED)
|
|
return -EINVAL;
|
|
|
|
/* Clear root port wake on bits if wakeup not allowed. */
|
|
if (!do_wakeup)
|
|
xhci_disable_port_wake_on_bits(xhci);
|
|
|
|
/* Don't poll the roothubs on bus suspend. */
|
|
xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
|
|
clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
del_timer_sync(&hcd->rh_timer);
|
|
clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
|
|
del_timer_sync(&xhci->shared_hcd->rh_timer);
|
|
|
|
spin_lock_irq(&xhci->lock);
|
|
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
|
|
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
|
|
/* step 1: stop endpoint */
|
|
/* skipped assuming that port suspend has done */
|
|
|
|
/* step 2: clear Run/Stop bit */
|
|
command = readl(&xhci->op_regs->command);
|
|
command &= ~CMD_RUN;
|
|
writel(command, &xhci->op_regs->command);
|
|
|
|
/* Some chips from Fresco Logic need an extraordinary delay */
|
|
delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
|
|
|
|
if (xhci_handshake(&xhci->op_regs->status,
|
|
STS_HALT, STS_HALT, delay)) {
|
|
xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
|
|
spin_unlock_irq(&xhci->lock);
|
|
return -ETIMEDOUT;
|
|
}
|
|
xhci_clear_command_ring(xhci);
|
|
|
|
/* step 3: save registers */
|
|
xhci_save_registers(xhci);
|
|
|
|
/* step 4: set CSS flag */
|
|
command = readl(&xhci->op_regs->command);
|
|
command |= CMD_CSS;
|
|
writel(command, &xhci->op_regs->command);
|
|
if (xhci_handshake(&xhci->op_regs->status,
|
|
STS_SAVE, 0, 10 * 1000)) {
|
|
xhci_warn(xhci, "WARN: xHC save state timeout\n");
|
|
spin_unlock_irq(&xhci->lock);
|
|
return -ETIMEDOUT;
|
|
}
|
|
spin_unlock_irq(&xhci->lock);
|
|
|
|
/*
|
|
* Deleting Compliance Mode Recovery Timer because the xHCI Host
|
|
* is about to be suspended.
|
|
*/
|
|
if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
|
|
(!(xhci_all_ports_seen_u0(xhci)))) {
|
|
del_timer_sync(&xhci->comp_mode_recovery_timer);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"%s: compliance mode recovery timer deleted",
|
|
__func__);
|
|
}
|
|
|
|
/* step 5: remove core well power */
|
|
/* synchronize irq when using MSI-X */
|
|
xhci_msix_sync_irqs(xhci);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xhci_suspend);
|
|
|
|
/*
|
|
* start xHC (not bus-specific)
|
|
*
|
|
* This is called when the machine transition from S3/S4 mode.
|
|
*
|
|
*/
|
|
int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
|
|
{
|
|
u32 command, temp = 0, status;
|
|
struct usb_hcd *hcd = xhci_to_hcd(xhci);
|
|
struct usb_hcd *secondary_hcd;
|
|
int retval = 0;
|
|
bool comp_timer_running = false;
|
|
|
|
if (!hcd->state)
|
|
return 0;
|
|
|
|
/* Wait a bit if either of the roothubs need to settle from the
|
|
* transition into bus suspend.
|
|
*/
|
|
if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
|
|
time_before(jiffies,
|
|
xhci->bus_state[1].next_statechange))
|
|
msleep(100);
|
|
|
|
set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
|
|
set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
|
|
|
|
spin_lock_irq(&xhci->lock);
|
|
if (xhci->quirks & XHCI_RESET_ON_RESUME)
|
|
hibernated = true;
|
|
|
|
if (!hibernated) {
|
|
/* step 1: restore register */
|
|
xhci_restore_registers(xhci);
|
|
/* step 2: initialize command ring buffer */
|
|
xhci_set_cmd_ring_deq(xhci);
|
|
/* step 3: restore state and start state*/
|
|
/* step 3: set CRS flag */
|
|
command = readl(&xhci->op_regs->command);
|
|
command |= CMD_CRS;
|
|
writel(command, &xhci->op_regs->command);
|
|
if (xhci_handshake(&xhci->op_regs->status,
|
|
STS_RESTORE, 0, 10 * 1000)) {
|
|
xhci_warn(xhci, "WARN: xHC restore state timeout\n");
|
|
spin_unlock_irq(&xhci->lock);
|
|
return -ETIMEDOUT;
|
|
}
|
|
temp = readl(&xhci->op_regs->status);
|
|
}
|
|
|
|
/* If restore operation fails, re-initialize the HC during resume */
|
|
if ((temp & STS_SRE) || hibernated) {
|
|
|
|
if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
|
|
!(xhci_all_ports_seen_u0(xhci))) {
|
|
del_timer_sync(&xhci->comp_mode_recovery_timer);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Compliance Mode Recovery Timer deleted!");
|
|
}
|
|
|
|
/* Let the USB core know _both_ roothubs lost power. */
|
|
usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
|
|
usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
|
|
|
|
xhci_dbg(xhci, "Stop HCD\n");
|
|
xhci_halt(xhci);
|
|
xhci_reset(xhci);
|
|
spin_unlock_irq(&xhci->lock);
|
|
xhci_cleanup_msix(xhci);
|
|
|
|
xhci_dbg(xhci, "// Disabling event ring interrupts\n");
|
|
temp = readl(&xhci->op_regs->status);
|
|
writel(temp & ~STS_EINT, &xhci->op_regs->status);
|
|
temp = readl(&xhci->ir_set->irq_pending);
|
|
writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
|
|
xhci_print_ir_set(xhci, 0);
|
|
|
|
xhci_dbg(xhci, "cleaning up memory\n");
|
|
xhci_mem_cleanup(xhci);
|
|
xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
|
|
readl(&xhci->op_regs->status));
|
|
|
|
/* USB core calls the PCI reinit and start functions twice:
|
|
* first with the primary HCD, and then with the secondary HCD.
|
|
* If we don't do the same, the host will never be started.
|
|
*/
|
|
if (!usb_hcd_is_primary_hcd(hcd))
|
|
secondary_hcd = hcd;
|
|
else
|
|
secondary_hcd = xhci->shared_hcd;
|
|
|
|
xhci_dbg(xhci, "Initialize the xhci_hcd\n");
|
|
retval = xhci_init(hcd->primary_hcd);
|
|
if (retval)
|
|
return retval;
|
|
comp_timer_running = true;
|
|
|
|
xhci_dbg(xhci, "Start the primary HCD\n");
|
|
retval = xhci_run(hcd->primary_hcd);
|
|
if (!retval) {
|
|
xhci_dbg(xhci, "Start the secondary HCD\n");
|
|
retval = xhci_run(secondary_hcd);
|
|
}
|
|
hcd->state = HC_STATE_SUSPENDED;
|
|
xhci->shared_hcd->state = HC_STATE_SUSPENDED;
|
|
goto done;
|
|
}
|
|
|
|
/* step 4: set Run/Stop bit */
|
|
command = readl(&xhci->op_regs->command);
|
|
command |= CMD_RUN;
|
|
writel(command, &xhci->op_regs->command);
|
|
xhci_handshake(&xhci->op_regs->status, STS_HALT,
|
|
0, 250 * 1000);
|
|
|
|
/* step 5: walk topology and initialize portsc,
|
|
* portpmsc and portli
|
|
*/
|
|
/* this is done in bus_resume */
|
|
|
|
/* step 6: restart each of the previously
|
|
* Running endpoints by ringing their doorbells
|
|
*/
|
|
|
|
spin_unlock_irq(&xhci->lock);
|
|
|
|
done:
|
|
if (retval == 0) {
|
|
/* Resume root hubs only when have pending events. */
|
|
status = readl(&xhci->op_regs->status);
|
|
if (status & STS_EINT) {
|
|
usb_hcd_resume_root_hub(xhci->shared_hcd);
|
|
usb_hcd_resume_root_hub(hcd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If system is subject to the Quirk, Compliance Mode Timer needs to
|
|
* be re-initialized Always after a system resume. Ports are subject
|
|
* to suffer the Compliance Mode issue again. It doesn't matter if
|
|
* ports have entered previously to U0 before system's suspension.
|
|
*/
|
|
if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
|
|
compliance_mode_recovery_timer_init(xhci);
|
|
|
|
/* Re-enable port polling. */
|
|
xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
|
|
set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
|
|
usb_hcd_poll_rh_status(xhci->shared_hcd);
|
|
set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
usb_hcd_poll_rh_status(hcd);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xhci_resume);
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
|
|
* HCDs. Find the index for an endpoint given its descriptor. Use the return
|
|
* value to right shift 1 for the bitmask.
|
|
*
|
|
* Index = (epnum * 2) + direction - 1,
|
|
* where direction = 0 for OUT, 1 for IN.
|
|
* For control endpoints, the IN index is used (OUT index is unused), so
|
|
* index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
|
|
*/
|
|
unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
|
|
{
|
|
unsigned int index;
|
|
if (usb_endpoint_xfer_control(desc))
|
|
index = (unsigned int) (usb_endpoint_num(desc)*2);
|
|
else
|
|
index = (unsigned int) (usb_endpoint_num(desc)*2) +
|
|
(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
|
|
return index;
|
|
}
|
|
|
|
/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
|
|
* address from the XHCI endpoint index.
|
|
*/
|
|
unsigned int xhci_get_endpoint_address(unsigned int ep_index)
|
|
{
|
|
unsigned int number = DIV_ROUND_UP(ep_index, 2);
|
|
unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
|
|
return direction | number;
|
|
}
|
|
|
|
/* Find the flag for this endpoint (for use in the control context). Use the
|
|
* endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
|
|
* bit 1, etc.
|
|
*/
|
|
unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
|
|
{
|
|
return 1 << (xhci_get_endpoint_index(desc) + 1);
|
|
}
|
|
|
|
/* Find the flag for this endpoint (for use in the control context). Use the
|
|
* endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
|
|
* bit 1, etc.
|
|
*/
|
|
unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
|
|
{
|
|
return 1 << (ep_index + 1);
|
|
}
|
|
|
|
/* Compute the last valid endpoint context index. Basically, this is the
|
|
* endpoint index plus one. For slot contexts with more than valid endpoint,
|
|
* we find the most significant bit set in the added contexts flags.
|
|
* e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
|
|
* fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
|
|
*/
|
|
unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
|
|
{
|
|
return fls(added_ctxs) - 1;
|
|
}
|
|
|
|
/* Returns 1 if the arguments are OK;
|
|
* returns 0 this is a root hub; returns -EINVAL for NULL pointers.
|
|
*/
|
|
static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
|
|
struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
|
|
const char *func) {
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_virt_device *virt_dev;
|
|
|
|
if (!hcd || (check_ep && !ep) || !udev) {
|
|
pr_debug("xHCI %s called with invalid args\n", func);
|
|
return -EINVAL;
|
|
}
|
|
if (!udev->parent) {
|
|
pr_debug("xHCI %s called for root hub\n", func);
|
|
return 0;
|
|
}
|
|
|
|
xhci = hcd_to_xhci(hcd);
|
|
if (check_virt_dev) {
|
|
if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
|
|
xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
|
|
func);
|
|
return -EINVAL;
|
|
}
|
|
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
if (virt_dev->udev != udev) {
|
|
xhci_dbg(xhci, "xHCI %s called with udev and "
|
|
"virt_dev does not match\n", func);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (xhci->xhc_state & XHCI_STATE_HALTED)
|
|
return -ENODEV;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int xhci_configure_endpoint(struct xhci_hcd *xhci,
|
|
struct usb_device *udev, struct xhci_command *command,
|
|
bool ctx_change, bool must_succeed);
|
|
|
|
/*
|
|
* Full speed devices may have a max packet size greater than 8 bytes, but the
|
|
* USB core doesn't know that until it reads the first 8 bytes of the
|
|
* descriptor. If the usb_device's max packet size changes after that point,
|
|
* we need to issue an evaluate context command and wait on it.
|
|
*/
|
|
static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
|
|
unsigned int ep_index, struct urb *urb)
|
|
{
|
|
struct xhci_container_ctx *out_ctx;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
struct xhci_command *command;
|
|
int max_packet_size;
|
|
int hw_max_packet_size;
|
|
int ret = 0;
|
|
|
|
out_ctx = xhci->devs[slot_id]->out_ctx;
|
|
ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
|
|
hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
|
|
max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
|
|
if (hw_max_packet_size != max_packet_size) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
|
|
"Max Packet Size for ep 0 changed.");
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
|
|
"Max packet size in usb_device = %d",
|
|
max_packet_size);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
|
|
"Max packet size in xHCI HW = %d",
|
|
hw_max_packet_size);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
|
|
"Issuing evaluate context command.");
|
|
|
|
/* Set up the input context flags for the command */
|
|
/* FIXME: This won't work if a non-default control endpoint
|
|
* changes max packet sizes.
|
|
*/
|
|
|
|
command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
|
|
if (!command)
|
|
return -ENOMEM;
|
|
|
|
command->in_ctx = xhci->devs[slot_id]->in_ctx;
|
|
ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
ret = -ENOMEM;
|
|
goto command_cleanup;
|
|
}
|
|
/* Set up the modified control endpoint 0 */
|
|
xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
|
|
xhci->devs[slot_id]->out_ctx, ep_index);
|
|
|
|
ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
|
|
ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
|
|
ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
|
|
|
|
ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
|
|
ctrl_ctx->drop_flags = 0;
|
|
|
|
xhci_dbg(xhci, "Slot %d input context\n", slot_id);
|
|
xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
|
|
xhci_dbg(xhci, "Slot %d output context\n", slot_id);
|
|
xhci_dbg_ctx(xhci, out_ctx, ep_index);
|
|
|
|
ret = xhci_configure_endpoint(xhci, urb->dev, command,
|
|
true, false);
|
|
|
|
/* Clean up the input context for later use by bandwidth
|
|
* functions.
|
|
*/
|
|
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
|
|
command_cleanup:
|
|
kfree(command->completion);
|
|
kfree(command);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* non-error returns are a promise to giveback() the urb later
|
|
* we drop ownership so next owner (or urb unlink) can get it
|
|
*/
|
|
int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
struct xhci_td *buffer;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
unsigned int slot_id, ep_index;
|
|
struct urb_priv *urb_priv;
|
|
int size, i;
|
|
|
|
if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
|
|
true, true, __func__) <= 0)
|
|
return -EINVAL;
|
|
|
|
slot_id = urb->dev->slot_id;
|
|
ep_index = xhci_get_endpoint_index(&urb->ep->desc);
|
|
|
|
if (!HCD_HW_ACCESSIBLE(hcd)) {
|
|
if (!in_interrupt())
|
|
xhci_dbg(xhci, "urb submitted during PCI suspend\n");
|
|
ret = -ESHUTDOWN;
|
|
goto exit;
|
|
}
|
|
|
|
if (usb_endpoint_xfer_isoc(&urb->ep->desc))
|
|
size = urb->number_of_packets;
|
|
else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
|
|
urb->transfer_buffer_length > 0 &&
|
|
urb->transfer_flags & URB_ZERO_PACKET &&
|
|
!(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
|
|
size = 2;
|
|
else
|
|
size = 1;
|
|
|
|
urb_priv = kzalloc(sizeof(struct urb_priv) +
|
|
size * sizeof(struct xhci_td *), mem_flags);
|
|
if (!urb_priv)
|
|
return -ENOMEM;
|
|
|
|
buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
|
|
if (!buffer) {
|
|
kfree(urb_priv);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < size; i++) {
|
|
urb_priv->td[i] = buffer;
|
|
buffer++;
|
|
}
|
|
|
|
urb_priv->length = size;
|
|
urb_priv->td_cnt = 0;
|
|
urb->hcpriv = urb_priv;
|
|
|
|
if (usb_endpoint_xfer_control(&urb->ep->desc)) {
|
|
/* Check to see if the max packet size for the default control
|
|
* endpoint changed during FS device enumeration
|
|
*/
|
|
if (urb->dev->speed == USB_SPEED_FULL) {
|
|
ret = xhci_check_maxpacket(xhci, slot_id,
|
|
ep_index, urb);
|
|
if (ret < 0) {
|
|
xhci_urb_free_priv(urb_priv);
|
|
urb->hcpriv = NULL;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* We have a spinlock and interrupts disabled, so we must pass
|
|
* atomic context to this function, which may allocate memory.
