519e96ee11
When calling debugfs functions, there is no need to ever check the return value. The function can work or not, but the code logic should never do something different based on this. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <x86@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
596 lines
16 KiB
C
596 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/**
|
|
* imr.c -- Intel Isolated Memory Region driver
|
|
*
|
|
* Copyright(c) 2013 Intel Corporation.
|
|
* Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
|
|
*
|
|
* IMR registers define an isolated region of memory that can
|
|
* be masked to prohibit certain system agents from accessing memory.
|
|
* When a device behind a masked port performs an access - snooped or
|
|
* not, an IMR may optionally prevent that transaction from changing
|
|
* the state of memory or from getting correct data in response to the
|
|
* operation.
|
|
*
|
|
* Write data will be dropped and reads will return 0xFFFFFFFF, the
|
|
* system will reset and system BIOS will print out an error message to
|
|
* inform the user that an IMR has been violated.
|
|
*
|
|
* This code is based on the Linux MTRR code and reference code from
|
|
* Intel's Quark BSP EFI, Linux and grub code.
|
|
*
|
|
* See quark-x1000-datasheet.pdf for register definitions.
|
|
* http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <asm-generic/sections.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/imr.h>
|
|
#include <asm/iosf_mbi.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/types.h>
|
|
|
|
struct imr_device {
|
|
bool init;
|
|
struct mutex lock;
|
|
int max_imr;
|
|
int reg_base;
|
|
};
|
|
|
|
static struct imr_device imr_dev;
|
|
|
|
/*
|
|
* IMR read/write mask control registers.
|
|
* See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
|
|
* bit definitions.
|
|
*
|
|
* addr_hi
|
|
* 31 Lock bit
|
|
* 30:24 Reserved
|
|
* 23:2 1 KiB aligned lo address
|
|
* 1:0 Reserved
|
|
*
|
|
* addr_hi
|
|
* 31:24 Reserved
|
|
* 23:2 1 KiB aligned hi address
|
|
* 1:0 Reserved
|
|
*/
|
|
#define IMR_LOCK BIT(31)
|
|
|
|
struct imr_regs {
|
|
u32 addr_lo;
|
|
u32 addr_hi;
|
|
u32 rmask;
|
|
u32 wmask;
|
|
};
|
|
|
|
#define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32))
|
|
#define IMR_SHIFT 8
|
|
#define imr_to_phys(x) ((x) << IMR_SHIFT)
|
|
#define phys_to_imr(x) ((x) >> IMR_SHIFT)
|
|
|
|
/**
|
|
* imr_is_enabled - true if an IMR is enabled false otherwise.
|
|
*
|
|
* Determines if an IMR is enabled based on address range and read/write
|
|
* mask. An IMR set with an address range set to zero and a read/write
|
|
* access mask set to all is considered to be disabled. An IMR in any
|
|
* other state - for example set to zero but without read/write access
|
|
* all is considered to be enabled. This definition of disabled is how
|
|
* firmware switches off an IMR and is maintained in kernel for
|
|
* consistency.
|
|
*
|
|
* @imr: pointer to IMR descriptor.
|
|
* @return: true if IMR enabled false if disabled.
|
|
*/
|
|
static inline int imr_is_enabled(struct imr_regs *imr)
|
|
{
|
|
return !(imr->rmask == IMR_READ_ACCESS_ALL &&
|
|
imr->wmask == IMR_WRITE_ACCESS_ALL &&
|
|
imr_to_phys(imr->addr_lo) == 0 &&
|
|
imr_to_phys(imr->addr_hi) == 0);
|
|
}
|
|
|
|
/**
|
|
* imr_read - read an IMR at a given index.
|
|
*
|
|
* Requires caller to hold imr mutex.
|
|
*
|
|
* @idev: pointer to imr_device structure.
|
|
* @imr_id: IMR entry to read.
|
|
* @imr: IMR structure representing address and access masks.
|
|
* @return: 0 on success or error code passed from mbi_iosf on failure.
|
|
*/
|
|
static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
|
|
{
|
|
u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
|
|
int ret;
|
|
|
|
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
|
|
}
|
|
|
|
/**
|
|
* imr_write - write an IMR at a given index.
|
|
*
|
|
* Requires caller to hold imr mutex.
|
|
* Note lock bits need to be written independently of address bits.
|
|
*
|
|
* @idev: pointer to imr_device structure.
|
|
* @imr_id: IMR entry to write.
|
|
* @imr: IMR structure representing address and access masks.
|
|
* @return: 0 on success or error code passed from mbi_iosf on failure.