|
|
*/
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (xhci->xhc_state & XHCI_STATE_DYING)
|
|
goto dying;
|
|
ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
|
|
slot_id, ep_index);
|
|
if (ret)
|
|
goto free_priv;
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (xhci->xhc_state & XHCI_STATE_DYING)
|
|
goto dying;
|
|
if (xhci->devs[slot_id]->eps[ep_index].ep_state &
|
|
EP_GETTING_STREAMS) {
|
|
xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
|
|
"is transitioning to using streams.\n");
|
|
ret = -EINVAL;
|
|
} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
|
|
EP_GETTING_NO_STREAMS) {
|
|
xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
|
|
"is transitioning to "
|
|
"not having streams.\n");
|
|
ret = -EINVAL;
|
|
} else {
|
|
ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
|
|
slot_id, ep_index);
|
|
}
|
|
if (ret)
|
|
goto free_priv;
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (xhci->xhc_state & XHCI_STATE_DYING)
|
|
goto dying;
|
|
ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
|
|
slot_id, ep_index);
|
|
if (ret)
|
|
goto free_priv;
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
} else {
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (xhci->xhc_state & XHCI_STATE_DYING)
|
|
goto dying;
|
|
ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
|
|
slot_id, ep_index);
|
|
if (ret)
|
|
goto free_priv;
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
}
|
|
exit:
|
|
return ret;
|
|
dying:
|
|
xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
|
|
"non-responsive xHCI host.\n",
|
|
urb->ep->desc.bEndpointAddress, urb);
|
|
ret = -ESHUTDOWN;
|
|
free_priv:
|
|
xhci_urb_free_priv(urb_priv);
|
|
urb->hcpriv = NULL;
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove the URB's TD from the endpoint ring. This may cause the HC to stop
|
|
* USB transfers, potentially stopping in the middle of a TRB buffer. The HC
|
|
* should pick up where it left off in the TD, unless a Set Transfer Ring
|
|
* Dequeue Pointer is issued.
|
|
*
|
|
* The TRBs that make up the buffers for the canceled URB will be "removed" from
|
|
* the ring. Since the ring is a contiguous structure, they can't be physically
|
|
* removed. Instead, there are two options:
|
|
*
|
|
* 1) If the HC is in the middle of processing the URB to be canceled, we
|
|
* simply move the ring's dequeue pointer past those TRBs using the Set
|
|
* Transfer Ring Dequeue Pointer command. This will be the common case,
|
|
* when drivers timeout on the last submitted URB and attempt to cancel.
|
|
*
|
|
* 2) If the HC is in the middle of a different TD, we turn the TRBs into a
|
|
* series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
|
|
* HC will need to invalidate the any TRBs it has cached after the stop
|
|
* endpoint command, as noted in the xHCI 0.95 errata.
|
|
*
|
|
* 3) The TD may have completed by the time the Stop Endpoint Command
|
|
* completes, so software needs to handle that case too.
|
|
*
|
|
* This function should protect against the TD enqueueing code ringing the
|
|
* doorbell while this code is waiting for a Stop Endpoint command to complete.
|
|
* It also needs to account for multiple cancellations on happening at the same
|
|
* time for the same endpoint.
|
|
*
|
|
* Note that this function can be called in any context, or so says
|
|
* usb_hcd_unlink_urb()
|
|
*/
|
|
int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
|
|
{
|
|
unsigned long flags;
|
|
int ret, i;
|
|
u32 temp;
|
|
struct xhci_hcd *xhci;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_td *td;
|
|
unsigned int ep_index;
|
|
struct xhci_ring *ep_ring;
|
|
struct xhci_virt_ep *ep;
|
|
struct xhci_command *command;
|
|
|
|
xhci = hcd_to_xhci(hcd);
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
/* Make sure the URB hasn't completed or been unlinked already */
|
|
ret = usb_hcd_check_unlink_urb(hcd, urb, status);
|
|
if (ret || !urb->hcpriv)
|
|
goto done;
|
|
temp = readl(&xhci->op_regs->status);
|
|
if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"HW died, freeing TD.");
|
|
urb_priv = urb->hcpriv;
|
|
for (i = urb_priv->td_cnt;
|
|
i < urb_priv->length && xhci->devs[urb->dev->slot_id];
|
|
i++) {
|
|
td = urb_priv->td[i];
|
|
if (!list_empty(&td->td_list))
|
|
list_del_init(&td->td_list);
|
|
if (!list_empty(&td->cancelled_td_list))
|
|
list_del_init(&td->cancelled_td_list);
|
|
}
|
|
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
|
|
xhci_urb_free_priv(urb_priv);
|
|
return ret;
|
|
}
|
|
if ((xhci->xhc_state & XHCI_STATE_DYING) ||
|
|
(xhci->xhc_state & XHCI_STATE_HALTED)) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Ep 0x%x: URB %p to be canceled on "
|
|
"non-responsive xHCI host.",
|
|
urb->ep->desc.bEndpointAddress, urb);
|
|
/* Let the stop endpoint command watchdog timer (which set this
|
|
* state) finish cleaning up the endpoint TD lists. We must
|
|
* have caught it in the middle of dropping a lock and giving
|
|
* back an URB.
|
|
*/
|
|
goto done;
|
|
}
|
|
|
|
ep_index = xhci_get_endpoint_index(&urb->ep->desc);
|
|
ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
|
|
ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
|
|
if (!ep_ring) {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
urb_priv = urb->hcpriv;
|
|
i = urb_priv->td_cnt;
|
|
if (i < urb_priv->length)
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Cancel URB %p, dev %s, ep 0x%x, "
|
|
"starting at offset 0x%llx",
|
|
urb, urb->dev->devpath,
|
|
urb->ep->desc.bEndpointAddress,
|
|
(unsigned long long) xhci_trb_virt_to_dma(
|
|
urb_priv->td[i]->start_seg,
|
|
urb_priv->td[i]->first_trb));
|
|
|
|
for (; i < urb_priv->length; i++) {
|
|
td = urb_priv->td[i];
|
|
list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
|
|
}
|
|
|
|
/* Queue a stop endpoint command, but only if this is
|
|
* the first cancellation to be handled.
|
|
*/
|
|
if (!(ep->ep_state & EP_HALT_PENDING)) {
|
|
command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
|
|
if (!command) {
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
ep->ep_state |= EP_HALT_PENDING;
|
|
ep->stop_cmds_pending++;
|
|
ep->stop_cmd_timer.expires = jiffies +
|
|
XHCI_STOP_EP_CMD_TIMEOUT * HZ;
|
|
add_timer(&ep->stop_cmd_timer);
|
|
xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
|
|
ep_index, 0);
|
|
xhci_ring_cmd_db(xhci);
|
|
}
|
|
done:
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/* Drop an endpoint from a new bandwidth configuration for this device.
|
|
* Only one call to this function is allowed per endpoint before
|
|
* check_bandwidth() or reset_bandwidth() must be called.
|
|
* A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
|
|
* add the endpoint to the schedule with possibly new parameters denoted by a
|
|
* different endpoint descriptor in usb_host_endpoint.
|
|
* A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
|
|
* not allowed.
|
|
*
|
|
* The USB core will not allow URBs to be queued to an endpoint that is being
|
|
* disabled, so there's no need for mutual exclusion to protect
|
|
* the xhci->devs[slot_id] structure.
|
|
*/
|
|
int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_container_ctx *in_ctx, *out_ctx;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
unsigned int ep_index;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
u32 drop_flag;
|
|
u32 new_add_flags, new_drop_flags;
|
|
int ret;
|
|
|
|
ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
|
|
if (ret <= 0)
|
|
return ret;
|
|
xhci = hcd_to_xhci(hcd);
|
|
if (xhci->xhc_state & XHCI_STATE_DYING)
|
|
return -ENODEV;
|
|
|
|
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
|
|
drop_flag = xhci_get_endpoint_flag(&ep->desc);
|
|
if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
|
|
xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
|
|
__func__, drop_flag);
|
|
return 0;
|
|
}
|
|
|
|
in_ctx = xhci->devs[udev->slot_id]->in_ctx;
|
|
out_ctx = xhci->devs[udev->slot_id]->out_ctx;
|
|
ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
return 0;
|
|
}
|
|
|
|
ep_index = xhci_get_endpoint_index(&ep->desc);
|
|
ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
|
|
/* If the HC already knows the endpoint is disabled,
|
|
* or the HCD has noted it is disabled, ignore this request
|
|
*/
|
|
if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
|
|
cpu_to_le32(EP_STATE_DISABLED)) ||
|
|
le32_to_cpu(ctrl_ctx->drop_flags) &
|
|
xhci_get_endpoint_flag(&ep->desc)) {
|
|
/* Do not warn when called after a usb_device_reset */
|
|
if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
|
|
xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
|
|
__func__, ep);
|
|
return 0;
|
|
}
|
|
|
|
ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
|
|
new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
|
|
|
|
ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
|
|
new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
|
|
|
|
xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
|
|
|
|
if (xhci->quirks & XHCI_MTK_HOST)
|
|
xhci_mtk_drop_ep_quirk(hcd, udev, ep);
|
|
|
|
xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
|
|
(unsigned int) ep->desc.bEndpointAddress,
|
|
udev->slot_id,
|
|
(unsigned int) new_drop_flags,
|
|
(unsigned int) new_add_flags);
|
|
return 0;
|
|
}
|
|
|
|
/* Add an endpoint to a new possible bandwidth configuration for this device.
|
|
* Only one call to this function is allowed per endpoint before
|
|
* check_bandwidth() or reset_bandwidth() must be called.
|
|
* A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
|
|
* add the endpoint to the schedule with possibly new parameters denoted by a
|
|
* different endpoint descriptor in usb_host_endpoint.
|
|
* A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
|
|
* not allowed.
|
|
*
|
|
* The USB core will not allow URBs to be queued to an endpoint until the
|
|
* configuration or alt setting is installed in the device, so there's no need
|
|
* for mutual exclusion to protect the xhci->devs[slot_id] structure.
|
|
*/
|
|
int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_container_ctx *in_ctx;
|
|
unsigned int ep_index;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
u32 added_ctxs;
|
|
u32 new_add_flags, new_drop_flags;
|
|
struct xhci_virt_device *virt_dev;
|
|
int ret = 0;
|
|
|
|
ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
|
|
if (ret <= 0) {
|
|
/* So we won't queue a reset ep command for a root hub */
|
|
ep->hcpriv = NULL;
|
|
return ret;
|
|
}
|
|
xhci = hcd_to_xhci(hcd);
|
|
if (xhci->xhc_state & XHCI_STATE_DYING)
|
|
return -ENODEV;
|
|
|
|
added_ctxs = xhci_get_endpoint_flag(&ep->desc);
|
|
if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
|
|
/* FIXME when we have to issue an evaluate endpoint command to
|
|
* deal with ep0 max packet size changing once we get the
|
|
* descriptors
|
|
*/
|
|
xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
|
|
__func__, added_ctxs);
|
|
return 0;
|
|
}
|
|
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
in_ctx = virt_dev->in_ctx;
|
|
ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
return 0;
|
|
}
|
|
|
|
ep_index = xhci_get_endpoint_index(&ep->desc);
|
|
/* If this endpoint is already in use, and the upper layers are trying
|
|
* to add it again without dropping it, reject the addition.
|
|
*/
|
|
if (virt_dev->eps[ep_index].ring &&
|
|
!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
|
|
xhci_warn(xhci, "Trying to add endpoint 0x%x "
|
|
"without dropping it.\n",
|
|
(unsigned int) ep->desc.bEndpointAddress);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If the HCD has already noted the endpoint is enabled,
|
|
* ignore this request.
|
|
*/
|
|
if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
|
|
xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
|
|
__func__, ep);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Configuration and alternate setting changes must be done in
|
|
* process context, not interrupt context (or so documenation
|
|
* for usb_set_interface() and usb_set_configuration() claim).
|
|
*/
|
|
if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
|
|
dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
|
|
__func__, ep->desc.bEndpointAddress);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (xhci->quirks & XHCI_MTK_HOST) {
|
|
ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
|
|
if (ret < 0) {
|
|
xhci_free_or_cache_endpoint_ring(xhci,
|
|
virt_dev, ep_index);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
|
|
new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
|
|
|
|
/* If xhci_endpoint_disable() was called for this endpoint, but the
|
|
* xHC hasn't been notified yet through the check_bandwidth() call,
|
|
* this re-adds a new state for the endpoint from the new endpoint
|
|
* descriptors. We must drop and re-add this endpoint, so we leave the
|
|
* drop flags alone.
|
|
*/
|
|
new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
|
|
|
|
/* Store the usb_device pointer for later use */
|
|
ep->hcpriv = udev;
|
|
|
|
xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
|
|
(unsigned int) ep->desc.bEndpointAddress,
|
|
udev->slot_id,
|
|
(unsigned int) new_drop_flags,
|
|
(unsigned int) new_add_flags);
|
|
return 0;
|
|
}
|
|
|
|
static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
|
|
{
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
int i;
|
|
|
|
ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
/* When a device's add flag and drop flag are zero, any subsequent
|
|
* configure endpoint command will leave that endpoint's state
|
|
* untouched. Make sure we don't leave any old state in the input
|
|
* endpoint contexts.
|
|
*/
|
|
ctrl_ctx->drop_flags = 0;
|
|
ctrl_ctx->add_flags = 0;
|
|
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
|
|
slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
|
|
/* Endpoint 0 is always valid */
|
|
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
|
|
for (i = 1; i < 31; ++i) {
|
|
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
|
|
ep_ctx->ep_info = 0;
|
|
ep_ctx->ep_info2 = 0;
|
|
ep_ctx->deq = 0;
|
|
ep_ctx->tx_info = 0;
|
|
}
|
|
}
|
|
|
|
static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
|
|
struct usb_device *udev, u32 *cmd_status)
|
|
{
|
|
int ret;
|
|
|
|
switch (*cmd_status) {
|
|
case COMP_CMD_ABORT:
|
|
case COMP_CMD_STOP:
|
|
xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
|
|
ret = -ETIME;
|
|
break;
|
|
case COMP_ENOMEM:
|
|
dev_warn(&udev->dev,
|
|
"Not enough host controller resources for new device state.\n");
|
|
ret = -ENOMEM;
|
|
/* FIXME: can we allocate more resources for the HC? */
|
|
break;
|
|
case COMP_BW_ERR:
|
|
case COMP_2ND_BW_ERR:
|
|
dev_warn(&udev->dev,
|
|
"Not enough bandwidth for new device state.\n");
|
|
ret = -ENOSPC;
|
|
/* FIXME: can we go back to the old state? */
|
|
break;
|
|
case COMP_TRB_ERR:
|
|
/* the HCD set up something wrong */
|
|
dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
|
|
"add flag = 1, "
|
|
"and endpoint is not disabled.\n");
|
|
ret = -EINVAL;
|
|
break;
|
|
case COMP_DEV_ERR:
|
|
dev_warn(&udev->dev,
|
|
"ERROR: Incompatible device for endpoint configure command.\n");
|
|
ret = -ENODEV;
|
|
break;
|
|
case COMP_SUCCESS:
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
|
|
"Successful Endpoint Configure command");
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
|
|
*cmd_status);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
|
|
struct usb_device *udev, u32 *cmd_status)
|
|
{
|
|
int ret;
|
|
struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
|
|
|
|
switch (*cmd_status) {
|
|
case COMP_CMD_ABORT:
|
|
case COMP_CMD_STOP:
|
|
xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
|
|
ret = -ETIME;
|
|
break;
|
|
case COMP_EINVAL:
|
|
dev_warn(&udev->dev,
|
|
"WARN: xHCI driver setup invalid evaluate context command.\n");
|
|
ret = -EINVAL;
|
|
break;
|
|
case COMP_EBADSLT:
|
|
dev_warn(&udev->dev,
|
|
"WARN: slot not enabled for evaluate context command.\n");
|
|
ret = -EINVAL;
|
|
break;
|
|
case COMP_CTX_STATE:
|
|
dev_warn(&udev->dev,
|
|
"WARN: invalid context state for evaluate context command.\n");
|
|
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
|
|
ret = -EINVAL;
|
|
break;
|
|
case COMP_DEV_ERR:
|
|
dev_warn(&udev->dev,
|
|
"ERROR: Incompatible device for evaluate context command.\n");
|
|
ret = -ENODEV;
|
|
break;
|
|
case COMP_MEL_ERR:
|
|
/* Max Exit Latency too large error */
|
|
dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
|
|
ret = -EINVAL;
|
|
break;
|
|
case COMP_SUCCESS:
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
|
|
"Successful evaluate context command");
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
|
|
*cmd_status);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
|
|
struct xhci_input_control_ctx *ctrl_ctx)
|
|
{
|
|
u32 valid_add_flags;
|
|
u32 valid_drop_flags;
|
|
|
|
/* Ignore the slot flag (bit 0), and the default control endpoint flag
|
|
* (bit 1). The default control endpoint is added during the Address
|
|
* Device command and is never removed until the slot is disabled.
|
|
*/
|
|
valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
|
|
valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
|
|
|
|
/* Use hweight32 to count the number of ones in the add flags, or
|
|
* number of endpoints added. Don't count endpoints that are changed
|
|
* (both added and dropped).
|
|
*/
|
|
return hweight32(valid_add_flags) -
|
|
hweight32(valid_add_flags & valid_drop_flags);
|
|
}
|
|
|
|
static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
|
|
struct xhci_input_control_ctx *ctrl_ctx)
|
|
{
|
|
u32 valid_add_flags;
|
|
u32 valid_drop_flags;
|
|
|
|
valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
|
|
valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
|
|
|
|
return hweight32(valid_drop_flags) -
|
|
hweight32(valid_add_flags & valid_drop_flags);
|
|
}
|
|
|
|
/*
|
|
* We need to reserve the new number of endpoints before the configure endpoint
|
|
* command completes. We can't subtract the dropped endpoints from the number
|
|
* of active endpoints until the command completes because we can oversubscribe
|
|
* the host in this case:
|
|
*
|
|
* - the first configure endpoint command drops more endpoints than it adds
|
|
* - a second configure endpoint command that adds more endpoints is queued
|
|
* - the first configure endpoint command fails, so the config is unchanged
|
|
* - the second command may succeed, even though there isn't enough resources
|
|
*
|
|
* Must be called with xhci->lock held.
|
|
*/
|
|
static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
|
|
struct xhci_input_control_ctx *ctrl_ctx)
|
|
{
|
|
u32 added_eps;
|
|
|
|
added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
|
|
if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Not enough ep ctxs: "
|
|
"%u active, need to add %u, limit is %u.",
|
|
xhci->num_active_eps, added_eps,
|
|
xhci->limit_active_eps);
|
|
return -ENOMEM;
|
|
}
|
|
xhci->num_active_eps += added_eps;
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Adding %u ep ctxs, %u now active.", added_eps,
|
|
xhci->num_active_eps);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The configure endpoint was failed by the xHC for some other reason, so we
|
|
* need to revert the resources that failed configuration would have used.
|
|
*
|
|
* Must be called with xhci->lock held.
|
|
*/
|
|
static void xhci_free_host_resources(struct xhci_hcd *xhci,
|
|
struct xhci_input_control_ctx *ctrl_ctx)
|
|
{
|
|
u32 num_failed_eps;
|
|
|
|
num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
|
|
xhci->num_active_eps -= num_failed_eps;
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Removing %u failed ep ctxs, %u now active.",
|
|
num_failed_eps,
|
|
xhci->num_active_eps);
|
|
}
|
|
|
|
/*
|
|
* Now that the command has completed, clean up the active endpoint count by
|
|
* subtracting out the endpoints that were dropped (but not changed).
|
|
*
|
|
* Must be called with xhci->lock held.
|
|
*/
|
|
static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
|
|
struct xhci_input_control_ctx *ctrl_ctx)
|
|
{
|
|
u32 num_dropped_eps;
|
|
|
|
num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
|
|
xhci->num_active_eps -= num_dropped_eps;
|
|
if (num_dropped_eps)
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Removing %u dropped ep ctxs, %u now active.",
|
|
num_dropped_eps,
|
|
xhci->num_active_eps);
|
|
}
|
|
|
|
static unsigned int xhci_get_block_size(struct usb_device *udev)
|
|
{
|
|
switch (udev->speed) {
|
|
case USB_SPEED_LOW:
|
|
case USB_SPEED_FULL:
|
|
return FS_BLOCK;
|
|
case USB_SPEED_HIGH:
|
|
return HS_BLOCK;
|
|
case USB_SPEED_SUPER:
|
|
case USB_SPEED_SUPER_PLUS:
|
|
return SS_BLOCK;
|
|
case USB_SPEED_UNKNOWN:
|
|
case USB_SPEED_WIRELESS:
|
|
default:
|
|
/* Should never happen */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static unsigned int
|
|
xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
|
|
{
|
|
if (interval_bw->overhead[LS_OVERHEAD_TYPE])
|
|
return LS_OVERHEAD;
|
|
if (interval_bw->overhead[FS_OVERHEAD_TYPE])
|
|
return FS_OVERHEAD;
|
|
return HS_OVERHEAD;
|
|
}
|
|
|
|
/* If we are changing a LS/FS device under a HS hub,
|
|
* make sure (if we are activating a new TT) that the HS bus has enough
|
|
* bandwidth for this new TT.
|
|
*/
|
|
static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *virt_dev,
|
|
int old_active_eps)
|
|
{
|
|
struct xhci_interval_bw_table *bw_table;
|
|
struct xhci_tt_bw_info *tt_info;
|
|
|
|
/* Find the bandwidth table for the root port this TT is attached to. */
|
|
bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
|
|
tt_info = virt_dev->tt_info;
|
|
/* If this TT already had active endpoints, the bandwidth for this TT
|
|
* has already been added. Removing all periodic endpoints (and thus
|
|
* making the TT enactive) will only decrease the bandwidth used.
|
|
*/
|
|
if (old_active_eps)
|
|
return 0;
|
|
if (old_active_eps == 0 && tt_info->active_eps != 0) {
|
|
if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
/* Not sure why we would have no new active endpoints...
|
|
*
|
|
* Maybe because of an Evaluate Context change for a hub update or a
|
|
* control endpoint 0 max packet size change?
|
|
* FIXME: skip the bandwidth calculation in that case.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int xhci_check_ss_bw(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *virt_dev)
|
|
{
|
|
unsigned int bw_reserved;
|
|
|
|
bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
|
|
if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
|
|
return -ENOMEM;
|
|
|
|
bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
|
|
if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This algorithm is a very conservative estimate of the worst-case scheduling
|
|
* scenario for any one interval. The hardware dynamically schedules the
|
|
* packets, so we can't tell which microframe could be the limiting factor in
|
|
* the bandwidth scheduling. This only takes into account periodic endpoints.
|
|
*
|
|
* Obviously, we can't solve an NP complete problem to find the minimum worst
|
|
* case scenario. Instead, we come up with an estimate that is no less than
|
|
* the worst case bandwidth used for any one microframe, but may be an
|
|
* over-estimate.
|
|
*
|
|
* We walk the requirements for each endpoint by interval, starting with the
|
|
* smallest interval, and place packets in the schedule where there is only one
|
|
* possible way to schedule packets for that interval. In order to simplify
|
|
* this algorithm, we record the largest max packet size for each interval, and
|
|
* assume all packets will be that size.
|
|
*
|
|
* For interval 0, we obviously must schedule all packets for each interval.
|
|
* The bandwidth for interval 0 is just the amount of data to be transmitted
|
|
* (the sum of all max ESIT payload sizes, plus any overhead per packet times
|
|
* the number of packets).
|
|
*
|
|
* For interval 1, we have two possible microframes to schedule those packets
|
|
* in. For this algorithm, if we can schedule the same number of packets for
|
|
* each possible scheduling opportunity (each microframe), we will do so. The
|
|
* remaining number of packets will be saved to be transmitted in the gaps in
|
|
* the next interval's scheduling sequence.
|
|
*
|
|
* As we move those remaining packets to be scheduled with interval 2 packets,
|
|
* we have to double the number of remaining packets to transmit. This is
|
|
* because the intervals are actually powers of 2, and we would be transmitting
|
|
* the previous interval's packets twice in this interval. We also have to be
|
|
* sure that when we look at the largest max packet size for this interval, we
|
|
* also look at the largest max packet size for the remaining packets and take
|
|
* the greater of the two.
|
|
*
|
|
* The algorithm continues to evenly distribute packets in each scheduling
|
|
* opportunity, and push the remaining packets out, until we get to the last
|
|
* interval. Then those packets and their associated overhead are just added
|
|
* to the bandwidth used.
|
|
*/
|
|
static int xhci_check_bw_table(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *virt_dev,
|
|
int old_active_eps)
|
|
{
|
|
unsigned int bw_reserved;
|
|
unsigned int max_bandwidth;
|
|
unsigned int bw_used;
|
|
unsigned int block_size;
|
|
struct xhci_interval_bw_table *bw_table;
|
|
unsigned int packet_size = 0;
|
|
unsigned int overhead = 0;
|
|
unsigned int packets_transmitted = 0;
|
|
unsigned int packets_remaining = 0;
|
|
unsigned int i;
|
|
|
|
if (virt_dev->udev->speed >= USB_SPEED_SUPER)
|
|
return xhci_check_ss_bw(xhci, virt_dev);
|
|
|
|
if (virt_dev->udev->speed == USB_SPEED_HIGH) {
|
|
max_bandwidth = HS_BW_LIMIT;
|
|
/* Convert percent of bus BW reserved to blocks reserved */
|
|
bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
|
|
} else {
|
|
max_bandwidth = FS_BW_LIMIT;
|
|
bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
|
|
}
|
|
|
|
bw_table = virt_dev->bw_table;
|
|
/* We need to translate the max packet size and max ESIT payloads into
|
|
* the units the hardware uses.
|
|
*/
|
|
block_size = xhci_get_block_size(virt_dev->udev);
|
|
|
|
/* If we are manipulating a LS/FS device under a HS hub, double check
|
|
* that the HS bus has enough bandwidth if we are activing a new TT.
|
|
*/
|
|
if (virt_dev->tt_info) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Recalculating BW for rootport %u",
|
|
virt_dev->real_port);
|
|
if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
|
|
xhci_warn(xhci, "Not enough bandwidth on HS bus for "
|
|
"newly activated TT.\n");
|
|
return -ENOMEM;
|
|
}
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Recalculating BW for TT slot %u port %u",
|
|
virt_dev->tt_info->slot_id,
|
|
virt_dev->tt_info->ttport);
|
|
} else {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Recalculating BW for rootport %u",
|
|
virt_dev->real_port);
|
|
}
|
|
|
|
/* Add in how much bandwidth will be used for interval zero, or the
|
|
* rounded max ESIT payload + number of packets * largest overhead.
|
|
*/
|
|
bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
|
|
bw_table->interval_bw[0].num_packets *
|
|
xhci_get_largest_overhead(&bw_table->interval_bw[0]);
|
|
|
|
for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
|
|
unsigned int bw_added;
|
|
unsigned int largest_mps;
|
|
unsigned int interval_overhead;
|
|
|
|
/*
|
|
* How many packets could we transmit in this interval?
|
|
* If packets didn't fit in the previous interval, we will need
|
|
* to transmit that many packets twice within this interval.
|
|
*/
|
|
packets_remaining = 2 * packets_remaining +
|
|
bw_table->interval_bw[i].num_packets;
|
|
|
|
/* Find the largest max packet size of this or the previous
|
|
* interval.
|
|
*/
|
|
if (list_empty(&bw_table->interval_bw[i].endpoints))
|
|
largest_mps = 0;
|
|
else {
|
|
struct xhci_virt_ep *virt_ep;
|
|
struct list_head *ep_entry;
|
|
|
|
ep_entry = bw_table->interval_bw[i].endpoints.next;
|
|
virt_ep = list_entry(ep_entry,
|
|
struct xhci_virt_ep, bw_endpoint_list);
|
|
/* Convert to blocks, rounding up */
|
|
largest_mps = DIV_ROUND_UP(
|
|
virt_ep->bw_info.max_packet_size,
|
|
block_size);
|
|
}
|
|
if (largest_mps > packet_size)
|
|
packet_size = largest_mps;
|
|
|
|
/* Use the larger overhead of this or the previous interval. */
|
|
interval_overhead = xhci_get_largest_overhead(
|
|
&bw_table->interval_bw[i]);
|
|
if (interval_overhead > overhead)
|
|
overhead = interval_overhead;
|
|
|
|
/* How many packets can we evenly distribute across
|
|
* (1 << (i + 1)) possible scheduling opportunities?
|
|
*/
|
|
packets_transmitted = packets_remaining >> (i + 1);
|
|
|
|
/* Add in the bandwidth used for those scheduled packets */
|
|
bw_added = packets_transmitted * (overhead + packet_size);
|
|
|
|
/* How many packets do we have remaining to transmit? */
|
|
packets_remaining = packets_remaining % (1 << (i + 1));
|
|
|
|
/* What largest max packet size should those packets have? */
|
|
/* If we've transmitted all packets, don't carry over the
|
|
* largest packet size.
|
|
*/
|
|
if (packets_remaining == 0) {
|
|
packet_size = 0;
|
|
overhead = 0;
|
|
} else if (packets_transmitted > 0) {
|
|
/* Otherwise if we do have remaining packets, and we've
|
|
* scheduled some packets in this interval, take the
|
|
* largest max packet size from endpoints with this
|
|
* interval.
|
|
*/
|
|
packet_size = largest_mps;
|
|
overhead = interval_overhead;
|
|
}
|
|
/* Otherwise carry over packet_size and overhead from the last
|
|
* time we had a remainder.
|
|
*/
|
|
bw_used += bw_added;
|
|
if (bw_used > max_bandwidth) {
|
|
xhci_warn(xhci, "Not enough bandwidth. "
|
|
"Proposed: %u, Max: %u\n",
|
|
bw_used, max_bandwidth);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
/*
|
|
* Ok, we know we have some packets left over after even-handedly
|
|
* scheduling interval 15. We don't know which microframes they will
|
|
* fit into, so we over-schedule and say they will be scheduled every
|
|
* microframe.
|
|
*/
|
|
if (packets_remaining > 0)
|
|
bw_used += overhead + packet_size;
|
|
|
|
if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
|
|
unsigned int port_index = virt_dev->real_port - 1;
|
|
|
|
/* OK, we're manipulating a HS device attached to a
|
|
* root port bandwidth domain. Include the number of active TTs
|
|
* in the bandwidth used.
|
|
*/
|
|
bw_used += TT_HS_OVERHEAD *
|
|
xhci->rh_bw[port_index].num_active_tts;
|
|
}
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Final bandwidth: %u, Limit: %u, Reserved: %u, "
|
|
"Available: %u " "percent",
|
|
bw_used, max_bandwidth, bw_reserved,
|
|
(max_bandwidth - bw_used - bw_reserved) * 100 /
|
|
max_bandwidth);
|
|
|
|
bw_used += bw_reserved;
|
|
if (bw_used > max_bandwidth) {
|
|
xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
|
|
bw_used, max_bandwidth);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bw_table->bw_used = bw_used;
|
|
return 0;
|
|
}
|
|
|
|
static bool xhci_is_async_ep(unsigned int ep_type)
|
|
{
|
|
return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
|
|
ep_type != ISOC_IN_EP &&
|
|
ep_type != INT_IN_EP);
|
|
}
|
|
|
|
static bool xhci_is_sync_in_ep(unsigned int ep_type)
|
|
{
|
|
return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
|
|
}
|
|
|
|
static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
|
|
{
|
|
unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
|
|
|
|
if (ep_bw->ep_interval == 0)
|
|
return SS_OVERHEAD_BURST +
|
|
(ep_bw->mult * ep_bw->num_packets *
|
|
(SS_OVERHEAD + mps));
|
|
return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
|
|
(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
|
|
1 << ep_bw->ep_interval);
|
|
|
|
}
|
|
|
|
void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
|
|
struct xhci_bw_info *ep_bw,
|
|
struct xhci_interval_bw_table *bw_table,
|
|
struct usb_device *udev,
|
|
struct xhci_virt_ep *virt_ep,
|
|
struct xhci_tt_bw_info *tt_info)
|
|
{
|
|
struct xhci_interval_bw *interval_bw;
|
|
int normalized_interval;
|
|
|
|
if (xhci_is_async_ep(ep_bw->type))
|
|
return;
|
|
|
|
if (udev->speed >= USB_SPEED_SUPER) {
|
|
if (xhci_is_sync_in_ep(ep_bw->type))
|
|
xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
|
|
xhci_get_ss_bw_consumed(ep_bw);
|
|
else
|
|
xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
|
|
xhci_get_ss_bw_consumed(ep_bw);
|
|
return;
|
|
}
|
|
|
|
/* SuperSpeed endpoints never get added to intervals in the table, so
|
|
* this check is only valid for HS/FS/LS devices.