|
|
*/
|
|
static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
|
|
{
|
|
unsigned long flags;
|
|
u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
|
|
int ret;
|
|
|
|
local_irq_save(flags);
|
|
|
|
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
|
|
if (ret)
|
|
goto failed;
|
|
|
|
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
|
|
if (ret)
|
|
goto failed;
|
|
|
|
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
|
|
if (ret)
|
|
goto failed;
|
|
|
|
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
|
|
if (ret)
|
|
goto failed;
|
|
|
|
local_irq_restore(flags);
|
|
return 0;
|
|
failed:
|
|
/*
|
|
* If writing to the IOSF failed then we're in an unknown state,
|
|
* likely a very bad state. An IMR in an invalid state will almost
|
|
* certainly lead to a memory access violation.
|
|
*/
|
|
local_irq_restore(flags);
|
|
WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
|
|
imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* imr_dbgfs_state_show - print state of IMR registers.
|
|
*
|
|
* @s: pointer to seq_file for output.
|
|
* @unused: unused parameter.
|
|
* @return: 0 on success or error code passed from mbi_iosf on failure.
|
|
*/
|
|
static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
|
|
{
|
|
phys_addr_t base;
|
|
phys_addr_t end;
|
|
int i;
|
|
struct imr_device *idev = s->private;
|
|
struct imr_regs imr;
|
|
size_t size;
|
|
int ret = -ENODEV;
|
|
|
|
mutex_lock(&idev->lock);
|
|
|
|
for (i = 0; i < idev->max_imr; i++) {
|
|
|
|
ret = imr_read(idev, i, &imr);
|
|
if (ret)
|
|
break;
|
|
|
|
/*
|
|
* Remember to add IMR_ALIGN bytes to size to indicate the
|
|
* inherent IMR_ALIGN size bytes contained in the masked away
|
|
* lower ten bits.
|
|
*/
|
|
if (imr_is_enabled(&imr)) {
|
|
base = imr_to_phys(imr.addr_lo);
|
|
end = imr_to_phys(imr.addr_hi) + IMR_MASK;
|
|
size = end - base + 1;
|
|
} else {
|
|
base = 0;
|
|
end = 0;
|
|
size = 0;
|
|
}
|
|
seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
|
|
"rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
|
|
&base, &end, size, imr.rmask, imr.wmask,
|
|
imr_is_enabled(&imr) ? "enabled " : "disabled",
|
|
imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
|
|
}
|
|
|
|
mutex_unlock(&idev->lock);
|
|
return ret;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(imr_dbgfs_state);
|
|
|
|
/**
|
|
* imr_debugfs_register - register debugfs hooks.
|
|
*
|
|
* @idev: pointer to imr_device structure.
|
|
*/
|
|
static void imr_debugfs_register(struct imr_device *idev)
|
|
{
|
|
debugfs_create_file("imr_state", 0444, NULL, idev,
|
|
&imr_dbgfs_state_fops);
|
|
}
|
|
|
|
/**
|
|
* imr_check_params - check passed address range IMR alignment and non-zero size
|
|
*
|
|
* @base: base address of intended IMR.
|
|
* @size: size of intended IMR.
|
|
* @return: zero on valid range -EINVAL on unaligned base/size.
|
|
*/
|
|
static int imr_check_params(phys_addr_t base, size_t size)
|
|
{
|
|
if ((base & IMR_MASK) || (size & IMR_MASK)) {
|
|
pr_err("base %pa size 0x%08zx must align to 1KiB\n",
|
|
&base, size);
|
|
return -EINVAL;
|
|
}
|
|
if (size == 0)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
|
|
*
|
|
* IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
|
|
* value in the register. We need to subtract IMR_ALIGN bytes from input sizes
|
|
* as a result.
|
|
*
|
|
* @size: input size bytes.
|
|
* @return: reduced size.
|
|
*/
|
|
static inline size_t imr_raw_size(size_t size)
|
|
{
|
|
return size - IMR_ALIGN;
|
|
}
|
|
|
|
/**
|
|
* imr_address_overlap - detects an address overlap.
|
|
*
|
|
* @addr: address to check against an existing IMR.
|
|
* @imr: imr being checked.
|
|
* @return: true for overlap false for no overlap.
|
|
*/
|
|
static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
|
|
{
|
|
return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
|
|
}
|
|
|
|
/**
|
|
* imr_add_range - add an Isolated Memory Region.
|
|
*
|
|
* @base: physical base address of region aligned to 1KiB.
|
|
* @size: physical size of region in bytes must be aligned to 1KiB.
|
|
* @read_mask: read access mask.