|
|
*/
|
|
if (list_empty(&virt_ep->bw_endpoint_list))
|
|
return;
|
|
/* For LS/FS devices, we need to translate the interval expressed in
|
|
* microframes to frames.
|
|
*/
|
|
if (udev->speed == USB_SPEED_HIGH)
|
|
normalized_interval = ep_bw->ep_interval;
|
|
else
|
|
normalized_interval = ep_bw->ep_interval - 3;
|
|
|
|
if (normalized_interval == 0)
|
|
bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
|
|
interval_bw = &bw_table->interval_bw[normalized_interval];
|
|
interval_bw->num_packets -= ep_bw->num_packets;
|
|
switch (udev->speed) {
|
|
case USB_SPEED_LOW:
|
|
interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
|
|
break;
|
|
case USB_SPEED_FULL:
|
|
interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
|
|
break;
|
|
case USB_SPEED_HIGH:
|
|
interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
|
|
break;
|
|
case USB_SPEED_SUPER:
|
|
case USB_SPEED_SUPER_PLUS:
|
|
case USB_SPEED_UNKNOWN:
|
|
case USB_SPEED_WIRELESS:
|
|
/* Should never happen because only LS/FS/HS endpoints will get
|
|
* added to the endpoint list.
|
|
*/
|
|
return;
|
|
}
|
|
if (tt_info)
|
|
tt_info->active_eps -= 1;
|
|
list_del_init(&virt_ep->bw_endpoint_list);
|
|
}
|
|
|
|
static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
|
|
struct xhci_bw_info *ep_bw,
|
|
struct xhci_interval_bw_table *bw_table,
|
|
struct usb_device *udev,
|
|
struct xhci_virt_ep *virt_ep,
|
|
struct xhci_tt_bw_info *tt_info)
|
|
{
|
|
struct xhci_interval_bw *interval_bw;
|
|
struct xhci_virt_ep *smaller_ep;
|
|
int normalized_interval;
|
|
|
|
if (xhci_is_async_ep(ep_bw->type))
|
|
return;
|
|
|
|
if (udev->speed == USB_SPEED_SUPER) {
|
|
if (xhci_is_sync_in_ep(ep_bw->type))
|
|
xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
|
|
xhci_get_ss_bw_consumed(ep_bw);
|
|
else
|
|
xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
|
|
xhci_get_ss_bw_consumed(ep_bw);
|
|
return;
|
|
}
|
|
|
|
/* For LS/FS devices, we need to translate the interval expressed in
|
|
* microframes to frames.
|
|
*/
|
|
if (udev->speed == USB_SPEED_HIGH)
|
|
normalized_interval = ep_bw->ep_interval;
|
|
else
|
|
normalized_interval = ep_bw->ep_interval - 3;
|
|
|
|
if (normalized_interval == 0)
|
|
bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
|
|
interval_bw = &bw_table->interval_bw[normalized_interval];
|
|
interval_bw->num_packets += ep_bw->num_packets;
|
|
switch (udev->speed) {
|
|
case USB_SPEED_LOW:
|
|
interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
|
|
break;
|
|
case USB_SPEED_FULL:
|
|
interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
|
|
break;
|
|
case USB_SPEED_HIGH:
|
|
interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
|
|
break;
|
|
case USB_SPEED_SUPER:
|
|
case USB_SPEED_SUPER_PLUS:
|
|
case USB_SPEED_UNKNOWN:
|
|
case USB_SPEED_WIRELESS:
|
|
/* Should never happen because only LS/FS/HS endpoints will get
|
|
* added to the endpoint list.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (tt_info)
|
|
tt_info->active_eps += 1;
|
|
/* Insert the endpoint into the list, largest max packet size first. */
|
|
list_for_each_entry(smaller_ep, &interval_bw->endpoints,
|
|
bw_endpoint_list) {
|
|
if (ep_bw->max_packet_size >=
|
|
smaller_ep->bw_info.max_packet_size) {
|
|
/* Add the new ep before the smaller endpoint */
|
|
list_add_tail(&virt_ep->bw_endpoint_list,
|
|
&smaller_ep->bw_endpoint_list);
|
|
return;
|
|
}
|
|
}
|
|
/* Add the new endpoint at the end of the list. */
|
|
list_add_tail(&virt_ep->bw_endpoint_list,
|
|
&interval_bw->endpoints);
|
|
}
|
|
|
|
void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *virt_dev,
|
|
int old_active_eps)
|
|
{
|
|
struct xhci_root_port_bw_info *rh_bw_info;
|
|
if (!virt_dev->tt_info)
|
|
return;
|
|
|
|
rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
|
|
if (old_active_eps == 0 &&
|
|
virt_dev->tt_info->active_eps != 0) {
|
|
rh_bw_info->num_active_tts += 1;
|
|
rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
|
|
} else if (old_active_eps != 0 &&
|
|
virt_dev->tt_info->active_eps == 0) {
|
|
rh_bw_info->num_active_tts -= 1;
|
|
rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
|
|
}
|
|
}
|
|
|
|
static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *virt_dev,
|
|
struct xhci_container_ctx *in_ctx)
|
|
{
|
|
struct xhci_bw_info ep_bw_info[31];
|
|
int i;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
int old_active_eps = 0;
|
|
|
|
if (virt_dev->tt_info)
|
|
old_active_eps = virt_dev->tt_info->active_eps;
|
|
|
|
ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < 31; i++) {
|
|
if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
|
|
continue;
|
|
|
|
/* Make a copy of the BW info in case we need to revert this */
|
|
memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
|
|
sizeof(ep_bw_info[i]));
|
|
/* Drop the endpoint from the interval table if the endpoint is
|
|
* being dropped or changed.
|
|
*/
|
|
if (EP_IS_DROPPED(ctrl_ctx, i))
|
|
xhci_drop_ep_from_interval_table(xhci,
|
|
&virt_dev->eps[i].bw_info,
|
|
virt_dev->bw_table,
|
|
virt_dev->udev,
|
|
&virt_dev->eps[i],
|
|
virt_dev->tt_info);
|
|
}
|
|
/* Overwrite the information stored in the endpoints' bw_info */
|
|
xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
|
|
for (i = 0; i < 31; i++) {
|
|
/* Add any changed or added endpoints to the interval table */
|
|
if (EP_IS_ADDED(ctrl_ctx, i))
|
|
xhci_add_ep_to_interval_table(xhci,
|
|
&virt_dev->eps[i].bw_info,
|
|
virt_dev->bw_table,
|
|
virt_dev->udev,
|
|
&virt_dev->eps[i],
|
|
virt_dev->tt_info);
|
|
}
|
|
|
|
if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
|
|
/* Ok, this fits in the bandwidth we have.
|
|
* Update the number of active TTs.
|
|
*/
|
|
xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
|
|
return 0;
|
|
}
|
|
|
|
/* We don't have enough bandwidth for this, revert the stored info. */
|
|
for (i = 0; i < 31; i++) {
|
|
if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
|
|
continue;
|
|
|
|
/* Drop the new copies of any added or changed endpoints from
|
|
* the interval table.
|
|
*/
|
|
if (EP_IS_ADDED(ctrl_ctx, i)) {
|
|
xhci_drop_ep_from_interval_table(xhci,
|
|
&virt_dev->eps[i].bw_info,
|
|
virt_dev->bw_table,
|
|
virt_dev->udev,
|
|
&virt_dev->eps[i],
|
|
virt_dev->tt_info);
|
|
}
|
|
/* Revert the endpoint back to its old information */
|
|
memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
|
|
sizeof(ep_bw_info[i]));
|
|
/* Add any changed or dropped endpoints back into the table */
|
|
if (EP_IS_DROPPED(ctrl_ctx, i))
|
|
xhci_add_ep_to_interval_table(xhci,
|
|
&virt_dev->eps[i].bw_info,
|
|
virt_dev->bw_table,
|
|
virt_dev->udev,
|
|
&virt_dev->eps[i],
|
|
virt_dev->tt_info);
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
|
|
/* Issue a configure endpoint command or evaluate context command
|
|
* and wait for it to finish.
|
|
*/
|
|
static int xhci_configure_endpoint(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct xhci_command *command,
|
|
bool ctx_change, bool must_succeed)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_virt_device *virt_dev;
|
|
|
|
if (!command)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
|
|
ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
|
|
xhci_reserve_host_resources(xhci, ctrl_ctx)) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_warn(xhci, "Not enough host resources, "
|
|
"active endpoint contexts = %u\n",
|
|
xhci->num_active_eps);
|
|
return -ENOMEM;
|
|
}
|
|
if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
|
|
xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
|
|
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
|
|
xhci_free_host_resources(xhci, ctrl_ctx);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_warn(xhci, "Not enough bandwidth\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!ctx_change)
|
|
ret = xhci_queue_configure_endpoint(xhci, command,
|
|
command->in_ctx->dma,
|
|
udev->slot_id, must_succeed);
|
|
else
|
|
ret = xhci_queue_evaluate_context(xhci, command,
|
|
command->in_ctx->dma,
|
|
udev->slot_id, must_succeed);
|
|
if (ret < 0) {
|
|
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
|
|
xhci_free_host_resources(xhci, ctrl_ctx);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
|
|
"FIXME allocate a new ring segment");
|
|
return -ENOMEM;
|
|
}
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/* Wait for the configure endpoint command to complete */
|
|
wait_for_completion(command->completion);
|
|
|
|
if (!ctx_change)
|
|
ret = xhci_configure_endpoint_result(xhci, udev,
|
|
&command->status);
|
|
else
|
|
ret = xhci_evaluate_context_result(xhci, udev,
|
|
&command->status);
|
|
|
|
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
/* If the command failed, remove the reserved resources.
|
|
* Otherwise, clean up the estimate to include dropped eps.
|
|
*/
|
|
if (ret)
|
|
xhci_free_host_resources(xhci, ctrl_ctx);
|
|
else
|
|
xhci_finish_resource_reservation(xhci, ctrl_ctx);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *vdev, int i)
|
|
{
|
|
struct xhci_virt_ep *ep = &vdev->eps[i];
|
|
|
|
if (ep->ep_state & EP_HAS_STREAMS) {
|
|
xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
|
|
xhci_get_endpoint_address(i));
|
|
xhci_free_stream_info(xhci, ep->stream_info);
|
|
ep->stream_info = NULL;
|
|
ep->ep_state &= ~EP_HAS_STREAMS;
|
|
}
|
|
}
|
|
|
|
/* Called after one or more calls to xhci_add_endpoint() or
|
|
* xhci_drop_endpoint(). If this call fails, the USB core is expected
|
|
* to call xhci_reset_bandwidth().
|
|
*
|
|
* Since we are in the middle of changing either configuration or
|
|
* installing a new alt setting, the USB core won't allow URBs to be
|
|
* enqueued for any endpoint on the old config or interface. Nothing
|
|
* else should be touching the xhci->devs[slot_id] structure, so we
|
|
* don't need to take the xhci->lock for manipulating that.
|
|
*/
|
|
int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
int i;
|
|
int ret = 0;
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_virt_device *virt_dev;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
struct xhci_command *command;
|
|
|
|
ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
|
|
if (ret <= 0)
|
|
return ret;
|
|
xhci = hcd_to_xhci(hcd);
|
|
if ((xhci->xhc_state & XHCI_STATE_DYING) ||
|
|
(xhci->xhc_state & XHCI_STATE_REMOVING))
|
|
return -ENODEV;
|
|
|
|
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
|
|
command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
|
|
if (!command)
|
|
return -ENOMEM;
|
|
|
|
command->in_ctx = virt_dev->in_ctx;
|
|
|
|
/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
|
|
ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
ret = -ENOMEM;
|
|
goto command_cleanup;
|
|
}
|
|
ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
|
|
ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
|
|
ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
|
|
|
|
/* Don't issue the command if there's no endpoints to update. */
|
|
if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
|
|
ctrl_ctx->drop_flags == 0) {
|
|
ret = 0;
|
|
goto command_cleanup;
|
|
}
|
|
/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
|
|
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
|
|
for (i = 31; i >= 1; i--) {
|
|
__le32 le32 = cpu_to_le32(BIT(i));
|
|
|
|
if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
|
|
|| (ctrl_ctx->add_flags & le32) || i == 1) {
|
|
slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
|
|
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
|
|
break;
|
|
}
|
|
}
|
|
xhci_dbg(xhci, "New Input Control Context:\n");
|
|
xhci_dbg_ctx(xhci, virt_dev->in_ctx,
|
|
LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
|
|
|
|
ret = xhci_configure_endpoint(xhci, udev, command,
|
|
false, false);
|
|
if (ret)
|
|
/* Callee should call reset_bandwidth() */
|
|
goto command_cleanup;
|
|
|
|
xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
|
|
xhci_dbg_ctx(xhci, virt_dev->out_ctx,
|
|
LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
|
|
|
|
/* Free any rings that were dropped, but not changed. */
|
|
for (i = 1; i < 31; ++i) {
|
|
if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
|
|
!(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
|
|
xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
|
|
xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
|
|
}
|
|
}
|
|
xhci_zero_in_ctx(xhci, virt_dev);
|
|
/*
|
|
* Install any rings for completely new endpoints or changed endpoints,
|
|
* and free or cache any old rings from changed endpoints.
|
|
*/
|
|
for (i = 1; i < 31; ++i) {
|
|
if (!virt_dev->eps[i].new_ring)
|
|
continue;
|
|
/* Only cache or free the old ring if it exists.
|
|
* It may not if this is the first add of an endpoint.
|
|
*/
|
|
if (virt_dev->eps[i].ring) {
|
|
xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
|
|
}
|
|
xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
|
|
virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
|
|
virt_dev->eps[i].new_ring = NULL;
|
|
}
|
|
command_cleanup:
|
|
kfree(command->completion);
|
|
kfree(command);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_virt_device *virt_dev;
|
|
int i, ret;
|
|
|
|
ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
|
|
if (ret <= 0)
|
|
return;
|
|
xhci = hcd_to_xhci(hcd);
|
|
|
|
xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
/* Free any rings allocated for added endpoints */
|
|
for (i = 0; i < 31; ++i) {
|
|
if (virt_dev->eps[i].new_ring) {
|
|
xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
|
|
virt_dev->eps[i].new_ring = NULL;
|
|
}
|
|
}
|
|
xhci_zero_in_ctx(xhci, virt_dev);
|
|
}
|
|
|
|
static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
|
|
struct xhci_container_ctx *in_ctx,
|
|
struct xhci_container_ctx *out_ctx,
|
|
struct xhci_input_control_ctx *ctrl_ctx,
|
|
u32 add_flags, u32 drop_flags)
|
|
{
|
|
ctrl_ctx->add_flags = cpu_to_le32(add_flags);
|
|
ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
|
|
xhci_slot_copy(xhci, in_ctx, out_ctx);
|
|
ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
|
|
|
|
xhci_dbg(xhci, "Input Context:\n");
|
|
xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
|
|
}
|
|
|
|
static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
|
|
unsigned int slot_id, unsigned int ep_index,
|
|
struct xhci_dequeue_state *deq_state)
|
|
{
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_container_ctx *in_ctx;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
u32 added_ctxs;
|
|
dma_addr_t addr;
|
|
|
|
in_ctx = xhci->devs[slot_id]->in_ctx;
|
|
ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
|
|
xhci->devs[slot_id]->out_ctx, ep_index);
|
|
ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
|
|
addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
|
|
deq_state->new_deq_ptr);
|
|
if (addr == 0) {
|
|
xhci_warn(xhci, "WARN Cannot submit config ep after "
|
|
"reset ep command\n");
|
|
xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
|
|
deq_state->new_deq_seg,
|
|
deq_state->new_deq_ptr);
|
|
return;
|
|
}
|
|
ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
|
|
|
|
added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
|
|
xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
|
|
xhci->devs[slot_id]->out_ctx, ctrl_ctx,
|
|
added_ctxs, added_ctxs);
|
|
}
|
|
|
|
void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
|
|
unsigned int ep_index, struct xhci_td *td)
|
|
{
|
|
struct xhci_dequeue_state deq_state;
|
|
struct xhci_virt_ep *ep;
|
|
struct usb_device *udev = td->urb->dev;
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
|
|
"Cleaning up stalled endpoint ring");
|
|
ep = &xhci->devs[udev->slot_id]->eps[ep_index];
|
|
/* We need to move the HW's dequeue pointer past this TD,
|
|
* or it will attempt to resend it on the next doorbell ring.
|
|
*/
|
|
xhci_find_new_dequeue_state(xhci, udev->slot_id,
|
|
ep_index, ep->stopped_stream, td, &deq_state);
|
|
|
|
if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
|
|
return;
|
|
|
|
/* HW with the reset endpoint quirk will use the saved dequeue state to
|
|
* issue a configure endpoint command later.
|
|
*/
|
|
if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
|
|
"Queueing new dequeue state");
|
|
xhci_queue_new_dequeue_state(xhci, udev->slot_id,
|
|
ep_index, ep->stopped_stream, &deq_state);
|
|
} else {
|
|
/* Better hope no one uses the input context between now and the
|
|
* reset endpoint completion!
|
|
* XXX: No idea how this hardware will react when stream rings
|
|
* are enabled.
|
|
*/
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Setting up input context for "
|
|
"configure endpoint command");
|
|
xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
|
|
ep_index, &deq_state);
|
|
}
|
|
}
|
|
|
|
/* Called when clearing halted device. The core should have sent the control
|
|
* message to clear the device halt condition. The host side of the halt should
|
|
* already be cleared with a reset endpoint command issued when the STALL tx
|
|
* event was received.
|
|
*
|
|
* Context: in_interrupt
|
|
*/
|
|
|
|
void xhci_endpoint_reset(struct usb_hcd *hcd,
|
|
struct usb_host_endpoint *ep)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
|
|
xhci = hcd_to_xhci(hcd);
|
|
|
|
/*
|
|
* We might need to implement the config ep cmd in xhci 4.8.1 note:
|
|
* The Reset Endpoint Command may only be issued to endpoints in the
|
|
* Halted state. If software wishes reset the Data Toggle or Sequence
|
|
* Number of an endpoint that isn't in the Halted state, then software
|
|
* may issue a Configure Endpoint Command with the Drop and Add bits set
|
|
* for the target endpoint. that is in the Stopped state.
|
|
*/
|
|
|
|
/* For now just print debug to follow the situation */
|
|
xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
|
|
ep->desc.bEndpointAddress);
|
|
}
|
|
|
|
static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
|
|
struct usb_device *udev, struct usb_host_endpoint *ep,
|
|
unsigned int slot_id)
|
|
{
|
|
int ret;
|
|
unsigned int ep_index;
|
|
unsigned int ep_state;
|
|
|
|
if (!ep)
|
|
return -EINVAL;
|
|
ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
|
|
if (ret <= 0)
|
|
return -EINVAL;
|
|
if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
|
|
xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
|
|
" descriptor for ep 0x%x does not support streams\n",
|
|
ep->desc.bEndpointAddress);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ep_index = xhci_get_endpoint_index(&ep->desc);
|
|
ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
|
|
if (ep_state & EP_HAS_STREAMS ||
|
|
ep_state & EP_GETTING_STREAMS) {
|
|
xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
|
|
"already has streams set up.\n",
|
|
ep->desc.bEndpointAddress);
|
|
xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
|
|
"dynamic stream context array reallocation.\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
|
|
xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
|
|
"endpoint 0x%x; URBs are pending.\n",
|
|
ep->desc.bEndpointAddress);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
|
|
unsigned int *num_streams, unsigned int *num_stream_ctxs)
|
|
{
|
|
unsigned int max_streams;
|
|
|
|
/* The stream context array size must be a power of two */
|
|
*num_stream_ctxs = roundup_pow_of_two(*num_streams);
|
|
/*
|
|
* Find out how many primary stream array entries the host controller
|
|
* supports. Later we may use secondary stream arrays (similar to 2nd
|
|
* level page entries), but that's an optional feature for xHCI host
|
|
* controllers. xHCs must support at least 4 stream IDs.
|
|
*/
|
|
max_streams = HCC_MAX_PSA(xhci->hcc_params);
|
|
if (*num_stream_ctxs > max_streams) {
|
|
xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
|
|
max_streams);
|
|
*num_stream_ctxs = max_streams;
|
|
*num_streams = max_streams;
|
|
}
|
|
}
|
|
|
|
/* Returns an error code if one of the endpoint already has streams.
|
|
* This does not change any data structures, it only checks and gathers
|
|
* information.
|
|
*/
|
|
static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct usb_host_endpoint **eps, unsigned int num_eps,
|
|
unsigned int *num_streams, u32 *changed_ep_bitmask)
|
|
{
|
|
unsigned int max_streams;
|
|
unsigned int endpoint_flag;
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_eps; i++) {
|
|
ret = xhci_check_streams_endpoint(xhci, udev,
|
|
eps[i], udev->slot_id);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
|
|
if (max_streams < (*num_streams - 1)) {
|
|
xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
|
|
eps[i]->desc.bEndpointAddress,
|
|
max_streams);
|
|
*num_streams = max_streams+1;
|
|
}
|
|
|
|
endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
|
|
if (*changed_ep_bitmask & endpoint_flag)
|
|
return -EINVAL;
|
|
*changed_ep_bitmask |= endpoint_flag;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct usb_host_endpoint **eps, unsigned int num_eps)
|
|
{
|
|
u32 changed_ep_bitmask = 0;
|
|
unsigned int slot_id;
|
|
unsigned int ep_index;
|
|
unsigned int ep_state;
|
|
int i;
|
|
|
|
slot_id = udev->slot_id;
|
|
if (!xhci->devs[slot_id])
|
|
return 0;
|
|
|
|
for (i = 0; i < num_eps; i++) {
|
|
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
|
|
ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
|
|
/* Are streams already being freed for the endpoint? */
|
|
if (ep_state & EP_GETTING_NO_STREAMS) {
|
|
xhci_warn(xhci, "WARN Can't disable streams for "
|
|
"endpoint 0x%x, "
|
|
"streams are being disabled already\n",
|
|
eps[i]->desc.bEndpointAddress);
|
|
return 0;
|
|
}
|
|
/* Are there actually any streams to free? */
|
|
if (!(ep_state & EP_HAS_STREAMS) &&
|
|
!(ep_state & EP_GETTING_STREAMS)) {
|
|
xhci_warn(xhci, "WARN Can't disable streams for "
|
|
"endpoint 0x%x, "
|
|
"streams are already disabled!\n",
|
|
eps[i]->desc.bEndpointAddress);
|
|
xhci_warn(xhci, "WARN xhci_free_streams() called "
|
|
"with non-streams endpoint\n");
|
|
return 0;
|
|
}
|
|
changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
|
|
}
|
|
return changed_ep_bitmask;
|
|
}
|
|
|
|
/*
|
|
* The USB device drivers use this function (through the HCD interface in USB
|
|
* core) to prepare a set of bulk endpoints to use streams. Streams are used to
|
|
* coordinate mass storage command queueing across multiple endpoints (basically
|
|
* a stream ID == a task ID).
|
|
*
|
|
* Setting up streams involves allocating the same size stream context array
|
|
* for each endpoint and issuing a configure endpoint command for all endpoints.
|
|
*
|
|
* Don't allow the call to succeed if one endpoint only supports one stream
|
|
* (which means it doesn't support streams at all).
|
|
*
|
|
* Drivers may get less stream IDs than they asked for, if the host controller
|
|
* hardware or endpoints claim they can't support the number of requested
|
|
* stream IDs.
|
|
*/
|
|
int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
|
|
struct usb_host_endpoint **eps, unsigned int num_eps,
|
|
unsigned int num_streams, gfp_t mem_flags)
|
|
{
|
|
int i, ret;
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_virt_device *vdev;
|
|
struct xhci_command *config_cmd;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
unsigned int ep_index;
|
|
unsigned int num_stream_ctxs;
|
|
unsigned int max_packet;
|
|
unsigned long flags;
|
|
u32 changed_ep_bitmask = 0;
|
|
|
|
if (!eps)
|
|
return -EINVAL;
|
|
|
|
/* Add one to the number of streams requested to account for
|
|
* stream 0 that is reserved for xHCI usage.
|
|
*/
|
|
num_streams += 1;
|
|
xhci = hcd_to_xhci(hcd);
|
|
xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
|
|
num_streams);
|
|
|
|
/* MaxPSASize value 0 (2 streams) means streams are not supported */
|
|
if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
|
|
HCC_MAX_PSA(xhci->hcc_params) < 4) {
|
|
xhci_dbg(xhci, "xHCI controller does not support streams.\n");
|
|
return -ENOSYS;
|
|
}
|
|
|
|
config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
|
|
if (!config_cmd) {
|
|
xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
|
|
return -ENOMEM;
|
|
}
|
|
ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
xhci_free_command(xhci, config_cmd);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Check to make sure all endpoints are not already configured for
|
|
* streams. While we're at it, find the maximum number of streams that
|
|
* all the endpoints will support and check for duplicate endpoints.
|
|
*/
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
|
|
num_eps, &num_streams, &changed_ep_bitmask);
|
|
if (ret < 0) {
|
|
xhci_free_command(xhci, config_cmd);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return ret;
|
|
}
|
|
if (num_streams <= 1) {
|
|
xhci_warn(xhci, "WARN: endpoints can't handle "
|
|
"more than one stream.\n");
|
|
xhci_free_command(xhci, config_cmd);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return -EINVAL;
|
|
}
|
|
vdev = xhci->devs[udev->slot_id];
|
|
/* Mark each endpoint as being in transition, so
|
|
* xhci_urb_enqueue() will reject all URBs.
|
|
*/
|
|
for (i = 0; i < num_eps; i++) {
|
|
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
|
|
vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
|
|
}
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/* Setup internal data structures and allocate HW data structures for
|
|
* streams (but don't install the HW structures in the input context
|
|
* until we're sure all memory allocation succeeded).
|
|
*/
|
|
xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
|
|
xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
|
|
num_stream_ctxs, num_streams);
|
|
|
|
for (i = 0; i < num_eps; i++) {
|
|
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
|
|
max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
|
|
vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
|
|
num_stream_ctxs,
|
|
num_streams,
|
|
max_packet, mem_flags);
|
|
if (!vdev->eps[ep_index].stream_info)
|
|
goto cleanup;
|
|
/* Set maxPstreams in endpoint context and update deq ptr to
|
|
* point to stream context array. FIXME
|
|
*/
|
|
}
|
|
|
|
/* Set up the input context for a configure endpoint command. */
|
|
for (i = 0; i < num_eps; i++) {
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
|
|
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
|
|
ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
|
|
|
|
xhci_endpoint_copy(xhci, config_cmd->in_ctx,
|
|
vdev->out_ctx, ep_index);
|
|
xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
|
|
vdev->eps[ep_index].stream_info);
|
|
}
|
|
/* Tell the HW to drop its old copy of the endpoint context info
|
|
* and add the updated copy from the input context.
|
|
*/
|
|
xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
|
|
vdev->out_ctx, ctrl_ctx,
|
|
changed_ep_bitmask, changed_ep_bitmask);
|
|
|
|
/* Issue and wait for the configure endpoint command */
|
|
ret = xhci_configure_endpoint(xhci, udev, config_cmd,
|
|
false, false);
|
|
|
|
/* xHC rejected the configure endpoint command for some reason, so we
|
|
* leave the old ring intact and free our internal streams data
|
|
* structure.
|
|
*/
|
|
if (ret < 0)
|
|
goto cleanup;
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
for (i = 0; i < num_eps; i++) {
|
|
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
|
|
vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
|
|
xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
|
|
udev->slot_id, ep_index);
|
|
vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
|
|
}
|
|
xhci_free_command(xhci, config_cmd);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/* Subtract 1 for stream 0, which drivers can't use */
|
|
return num_streams - 1;
|
|
|
|
cleanup:
|
|
/* If it didn't work, free the streams! */
|
|
for (i = 0; i < num_eps; i++) {
|
|
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
|
|
xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
|
|
vdev->eps[ep_index].stream_info = NULL;
|
|
/* FIXME Unset maxPstreams in endpoint context and
|
|
* update deq ptr to point to normal string ring.
|
|
*/
|
|
vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
|
|
vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
|
|
xhci_endpoint_zero(xhci, vdev, eps[i]);
|
|
}
|
|
xhci_free_command(xhci, config_cmd);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Transition the endpoint from using streams to being a "normal" endpoint
|
|
* without streams.
|
|
*
|
|
* Modify the endpoint context state, submit a configure endpoint command,
|
|
* and free all endpoint rings for streams if that completes successfully.
|
|
*/
|
|
int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
|
|
struct usb_host_endpoint **eps, unsigned int num_eps,
|
|
gfp_t mem_flags)
|
|
{
|
|
int i, ret;
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_virt_device *vdev;
|
|
struct xhci_command *command;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
unsigned int ep_index;
|
|
unsigned long flags;
|
|
u32 changed_ep_bitmask;
|
|
|
|
xhci = hcd_to_xhci(hcd);
|
|
vdev = xhci->devs[udev->slot_id];
|
|
|
|
/* Set up a configure endpoint command to remove the streams rings */
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
|
|
udev, eps, num_eps);
|
|
if (changed_ep_bitmask == 0) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Use the xhci_command structure from the first endpoint. We may have
|
|
* allocated too many, but the driver may call xhci_free_streams() for
|
|
* each endpoint it grouped into one call to xhci_alloc_streams().
|
|
*/
|
|
ep_index = xhci_get_endpoint_index(&eps[0]->desc);
|
|
command = vdev->eps[ep_index].stream_info->free_streams_command;
|
|
ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < num_eps; i++) {
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
|
|
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
|
|
ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
|
|
xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
|
|
EP_GETTING_NO_STREAMS;
|
|
|
|
xhci_endpoint_copy(xhci, command->in_ctx,
|
|
vdev->out_ctx, ep_index);
|
|
xhci_setup_no_streams_ep_input_ctx(ep_ctx,
|
|
&vdev->eps[ep_index]);
|
|
}
|
|
xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
|
|
vdev->out_ctx, ctrl_ctx,
|
|
changed_ep_bitmask, changed_ep_bitmask);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/* Issue and wait for the configure endpoint command,
|
|
* which must succeed.
|
|
*/
|
|
ret = xhci_configure_endpoint(xhci, udev, command,
|
|
false, true);
|
|
|
|
/* xHC rejected the configure endpoint command for some reason, so we
|
|
* leave the streams rings intact.
|
|
*/
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
for (i = 0; i < num_eps; i++) {
|
|
ep_index = xhci_get_endpoint_index(&eps[i]->desc);
|
|
xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
|
|
vdev->eps[ep_index].stream_info = NULL;
|
|
/* FIXME Unset maxPstreams in endpoint context and
|
|
* update deq ptr to point to normal string ring.
|
|
*/
|
|
vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
|
|
vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
|
|
}
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deletes endpoint resources for endpoints that were active before a Reset
|
|
* Device command, or a Disable Slot command. The Reset Device command leaves
|
|
* the control endpoint intact, whereas the Disable Slot command deletes it.
|
|
*
|
|
* Must be called with xhci->lock held.
|
|
*/
|
|
void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *virt_dev, bool drop_control_ep)
|
|
{
|
|
int i;
|
|
unsigned int num_dropped_eps = 0;
|
|
unsigned int drop_flags = 0;
|
|
|
|
for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
|
|
if (virt_dev->eps[i].ring) {
|
|
drop_flags |= 1 << i;
|
|
num_dropped_eps++;
|
|
}
|
|
}
|
|
xhci->num_active_eps -= num_dropped_eps;
|
|
if (num_dropped_eps)
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Dropped %u ep ctxs, flags = 0x%x, "
|
|
"%u now active.",
|
|
num_dropped_eps, drop_flags,
|
|
xhci->num_active_eps);
|
|
}
|
|
|
|
/*
|
|
* This submits a Reset Device Command, which will set the device state to 0,
|
|
* set the device address to 0, and disable all the endpoints except the default
|
|
* control endpoint. The USB core should come back and call
|
|
* xhci_address_device(), and then re-set up the configuration. If this is
|
|
* called because of a usb_reset_and_verify_device(), then the old alternate
|
|
* settings will be re-installed through the normal bandwidth allocation
|
|
* functions.
|
|
*
|
|
* Wait for the Reset Device command to finish. Remove all structures
|
|
* associated with the endpoints that were disabled. Clear the input device
|
|
* structure? Cache the rings? Reset the control endpoint 0 max packet size?
|
|
*
|
|
* If the virt_dev to be reset does not exist or does not match the udev,
|
|
* it means the device is lost, possibly due to the xHC restore error and
|
|
* re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
|
|
* re-allocate the device.
|
|
*/
|
|
int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
int ret, i;
|
|
unsigned long flags;
|
|
struct xhci_hcd *xhci;
|
|
unsigned int slot_id;
|
|
struct xhci_virt_device *virt_dev;
|
|
struct xhci_command *reset_device_cmd;
|
|
int last_freed_endpoint;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
int old_active_eps = 0;
|
|
|
|
ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
|
|
if (ret <= 0)
|
|
return ret;
|
|
xhci = hcd_to_xhci(hcd);
|
|
slot_id = udev->slot_id;
|
|
virt_dev = xhci->devs[slot_id];
|
|
if (!virt_dev) {
|
|
xhci_dbg(xhci, "The device to be reset with slot ID %u does "
|
|
"not exist. Re-allocate the device\n", slot_id);
|
|
ret = xhci_alloc_dev(hcd, udev);
|
|
if (ret == 1)
|
|
return 0;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (virt_dev->tt_info)
|
|
old_active_eps = virt_dev->tt_info->active_eps;
|
|
|
|
if (virt_dev->udev != udev) {
|
|
/* If the virt_dev and the udev does not match, this virt_dev
|
|
* may belong to another udev.
|
|
* Re-allocate the device.
|
|
*/
|
|
xhci_dbg(xhci, "The device to be reset with slot ID %u does "
|
|
"not match the udev. Re-allocate the device\n",
|
|
slot_id);
|
|
ret = xhci_alloc_dev(hcd, udev);
|
|
if (ret == 1)
|
|
return 0;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If device is not setup, there is no point in resetting it */
|
|
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
|
|
if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
|
|
SLOT_STATE_DISABLED)
|
|
return 0;
|
|
|
|
xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
|
|
/* Allocate the command structure that holds the struct completion.
|
|
* Assume we're in process context, since the normal device reset
|
|
* process has to wait for the device anyway. Storage devices are
|
|
* reset as part of error handling, so use GFP_NOIO instead of
|
|
* GFP_KERNEL.
|
|
*/
|
|
reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
|
|
if (!reset_device_cmd) {
|
|
xhci_dbg(xhci, "Couldn't allocate command structure.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Attempt to submit the Reset Device command to the command ring */
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
|
|
ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
|
|
if (ret) {
|
|
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
goto command_cleanup;
|
|
}
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/* Wait for the Reset Device command to finish */
|
|
wait_for_completion(reset_device_cmd->completion);
|
|
|
|
/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
|
|
* unless we tried to reset a slot ID that wasn't enabled,
|
|
* or the device wasn't in the addressed or configured state.
|
|
*/
|
|
ret = reset_device_cmd->status;
|
|
switch (ret) {
|
|
case COMP_CMD_ABORT:
|
|
case COMP_CMD_STOP:
|
|
xhci_warn(xhci, "Timeout waiting for reset device command\n");
|
|
ret = -ETIME;
|
|
goto command_cleanup;
|
|
case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
|
|
case COMP_CTX_STATE: /* 0.96 completion code for same thing */
|
|
xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
|
|
slot_id,
|
|
xhci_get_slot_state(xhci, virt_dev->out_ctx));
|
|
xhci_dbg(xhci, "Not freeing device rings.\n");
|
|
/* Don't treat this as an error. May change my mind later. */
|
|
ret = 0;
|
|
goto command_cleanup;
|
|
case COMP_SUCCESS:
|
|
xhci_dbg(xhci, "Successful reset device command.\n");
|
|
break;
|
|
default:
|
|
if (xhci_is_vendor_info_code(xhci, ret))
|
|
break;
|
|
xhci_warn(xhci, "Unknown completion code %u for "
|
|
"reset device command.\n", ret);
|
|
ret = -EINVAL;
|
|
goto command_cleanup;
|
|
}
|
|
|
|
/* Free up host controller endpoint resources */
|
|
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
/* Don't delete the default control endpoint resources */
|
|
xhci_free_device_endpoint_resources(xhci, virt_dev, false);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
}
|
|
|
|
/* Everything but endpoint 0 is disabled, so free or cache the rings. */
|
|
last_freed_endpoint = 1;
|
|
for (i = 1; i < 31; ++i) {
|
|
struct xhci_virt_ep *ep = &virt_dev->eps[i];
|
|
|
|
if (ep->ep_state & EP_HAS_STREAMS) {
|
|
xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
|
|
xhci_get_endpoint_address(i));
|
|
xhci_free_stream_info(xhci, ep->stream_info);
|
|
ep->stream_info = NULL;
|
|
ep->ep_state &= ~EP_HAS_STREAMS;
|
|
}
|
|
|
|
if (ep->ring) {
|
|
xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
|
|
last_freed_endpoint = i;
|
|
}
|
|
if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
|
|
xhci_drop_ep_from_interval_table(xhci,
|
|
&virt_dev->eps[i].bw_info,
|
|
virt_dev->bw_table,
|
|
udev,
|
|
&virt_dev->eps[i],
|
|
virt_dev->tt_info);
|
|
xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
|
|
}
|
|
/* If necessary, update the number of active TTs on this root port */
|
|
xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
|
|
|
|
xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
|
|
xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
|
|
ret = 0;
|
|
|
|
command_cleanup:
|
|
xhci_free_command(xhci, reset_device_cmd);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* At this point, the struct usb_device is about to go away, the device has
|
|
* disconnected, and all traffic has been stopped and the endpoints have been
|
|
* disabled. Free any HC data structures associated with that device.
|
|
*/
|
|
void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
struct xhci_virt_device *virt_dev;
|
|
unsigned long flags;
|
|
u32 state;
|
|
int i, ret;
|
|
struct xhci_command *command;
|
|
|
|
command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
|
|
if (!command)
|
|
return;
|
|
|
|
#ifndef CONFIG_USB_DEFAULT_PERSIST
|
|
/*
|
|
* We called pm_runtime_get_noresume when the device was attached.
|
|
* Decrement the counter here to allow controller to runtime suspend
|
|
* if no devices remain.
|
|
*/
|
|
if (xhci->quirks & XHCI_RESET_ON_RESUME)
|
|
pm_runtime_put_noidle(hcd->self.controller);
|
|
#endif
|
|
|
|
ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
|
|
/* If the host is halted due to driver unload, we still need to free the
|
|
* device.
|
|
*/
|
|
if (ret <= 0 && ret != -ENODEV) {
|
|
kfree(command);
|
|
return;
|
|
}
|
|
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
|
|
/* Stop any wayward timer functions (which may grab the lock) */
|
|
for (i = 0; i < 31; ++i) {
|
|
virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
|
|
del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
|
|
}
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
/* Don't disable the slot if the host controller is dead. */
|
|
state = readl(&xhci->op_regs->status);
|
|
if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
|
|
(xhci->xhc_state & XHCI_STATE_HALTED)) {
|
|
xhci_free_virt_device(xhci, udev->slot_id);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
kfree(command);
|
|
return;
|
|
}
|
|
|
|
if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
|
|
udev->slot_id)) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
|
|
return;
|
|
}
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/*
|
|
* Event command completion handler will free any data structures
|
|
* associated with the slot. XXX Can free sleep?
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Checks if we have enough host controller resources for the default control
|
|
* endpoint.
|
|
*
|
|
* Must be called with xhci->lock held.
|
|
*/
|
|
static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
|
|
{
|
|
if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Not enough ep ctxs: "
|
|
"%u active, need to add 1, limit is %u.",
|
|
xhci->num_active_eps, xhci->limit_active_eps);
|
|
return -ENOMEM;
|
|
}
|
|
xhci->num_active_eps += 1;
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Adding 1 ep ctx, %u now active.",
|
|
xhci->num_active_eps);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns 0 if the xHC ran out of device slots, the Enable Slot command
|
|
* timed out, or allocating memory failed. Returns 1 on success.
|
|
*/
|
|
int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
unsigned long flags;
|
|
int ret, slot_id;
|
|
struct xhci_command *command;
|
|
|
|
command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
|
|
if (!command)
|
|
return 0;
|
|
|
|
/* xhci->slot_id and xhci->addr_dev are not thread-safe */
|
|
mutex_lock(&xhci->mutex);
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
command->completion = &xhci->addr_dev;
|
|
ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
|
|
if (ret) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
mutex_unlock(&xhci->mutex);
|
|
xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
|
|
kfree(command);
|
|
return 0;
|
|
}
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
wait_for_completion(command->completion);
|
|
slot_id = xhci->slot_id;
|
|
mutex_unlock(&xhci->mutex);
|
|
|
|
if (!slot_id || command->status != COMP_SUCCESS) {
|
|
xhci_err(xhci, "Error while assigning device slot ID\n");
|
|
xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
|
|
HCS_MAX_SLOTS(
|
|
readl(&xhci->cap_regs->hcs_params1)));
|
|
kfree(command);
|
|
return 0;
|
|
}
|
|
|
|
if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
ret = xhci_reserve_host_control_ep_resources(xhci);
|
|
if (ret) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_warn(xhci, "Not enough host resources, "
|
|
"active endpoint contexts = %u\n",
|
|
xhci->num_active_eps);
|
|
goto disable_slot;
|
|
}
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
}
|
|
/* Use GFP_NOIO, since this function can be called from
|
|
* xhci_discover_or_reset_device(), which may be called as part of
|
|
* mass storage driver error handling.
|
|
*/
|
|
if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
|
|
xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
|
|
goto disable_slot;
|
|
}
|
|
udev->slot_id = slot_id;
|
|
|
|
#ifndef CONFIG_USB_DEFAULT_PERSIST
|
|
/*
|
|
* If resetting upon resume, we can't put the controller into runtime
|
|
* suspend if there is a device attached.
|
|
*/
|
|
if (xhci->quirks & XHCI_RESET_ON_RESUME)
|
|
pm_runtime_get_noresume(hcd->self.controller);
|
|
#endif
|
|
|
|
|
|
kfree(command);
|
|
/* Is this a LS or FS device under a HS hub? */
|
|
/* Hub or peripherial? */
|
|
return 1;
|
|
|
|
disable_slot:
|
|
/* Disable slot, if we can do it without mem alloc */
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
command->completion = NULL;
|
|
command->status = 0;
|
|
if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
|
|
udev->slot_id))
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Issue an Address Device command and optionally send a corresponding
|
|
* SetAddress request to the device.
|
|
*/
|
|
static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
|
|
enum xhci_setup_dev setup)
|
|
{
|
|
const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
|
|
unsigned long flags;
|
|
struct xhci_virt_device *virt_dev;
|
|
int ret = 0;
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
u64 temp_64;
|
|
struct xhci_command *command = NULL;
|
|
|
|
mutex_lock(&xhci->mutex);
|
|
|
|
if (xhci->xhc_state) /* dying, removing or halted */
|
|
goto out;
|
|
|
|
if (!udev->slot_id) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
|
|
"Bad Slot ID %d", udev->slot_id);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
|
|
if (WARN_ON(!virt_dev)) {
|
|
/*
|
|
* In plug/unplug torture test with an NEC controller,
|
|
* a zero-dereference was observed once due to virt_dev = 0.
|
|
* Print useful debug rather than crash if it is observed again!
|
|
*/
|
|
xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
|
|
udev->slot_id);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (setup == SETUP_CONTEXT_ONLY) {
|
|
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
|
|
if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
|
|
SLOT_STATE_DEFAULT) {
|
|
xhci_dbg(xhci, "Slot already in default state\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
|
|
if (!command) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
command->in_ctx = virt_dev->in_ctx;
|
|
command->completion = &xhci->addr_dev;
|
|
|
|
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
|
|
ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
/*
|
|
* If this is the first Set Address since device plug-in or
|
|
* virt_device realloaction after a resume with an xHCI power loss,
|
|
* then set up the slot context.
|
|
*/
|
|
if (!slot_ctx->dev_info)
|
|
xhci_setup_addressable_virt_dev(xhci, udev);
|
|
/* Otherwise, update the control endpoint ring enqueue pointer. */
|
|
else
|
|
xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
|
|
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
|
|
ctrl_ctx->drop_flags = 0;
|
|
|
|
xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
|
|
xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
|
|
trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
|
|
le32_to_cpu(slot_ctx->dev_info) >> 27);
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
|
|
udev->slot_id, setup);
|
|
if (ret) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
|
|
"FIXME: allocate a command ring segment");
|
|
goto out;
|
|
}
|
|
xhci_ring_cmd_db(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
|
|
wait_for_completion(command->completion);
|
|
|
|
/* FIXME: From section 4.3.4: "Software shall be responsible for timing
|
|
* the SetAddress() "recovery interval" required by USB and aborting the
|
|
* command on a timeout.
|
|
*/
|
|
switch (command->status) {
|
|
case COMP_CMD_ABORT:
|
|
case COMP_CMD_STOP:
|
|
xhci_warn(xhci, "Timeout while waiting for setup device command\n");
|
|
ret = -ETIME;
|
|
break;
|
|
case COMP_CTX_STATE:
|
|
case COMP_EBADSLT:
|
|
xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
|
|
act, udev->slot_id);
|
|
ret = -EINVAL;
|
|
break;
|
|
case COMP_TX_ERR:
|
|
dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
|
|
ret = -EPROTO;
|
|
break;
|
|
case COMP_DEV_ERR:
|
|
dev_warn(&udev->dev,
|
|
"ERROR: Incompatible device for setup %s command\n", act);
|
|
ret = -ENODEV;
|
|
break;
|
|
case COMP_SUCCESS:
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
|
|
"Successful setup %s command", act);
|
|
break;
|
|
default:
|
|
xhci_err(xhci,
|
|
"ERROR: unexpected setup %s command completion code 0x%x.\n",
|
|
act, command->status);
|
|
xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
|
|
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
|
|
trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
if (ret)
|
|
goto out;
|
|
temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
|
|
"Op regs DCBAA ptr = %#016llx", temp_64);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
|
|
"Slot ID %d dcbaa entry @%p = %#016llx",
|
|
udev->slot_id,
|
|
&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
|
|
(unsigned long long)
|
|
le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
|
|
"Output Context DMA address = %#08llx",
|
|
(unsigned long long)virt_dev->out_ctx->dma);
|
|
xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
|
|
xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
|
|
trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
|
|
le32_to_cpu(slot_ctx->dev_info) >> 27);
|
|
xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
|
|
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
|
|
/*
|
|
* USB core uses address 1 for the roothubs, so we add one to the
|
|
* address given back to us by the HC.
|
|
*/
|
|
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
|
|
trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
|
|
le32_to_cpu(slot_ctx->dev_info) >> 27);
|
|
/* Zero the input context control for later use */
|
|
ctrl_ctx->add_flags = 0;
|
|
ctrl_ctx->drop_flags = 0;
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_address,
|
|
"Internal device address = %d",
|
|
le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
|
|
out:
|
|
mutex_unlock(&xhci->mutex);
|
|
kfree(command);
|
|
return ret;
|
|
}
|
|
|
|
int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
|
|
}
|
|
|
|
int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
|
|
}
|
|
|
|
/*
|
|
* Transfer the port index into real index in the HW port status
|
|
* registers. Caculate offset between the port's PORTSC register
|
|
* and port status base. Divide the number of per port register
|
|
* to get the real index. The raw port number bases 1.
|
|
*/
|
|
int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
|
|
__le32 __iomem *addr;
|
|
int raw_port;
|
|
|
|
if (hcd->speed < HCD_USB3)
|
|
addr = xhci->usb2_ports[port1 - 1];
|
|
else
|
|
addr = xhci->usb3_ports[port1 - 1];
|
|
|
|
raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
|
|
return raw_port;
|
|
}
|
|
|
|
/*
|
|
* Issue an Evaluate Context command to change the Maximum Exit Latency in the
|
|
* slot context. If that succeeds, store the new MEL in the xhci_virt_device.
|
|
*/
|
|
static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
|
|
struct usb_device *udev, u16 max_exit_latency)
|
|
{
|
|
struct xhci_virt_device *virt_dev;
|
|
struct xhci_command *command;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
|
|
virt_dev = xhci->devs[udev->slot_id];
|
|
|
|
/*
|
|
* virt_dev might not exists yet if xHC resumed from hibernate (S4) and
|
|
* xHC was re-initialized. Exit latency will be set later after
|
|
* hub_port_finish_reset() is done and xhci->devs[] are re-allocated
|
|
*/
|
|
|
|
if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/* Attempt to issue an Evaluate Context command to change the MEL. */
|
|
command = xhci->lpm_command;
|
|
ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
|
|
slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
|
|
slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
|
|
slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
|
|
slot_ctx->dev_state = 0;
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
|
|
"Set up evaluate context for LPM MEL change.");
|
|
xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
|
|
xhci_dbg_ctx(xhci, command->in_ctx, 0);
|
|
|
|
/* Issue and wait for the evaluate context command. */
|
|
ret = xhci_configure_endpoint(xhci, udev, command,
|
|
true, true);
|
|
xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
|
|
xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
|
|
|
|
if (!ret) {
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
virt_dev->current_mel = max_exit_latency;
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
/* BESL to HIRD Encoding array for USB2 LPM */
|
|
static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
|
|
3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
|
|
|
|
/* Calculate HIRD/BESL for USB2 PORTPMSC*/
|
|
static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
|
|
struct usb_device *udev)
|
|
{
|
|
int u2del, besl, besl_host;
|
|
int besl_device = 0;
|
|
u32 field;
|
|
|
|
u2del = HCS_U2_LATENCY(xhci->hcs_params3);
|
|
field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
|
|
|
|
if (field & USB_BESL_SUPPORT) {
|
|
for (besl_host = 0; besl_host < 16; besl_host++) {
|
|
if (xhci_besl_encoding[besl_host] >= u2del)
|
|
break;
|
|
}
|
|
/* Use baseline BESL value as default */
|
|
if (field & USB_BESL_BASELINE_VALID)
|
|
besl_device = USB_GET_BESL_BASELINE(field);
|
|
else if (field & USB_BESL_DEEP_VALID)
|
|
besl_device = USB_GET_BESL_DEEP(field);
|
|
} else {
|
|
if (u2del <= 50)
|
|
besl_host = 0;
|
|
else
|
|
besl_host = (u2del - 51) / 75 + 1;
|
|
}
|
|
|
|
besl = besl_host + besl_device;
|
|
if (besl > 15)
|
|
besl = 15;
|
|
|
|
return besl;
|
|
}
|
|
|
|
/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
|
|
static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
|
|
{
|
|
u32 field;
|
|
int l1;
|
|
int besld = 0;
|
|
int hirdm = 0;
|
|
|
|
field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
|
|
|
|
/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
|
|
l1 = udev->l1_params.timeout / 256;
|
|
|
|
/* device has preferred BESLD */
|
|
if (field & USB_BESL_DEEP_VALID) {
|
|
besld = USB_GET_BESL_DEEP(field);
|
|
hirdm = 1;
|
|
}
|
|
|
|
return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
|
|
}
|
|
|
|
int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
|
|
struct usb_device *udev, int enable)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
__le32 __iomem **port_array;
|
|
__le32 __iomem *pm_addr, *hlpm_addr;
|
|
u32 pm_val, hlpm_val, field;
|
|
unsigned int port_num;
|
|
unsigned long flags;
|
|
int hird, exit_latency;
|
|
int ret;
|
|
|
|
if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
|
|
!udev->lpm_capable)
|
|
return -EPERM;
|
|
|
|
if (!udev->parent || udev->parent->parent ||
|
|
udev->descriptor.bDeviceClass == USB_CLASS_HUB)
|
|
return -EPERM;
|
|
|
|
if (udev->usb2_hw_lpm_capable != 1)
|
|
return -EPERM;
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
|
|
port_array = xhci->usb2_ports;
|
|
port_num = udev->portnum - 1;
|
|
pm_addr = port_array[port_num] + PORTPMSC;
|
|
pm_val = readl(pm_addr);
|
|
hlpm_addr = port_array[port_num] + PORTHLPMC;
|
|
field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
|
|
|
|
xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
|
|
enable ? "enable" : "disable", port_num + 1);
|
|
|
|
if (enable) {
|
|
/* Host supports BESL timeout instead of HIRD */
|
|
if (udev->usb2_hw_lpm_besl_capable) {
|
|
/* if device doesn't have a preferred BESL value use a
|
|
* default one which works with mixed HIRD and BESL
|
|
* systems. See XHCI_DEFAULT_BESL definition in xhci.h
|
|
*/
|
|
if ((field & USB_BESL_SUPPORT) &&
|
|
(field & USB_BESL_BASELINE_VALID))
|
|
hird = USB_GET_BESL_BASELINE(field);
|
|
else
|
|
hird = udev->l1_params.besl;
|
|
|
|
exit_latency = xhci_besl_encoding[hird];
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
|
|
* input context for link powermanagement evaluate
|
|
* context commands. It is protected by hcd->bandwidth
|
|
* mutex and is shared by all devices. We need to set
|
|
* the max ext latency in USB 2 BESL LPM as well, so
|
|
* use the same mutex and xhci_change_max_exit_latency()
|
|
*/
|
|
mutex_lock(hcd->bandwidth_mutex);
|
|
ret = xhci_change_max_exit_latency(xhci, udev,
|
|
exit_latency);
|
|
mutex_unlock(hcd->bandwidth_mutex);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
|
|
hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
|
|
writel(hlpm_val, hlpm_addr);
|
|
/* flush write */
|
|
readl(hlpm_addr);
|
|
} else {
|
|
hird = xhci_calculate_hird_besl(xhci, udev);
|
|
}
|
|
|
|
pm_val &= ~PORT_HIRD_MASK;
|
|
pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
|
|
writel(pm_val, pm_addr);
|
|
pm_val = readl(pm_addr);
|
|
pm_val |= PORT_HLE;
|
|
writel(pm_val, pm_addr);
|
|
/* flush write */
|
|
readl(pm_addr);
|
|
} else {
|
|
pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
|
|
writel(pm_val, pm_addr);
|
|
/* flush write */
|
|
readl(pm_addr);
|
|
if (udev->usb2_hw_lpm_besl_capable) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
mutex_lock(hcd->bandwidth_mutex);
|
|
xhci_change_max_exit_latency(xhci, udev, 0);
|
|
mutex_unlock(hcd->bandwidth_mutex);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/* check if a usb2 port supports a given extened capability protocol
|
|
* only USB2 ports extended protocol capability values are cached.
|
|
* Return 1 if capability is supported
|
|
*/
|
|
static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
|
|
unsigned capability)
|
|
{
|
|
u32 port_offset, port_count;
|
|
int i;
|
|
|
|
for (i = 0; i < xhci->num_ext_caps; i++) {
|
|
if (xhci->ext_caps[i] & capability) {
|
|
/* port offsets starts at 1 */
|
|
port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
|
|
port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
|
|
if (port >= port_offset &&
|
|
port < port_offset + port_count)
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
int portnum = udev->portnum - 1;
|
|
|
|
if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
|
|
!udev->lpm_capable)
|
|
return 0;
|
|
|
|
/* we only support lpm for non-hub device connected to root hub yet */
|
|
if (!udev->parent || udev->parent->parent ||
|
|
udev->descriptor.bDeviceClass == USB_CLASS_HUB)
|
|
return 0;
|
|
|
|
if (xhci->hw_lpm_support == 1 &&
|
|
xhci_check_usb2_port_capability(
|
|
xhci, portnum, XHCI_HLC)) {
|
|
udev->usb2_hw_lpm_capable = 1;
|
|
udev->l1_params.timeout = XHCI_L1_TIMEOUT;
|
|
udev->l1_params.besl = XHCI_DEFAULT_BESL;
|
|
if (xhci_check_usb2_port_capability(xhci, portnum,
|
|
XHCI_BLC))
|
|
udev->usb2_hw_lpm_besl_capable = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*---------------------- USB 3.0 Link PM functions ------------------------*/
|
|
|
|
/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
|
|
static unsigned long long xhci_service_interval_to_ns(
|
|
struct usb_endpoint_descriptor *desc)
|
|
{
|
|
return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
|
|
}
|
|
|
|
static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
|
|
enum usb3_link_state state)
|
|
{
|
|
unsigned long long sel;
|
|
unsigned long long pel;
|
|
unsigned int max_sel_pel;
|
|
char *state_name;
|
|
|
|
switch (state) {
|
|
case USB3_LPM_U1:
|
|
/* Convert SEL and PEL stored in nanoseconds to microseconds */
|
|
sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
|
|
pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
|
|
max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
|
|
state_name = "U1";
|
|
break;
|
|
case USB3_LPM_U2:
|
|
sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
|
|
pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
|
|
max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
|
|
state_name = "U2";
|
|
break;
|
|
default:
|
|
dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
|
|
__func__);
|
|
return USB3_LPM_DISABLED;
|
|
}
|
|
|
|
if (sel <= max_sel_pel && pel <= max_sel_pel)
|
|
return USB3_LPM_DEVICE_INITIATED;
|
|
|
|
if (sel > max_sel_pel)
|
|
dev_dbg(&udev->dev, "Device-initiated %s disabled "
|
|
"due to long SEL %llu ms\n",
|
|
state_name, sel);
|
|
else
|
|
dev_dbg(&udev->dev, "Device-initiated %s disabled "
|
|
"due to long PEL %llu ms\n",
|
|
state_name, pel);
|
|
return USB3_LPM_DISABLED;
|
|
}
|
|
|
|
/* The U1 timeout should be the maximum of the following values:
|
|
* - For control endpoints, U1 system exit latency (SEL) * 3
|
|
* - For bulk endpoints, U1 SEL * 5
|
|
* - For interrupt endpoints:
|
|
* - Notification EPs, U1 SEL * 3
|
|
* - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
|
|
* - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
|
|
*/
|
|
static unsigned long long xhci_calculate_intel_u1_timeout(
|
|
struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *desc)
|
|
{
|
|
unsigned long long timeout_ns;
|
|
int ep_type;
|
|
int intr_type;
|
|
|
|
ep_type = usb_endpoint_type(desc);
|
|
switch (ep_type) {
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
timeout_ns = udev->u1_params.sel * 3;
|
|
break;
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
timeout_ns = udev->u1_params.sel * 5;
|
|
break;
|
|
case USB_ENDPOINT_XFER_INT:
|
|
intr_type = usb_endpoint_interrupt_type(desc);
|
|
if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
|
|
timeout_ns = udev->u1_params.sel * 3;
|
|
break;
|
|
}
|
|
/* Otherwise the calculation is the same as isoc eps */
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
timeout_ns = xhci_service_interval_to_ns(desc);
|
|
timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
|
|
if (timeout_ns < udev->u1_params.sel * 2)
|
|
timeout_ns = udev->u1_params.sel * 2;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return timeout_ns;
|
|
}
|
|
|
|
/* Returns the hub-encoded U1 timeout value. */
|
|
static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *desc)
|
|
{
|
|
unsigned long long timeout_ns;
|
|
|
|
if (xhci->quirks & XHCI_INTEL_HOST)
|
|
timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
|
|
else
|
|
timeout_ns = udev->u1_params.sel;
|
|
|
|
/* The U1 timeout is encoded in 1us intervals.
|
|
* Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
|
|
*/
|
|
if (timeout_ns == USB3_LPM_DISABLED)
|
|
timeout_ns = 1;
|
|
else
|
|
timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
|
|
|
|
/* If the necessary timeout value is bigger than what we can set in the
|
|
* USB 3.0 hub, we have to disable hub-initiated U1.
|
|
*/
|
|
if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
|
|
return timeout_ns;
|
|
dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
|
|
"due to long timeout %llu ms\n", timeout_ns);
|
|
return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
|
|
}
|
|
|
|
/* The U2 timeout should be the maximum of:
|
|
* - 10 ms (to avoid the bandwidth impact on the scheduler)
|
|
* - largest bInterval of any active periodic endpoint (to avoid going
|
|
* into lower power link states between intervals).
|
|
* - the U2 Exit Latency of the device
|
|
*/
|
|
static unsigned long long xhci_calculate_intel_u2_timeout(
|
|
struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *desc)
|
|
{
|
|
unsigned long long timeout_ns;
|
|
unsigned long long u2_del_ns;
|
|
|
|
timeout_ns = 10 * 1000 * 1000;
|
|
|
|
if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
|
|
(xhci_service_interval_to_ns(desc) > timeout_ns))
|
|
timeout_ns = xhci_service_interval_to_ns(desc);
|
|
|
|
u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
|
|
if (u2_del_ns > timeout_ns)
|
|
timeout_ns = u2_del_ns;
|
|
|
|
return timeout_ns;
|
|
}
|
|
|
|
/* Returns the hub-encoded U2 timeout value. */
|
|
static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *desc)
|
|
{
|
|
unsigned long long timeout_ns;
|
|
|
|
if (xhci->quirks & XHCI_INTEL_HOST)
|
|
timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
|
|
else
|
|
timeout_ns = udev->u2_params.sel;
|
|
|
|
/* The U2 timeout is encoded in 256us intervals */
|
|
timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
|
|
/* If the necessary timeout value is bigger than what we can set in the
|
|
* USB 3.0 hub, we have to disable hub-initiated U2.
|
|
*/
|
|
if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
|
|
return timeout_ns;
|
|
dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
|
|
"due to long timeout %llu ms\n", timeout_ns);
|
|
return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
|
|
}
|
|
|
|
static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *desc,
|
|
enum usb3_link_state state,
|
|
u16 *timeout)
|
|
{
|
|
if (state == USB3_LPM_U1)
|
|
return xhci_calculate_u1_timeout(xhci, udev, desc);
|
|
else if (state == USB3_LPM_U2)
|
|
return xhci_calculate_u2_timeout(xhci, udev, desc);
|
|
|
|
return USB3_LPM_DISABLED;
|
|
}
|
|
|
|
static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct usb_endpoint_descriptor *desc,
|
|
enum usb3_link_state state,
|
|
u16 *timeout)
|
|
{
|
|
u16 alt_timeout;
|
|
|
|
alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
|
|
desc, state, timeout);
|
|
|
|
/* If we found we can't enable hub-initiated LPM, or
|
|
* the U1 or U2 exit latency was too high to allow
|
|
* device-initiated LPM as well, just stop searching.
|
|
*/
|
|
if (alt_timeout == USB3_LPM_DISABLED ||
|
|
alt_timeout == USB3_LPM_DEVICE_INITIATED) {
|
|
*timeout = alt_timeout;
|
|
return -E2BIG;
|
|
}
|
|
if (alt_timeout > *timeout)
|
|
*timeout = alt_timeout;
|
|
return 0;
|
|
}
|
|
|
|
static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct usb_host_interface *alt,
|
|
enum usb3_link_state state,
|
|
u16 *timeout)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < alt->desc.bNumEndpoints; j++) {
|
|
if (xhci_update_timeout_for_endpoint(xhci, udev,
|
|
&alt->endpoint[j].desc, state, timeout))
|
|
return -E2BIG;
|
|
continue;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int xhci_check_intel_tier_policy(struct usb_device *udev,
|
|
enum usb3_link_state state)
|
|
{
|
|
struct usb_device *parent;
|
|
unsigned int num_hubs;
|
|
|
|
if (state == USB3_LPM_U2)
|
|
return 0;
|
|
|
|
/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
|
|
for (parent = udev->parent, num_hubs = 0; parent->parent;
|
|
parent = parent->parent)
|
|
num_hubs++;
|
|
|
|
if (num_hubs < 2)
|
|
return 0;
|
|
|
|
dev_dbg(&udev->dev, "Disabling U1 link state for device"
|
|
" below second-tier hub.\n");
|
|
dev_dbg(&udev->dev, "Plug device into first-tier hub "
|
|
"to decrease power consumption.\n");
|
|
return -E2BIG;
|
|
}
|
|
|
|
static int xhci_check_tier_policy(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
enum usb3_link_state state)
|
|
{
|
|
if (xhci->quirks & XHCI_INTEL_HOST)
|
|
return xhci_check_intel_tier_policy(udev, state);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Returns the U1 or U2 timeout that should be enabled.
|
|
* If the tier check or timeout setting functions return with a non-zero exit
|
|
* code, that means the timeout value has been finalized and we shouldn't look
|
|
* at any more endpoints.
|
|
*/
|
|
static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
|
|
struct usb_device *udev, enum usb3_link_state state)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
struct usb_host_config *config;
|
|
char *state_name;
|
|
int i;
|
|
u16 timeout = USB3_LPM_DISABLED;
|
|
|
|
if (state == USB3_LPM_U1)
|
|
state_name = "U1";
|
|
else if (state == USB3_LPM_U2)
|
|
state_name = "U2";
|
|
else {
|
|
dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
|
|
state);
|
|
return timeout;
|
|
}
|
|
|
|
if (xhci_check_tier_policy(xhci, udev, state) < 0)
|
|
return timeout;
|
|
|
|
/* Gather some information about the currently installed configuration
|
|
* and alternate interface settings.
|
|
*/
|
|
if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
|
|
state, &timeout))
|
|
return timeout;
|
|
|
|
config = udev->actconfig;
|
|
if (!config)
|
|
return timeout;
|
|
|
|
for (i = 0; i < config->desc.bNumInterfaces; i++) {
|
|
struct usb_driver *driver;
|
|
struct usb_interface *intf = config->interface[i];
|
|
|
|
if (!intf)
|
|
continue;
|
|
|
|
/* Check if any currently bound drivers want hub-initiated LPM
|
|
* disabled.
|
|
*/
|
|
if (intf->dev.driver) {
|
|
driver = to_usb_driver(intf->dev.driver);
|
|
if (driver && driver->disable_hub_initiated_lpm) {
|
|
dev_dbg(&udev->dev, "Hub-initiated %s disabled "
|
|
"at request of driver %s\n",
|
|
state_name, driver->name);
|
|
return xhci_get_timeout_no_hub_lpm(udev, state);
|
|
}
|
|
}
|
|
|
|
/* Not sure how this could happen... */
|
|
if (!intf->cur_altsetting)
|
|
continue;
|
|
|
|
if (xhci_update_timeout_for_interface(xhci, udev,
|
|
intf->cur_altsetting,
|
|
state, &timeout))
|
|
return timeout;
|
|
}
|
|
return timeout;
|
|
}
|
|
|
|
static int calculate_max_exit_latency(struct usb_device *udev,
|
|
enum usb3_link_state state_changed,
|
|
u16 hub_encoded_timeout)
|
|
{
|
|
unsigned long long u1_mel_us = 0;
|
|
unsigned long long u2_mel_us = 0;
|
|
unsigned long long mel_us = 0;
|
|
bool disabling_u1;
|
|
bool disabling_u2;
|
|
bool enabling_u1;
|
|
bool enabling_u2;
|
|
|
|
disabling_u1 = (state_changed == USB3_LPM_U1 &&
|
|
hub_encoded_timeout == USB3_LPM_DISABLED);
|
|
disabling_u2 = (state_changed == USB3_LPM_U2 &&
|
|
hub_encoded_timeout == USB3_LPM_DISABLED);
|
|
|
|
enabling_u1 = (state_changed == USB3_LPM_U1 &&
|
|
hub_encoded_timeout != USB3_LPM_DISABLED);
|
|
enabling_u2 = (state_changed == USB3_LPM_U2 &&
|
|
hub_encoded_timeout != USB3_LPM_DISABLED);
|
|
|
|
/* If U1 was already enabled and we're not disabling it,
|
|
* or we're going to enable U1, account for the U1 max exit latency.
|
|
*/
|
|
if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
|
|
enabling_u1)
|
|
u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
|
|
if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
|
|
enabling_u2)
|
|
u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
|
|
|
|
if (u1_mel_us > u2_mel_us)
|
|
mel_us = u1_mel_us;
|
|
else
|
|
mel_us = u2_mel_us;
|
|
/* xHCI host controller max exit latency field is only 16 bits wide. */
|
|
if (mel_us > MAX_EXIT) {
|
|
dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
|
|
"is too big.\n", mel_us);
|
|
return -E2BIG;
|
|
}
|
|
return mel_us;
|
|
}
|
|
|
|
/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
|
|
int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
|
|
struct usb_device *udev, enum usb3_link_state state)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
u16 hub_encoded_timeout;
|
|
int mel;
|
|
int ret;
|
|
|
|
xhci = hcd_to_xhci(hcd);
|
|
/* The LPM timeout values are pretty host-controller specific, so don't
|
|
* enable hub-initiated timeouts unless the vendor has provided
|
|
* information about their timeout algorithm.
|
|
*/
|
|
if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
|
|
!xhci->devs[udev->slot_id])
|
|
return USB3_LPM_DISABLED;
|
|
|
|
hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
|
|
mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
|
|
if (mel < 0) {
|
|
/* Max Exit Latency is too big, disable LPM. */
|
|
hub_encoded_timeout = USB3_LPM_DISABLED;
|
|
mel = 0;
|
|
}
|
|
|
|
ret = xhci_change_max_exit_latency(xhci, udev, mel);
|
|
if (ret)
|
|
return ret;
|
|
return hub_encoded_timeout;
|
|
}
|
|
|
|
int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
|
|
struct usb_device *udev, enum usb3_link_state state)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
u16 mel;
|
|
|
|
xhci = hcd_to_xhci(hcd);
|
|
if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
|
|
!xhci->devs[udev->slot_id])
|
|
return 0;
|
|
|
|
mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
|
|
return xhci_change_max_exit_latency(xhci, udev, mel);
|
|
}
|
|
#else /* CONFIG_PM */
|
|
|
|
int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
|
|
struct usb_device *udev, int enable)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
|
|
struct usb_device *udev, enum usb3_link_state state)
|
|
{
|
|
return USB3_LPM_DISABLED;
|
|
}
|
|
|
|
int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
|
|
struct usb_device *udev, enum usb3_link_state state)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Once a hub descriptor is fetched for a device, we need to update the xHC's
|
|
* internal data structures for the device.
|
|
*/
|
|
int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
|
|
struct usb_tt *tt, gfp_t mem_flags)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
struct xhci_virt_device *vdev;
|
|
struct xhci_command *config_cmd;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
unsigned long flags;
|
|
unsigned think_time;
|
|
int ret;
|
|
|
|
/* Ignore root hubs */
|
|
if (!hdev->parent)
|
|
return 0;
|
|
|
|
vdev = xhci->devs[hdev->slot_id];
|
|
if (!vdev) {
|
|
xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
|
|
return -EINVAL;
|
|
}
|
|
config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
|
|
if (!config_cmd) {
|
|
xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
|
|
return -ENOMEM;
|
|
}
|
|
ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
|
|
__func__);
|
|
xhci_free_command(xhci, config_cmd);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (hdev->speed == USB_SPEED_HIGH &&
|
|
xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
|
|
xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
|
|
xhci_free_command(xhci, config_cmd);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
|
|
ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
|
|
slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
|
|
slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
|
|
/*
|
|
* refer to section 6.2.2: MTT should be 0 for full speed hub,
|
|
* but it may be already set to 1 when setup an xHCI virtual
|
|
* device, so clear it anyway.
|
|
*/
|
|
if (tt->multi)
|
|
slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
|
|
else if (hdev->speed == USB_SPEED_FULL)
|
|
slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
|
|
|
|
if (xhci->hci_version > 0x95) {
|
|
xhci_dbg(xhci, "xHCI version %x needs hub "
|
|
"TT think time and number of ports\n",
|
|
(unsigned int) xhci->hci_version);
|
|
slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
|
|
/* Set TT think time - convert from ns to FS bit times.
|
|
* 0 = 8 FS bit times, 1 = 16 FS bit times,
|
|
* 2 = 24 FS bit times, 3 = 32 FS bit times.
|
|
*
|
|
* xHCI 1.0: this field shall be 0 if the device is not a
|
|
* High-spped hub.
|
|
*/
|
|
think_time = tt->think_time;
|
|
if (think_time != 0)
|
|
think_time = (think_time / 666) - 1;
|
|
if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
|
|
slot_ctx->tt_info |=
|
|
cpu_to_le32(TT_THINK_TIME(think_time));
|
|
} else {
|
|
xhci_dbg(xhci, "xHCI version %x doesn't need hub "
|
|
"TT think time or number of ports\n",
|
|
(unsigned int) xhci->hci_version);
|
|
}
|
|
slot_ctx->dev_state = 0;
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
xhci_dbg(xhci, "Set up %s for hub device.\n",
|
|
(xhci->hci_version > 0x95) ?
|
|
"configure endpoint" : "evaluate context");
|
|
xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
|
|
xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
|
|
|
|
/* Issue and wait for the configure endpoint or
|
|
* evaluate context command.
|
|
*/
|
|
if (xhci->hci_version > 0x95)
|
|
ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
|
|
false, false);
|
|
else
|
|
ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
|
|
true, false);
|
|
|
|
xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
|
|
xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
|
|
|
|
xhci_free_command(xhci, config_cmd);
|
|
return ret;
|
|
}
|
|
|
|
int xhci_get_frame(struct usb_hcd *hcd)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
/* EHCI mods by the periodic size. Why? */
|
|
return readl(&xhci->run_regs->microframe_index) >> 3;
|
|
}
|
|
|
|
int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct device *dev = hcd->self.controller;
|
|
int retval;
|
|
|
|
/* Accept arbitrarily long scatter-gather lists */
|
|
hcd->self.sg_tablesize = ~0;
|
|
|
|
/* support to build packet from discontinuous buffers */
|
|
hcd->self.no_sg_constraint = 1;
|
|
|
|
/* XHCI controllers don't stop the ep queue on short packets :| */
|
|
hcd->self.no_stop_on_short = 1;
|
|
|
|
xhci = hcd_to_xhci(hcd);
|
|
|
|
if (usb_hcd_is_primary_hcd(hcd)) {
|
|
xhci->main_hcd = hcd;
|
|
/* Mark the first roothub as being USB 2.0.
|
|
* The xHCI driver will register the USB 3.0 roothub.
|
|
*/
|
|
hcd->speed = HCD_USB2;
|
|
hcd->self.root_hub->speed = USB_SPEED_HIGH;
|
|
/*
|
|
* USB 2.0 roothub under xHCI has an integrated TT,
|
|
* (rate matching hub) as opposed to having an OHCI/UHCI
|
|
* companion controller.
|
|
*/
|
|
hcd->has_tt = 1;
|
|
} else {
|
|
if (xhci->sbrn == 0x31) {
|
|
xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
|
|
hcd->speed = HCD_USB31;
|
|
hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
|
|
}
|
|
/* xHCI private pointer was set in xhci_pci_probe for the second
|
|
* registered roothub.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
mutex_init(&xhci->mutex);
|
|
xhci->cap_regs = hcd->regs;
|
|
xhci->op_regs = hcd->regs +
|
|
HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
|
|
xhci->run_regs = hcd->regs +
|
|
(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
|
|
/* Cache read-only capability registers */
|
|
xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
|
|
xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
|
|
xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
|
|
xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
|
|
xhci->hci_version = HC_VERSION(xhci->hcc_params);
|
|
xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
|
|
if (xhci->hci_version > 0x100)
|
|
xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
|
|
xhci_print_registers(xhci);
|
|
|
|
xhci->quirks |= quirks;
|
|
|
|
get_quirks(dev, xhci);
|
|
|
|
/* In xhci controllers which follow xhci 1.0 spec gives a spurious
|
|
* success event after a short transfer. This quirk will ignore such
|
|
* spurious event.
|
|
*/
|
|
if (xhci->hci_version > 0x96)
|
|
xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
|
|
|
|
/* Make sure the HC is halted. */
|
|
retval = xhci_halt(xhci);
|
|
if (retval)
|
|
return retval;
|
|
|
|
xhci_dbg(xhci, "Resetting HCD\n");
|
|
/* Reset the internal HC memory state and registers. */
|
|
retval = xhci_reset(xhci);
|
|
if (retval)
|
|
return retval;
|
|
xhci_dbg(xhci, "Reset complete\n");
|
|
|
|
/*
|
|
* On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
|
|
* of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
|
|
* address memory pointers actually. So, this driver clears the AC64
|
|
* bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
|
|
* DMA_BIT_MASK(32)) in this xhci_gen_setup().
|
|
*/
|
|
if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
|
|
xhci->hcc_params &= ~BIT(0);
|
|
|
|
/* Set dma_mask and coherent_dma_mask to 64-bits,
|
|
* if xHC supports 64-bit addressing */
|
|
if (HCC_64BIT_ADDR(xhci->hcc_params) &&
|
|
!dma_set_mask(dev, DMA_BIT_MASK(64))) {
|
|
xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
|
|
dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
|
|
} else {
|
|
/*
|
|
* This is to avoid error in cases where a 32-bit USB
|
|
* controller is used on a 64-bit capable system.
|
|
*/
|
|
retval = dma_set_mask(dev, DMA_BIT_MASK(32));
|
|
if (retval)
|
|
return retval;
|
|
xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
|
|
dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
|
|
}
|
|
|
|
xhci_dbg(xhci, "Calling HCD init\n");
|
|
/* Initialize HCD and host controller data structures. */
|
|
retval = xhci_init(hcd);
|
|
if (retval)
|
|
return retval;
|
|
xhci_dbg(xhci, "Called HCD init\n");
|
|
|
|
xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
|
|
xhci->hcc_params, xhci->hci_version, xhci->quirks);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xhci_gen_setup);
|
|
|
|
static const struct hc_driver xhci_hc_driver = {
|
|
.description = "xhci-hcd",
|
|
.product_desc = "xHCI Host Controller",
|
|
.hcd_priv_size = sizeof(struct xhci_hcd),
|
|
|
|
/*
|
|
* generic hardware linkage
|
|
*/
|
|
.irq = xhci_irq,
|
|
.flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
|
|
|
|
/*
|
|
* basic lifecycle operations
|
|
*/
|
|
.reset = NULL, /* set in xhci_init_driver() */
|
|
.start = xhci_run,
|
|
.stop = xhci_stop,
|
|
.shutdown = xhci_shutdown,
|
|
|
|
/*
|
|
* managing i/o requests and associated device resources
|
|
*/
|
|
.urb_enqueue = xhci_urb_enqueue,
|
|
.urb_dequeue = xhci_urb_dequeue,
|
|
.alloc_dev = xhci_alloc_dev,
|
|
.free_dev = xhci_free_dev,
|
|
.alloc_streams = xhci_alloc_streams,
|
|
.free_streams = xhci_free_streams,
|
|
.add_endpoint = xhci_add_endpoint,
|
|
.drop_endpoint = xhci_drop_endpoint,
|
|
.endpoint_reset = xhci_endpoint_reset,
|
|
.check_bandwidth = xhci_check_bandwidth,
|
|
.reset_bandwidth = xhci_reset_bandwidth,
|
|
.address_device = xhci_address_device,
|
|
.enable_device = xhci_enable_device,
|
|
.update_hub_device = xhci_update_hub_device,
|
|
.reset_device = xhci_discover_or_reset_device,
|
|
|
|
/*
|
|
* scheduling support
|
|
*/
|
|
.get_frame_number = xhci_get_frame,
|
|
|
|
/*
|
|
* root hub support
|
|
*/
|
|
.hub_control = xhci_hub_control,
|
|
.hub_status_data = xhci_hub_status_data,
|
|
.bus_suspend = xhci_bus_suspend,
|
|
.bus_resume = xhci_bus_resume,
|
|
|
|
/*
|
|
* call back when device connected and addressed
|
|
*/
|
|
.update_device = xhci_update_device,
|
|
.set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
|
|
.enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
|
|
.disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
|
|
.find_raw_port_number = xhci_find_raw_port_number,
|
|
};
|
|
|
|
void xhci_init_driver(struct hc_driver *drv,
|
|
const struct xhci_driver_overrides *over)
|
|
{
|
|
BUG_ON(!over);
|
|
|
|
/* Copy the generic table to drv then apply the overrides */
|
|
*drv = xhci_hc_driver;
|
|
|
|
if (over) {
|
|
drv->hcd_priv_size += over->extra_priv_size;
|
|
if (over->reset)
|
|
drv->reset = over->reset;
|
|
if (over->start)
|
|
drv->start = over->start;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(xhci_init_driver);
|
|
|
|
MODULE_DESCRIPTION(DRIVER_DESC);
|
|
MODULE_AUTHOR(DRIVER_AUTHOR);
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int __init xhci_hcd_init(void)
|
|
{
|
|
/*
|
|
* Check the compiler generated sizes of structures that must be laid
|
|
* out in specific ways for hardware access.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
|
|
/* xhci_device_control has eight fields, and also
|
|
* embeds one xhci_slot_ctx and 31 xhci_ep_ctx
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
|
|
BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
|
|
BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
|
|
/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
|
|
BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
|
|
|
|
if (usb_disabled())
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If an init function is provided, an exit function must also be provided
|
|
* to allow module unload.
|
|
*/
|
|
static void __exit xhci_hcd_fini(void) { }
|
|
|
|
module_init(xhci_hcd_init);
|
|
module_exit(xhci_hcd_fini);
|