|
|
* @write_mask: write access mask.
|
|
* @return: zero on success or negative value indicating error.
|
|
*/
|
|
int imr_add_range(phys_addr_t base, size_t size,
|
|
unsigned int rmask, unsigned int wmask)
|
|
{
|
|
phys_addr_t end;
|
|
unsigned int i;
|
|
struct imr_device *idev = &imr_dev;
|
|
struct imr_regs imr;
|
|
size_t raw_size;
|
|
int reg;
|
|
int ret;
|
|
|
|
if (WARN_ONCE(idev->init == false, "driver not initialized"))
|
|
return -ENODEV;
|
|
|
|
ret = imr_check_params(base, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Tweak the size value. */
|
|
raw_size = imr_raw_size(size);
|
|
end = base + raw_size;
|
|
|
|
/*
|
|
* Check for reserved IMR value common to firmware, kernel and grub
|
|
* indicating a disabled IMR.
|
|
*/
|
|
imr.addr_lo = phys_to_imr(base);
|
|
imr.addr_hi = phys_to_imr(end);
|
|
imr.rmask = rmask;
|
|
imr.wmask = wmask;
|
|
if (!imr_is_enabled(&imr))
|
|
return -ENOTSUPP;
|
|
|
|
mutex_lock(&idev->lock);
|
|
|
|
/*
|
|
* Find a free IMR while checking for an existing overlapping range.
|
|
* Note there's no restriction in silicon to prevent IMR overlaps.
|
|
* For the sake of simplicity and ease in defining/debugging an IMR
|
|
* memory map we exclude IMR overlaps.
|
|
*/
|
|
reg = -1;
|
|
for (i = 0; i < idev->max_imr; i++) {
|
|
ret = imr_read(idev, i, &imr);
|
|
if (ret)
|
|
goto failed;
|
|
|
|
/* Find overlap @ base or end of requested range. */
|
|
ret = -EINVAL;
|
|
if (imr_is_enabled(&imr)) {
|
|
if (imr_address_overlap(base, &imr))
|
|
goto failed;
|
|
if (imr_address_overlap(end, &imr))
|
|
goto failed;
|
|
} else {
|
|
reg = i;
|
|
}
|
|
}
|
|
|
|
/* Error out if we have no free IMR entries. */
|
|
if (reg == -1) {
|
|
ret = -ENOMEM;
|
|
goto failed;
|
|
}
|
|
|
|
pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
|
|
reg, &base, &end, raw_size, rmask, wmask);
|
|
|
|
/* Enable IMR at specified range and access mask. */
|
|
imr.addr_lo = phys_to_imr(base);
|
|
imr.addr_hi = phys_to_imr(end);
|
|
imr.rmask = rmask;
|
|
imr.wmask = wmask;
|
|
|
|
ret = imr_write(idev, reg, &imr);
|
|
if (ret < 0) {
|
|
/*
|
|
* In the highly unlikely event iosf_mbi_write failed
|
|
* attempt to rollback the IMR setup skipping the trapping
|
|
* of further IOSF write failures.
|
|
*/
|
|
imr.addr_lo = 0;
|
|
imr.addr_hi = 0;
|
|
imr.rmask = IMR_READ_ACCESS_ALL;
|
|
imr.wmask = IMR_WRITE_ACCESS_ALL;
|
|
imr_write(idev, reg, &imr);
|
|
}
|
|
failed:
|
|
mutex_unlock(&idev->lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(imr_add_range);
|
|
|
|
/**
|
|
* __imr_remove_range - delete an Isolated Memory Region.
|
|
*
|
|
* This function allows you to delete an IMR by its index specified by reg or
|
|
* by address range specified by base and size respectively. If you specify an
|
|
* index on its own the base and size parameters are ignored.
|
|
* imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
|
|
* imr_remove_range(-1, base, size); delete IMR from base to base+size.
|
|
*
|
|
* @reg: imr index to remove.
|
|
* @base: physical base address of region aligned to 1 KiB.
|
|
* @size: physical size of region in bytes aligned to 1 KiB.
|
|
* @return: -EINVAL on invalid range or out or range id
|
|
* -ENODEV if reg is valid but no IMR exists or is locked
|
|
* 0 on success.
|
|
*/
|
|
static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
|
|
{
|
|
phys_addr_t end;
|
|
bool found = false;
|
|
unsigned int i;
|
|
struct imr_device *idev = &imr_dev;
|
|
struct imr_regs imr;
|
|
size_t raw_size;
|
|
int ret = 0;
|
|
|
|
if (WARN_ONCE(idev->init == false, "driver not initialized"))
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* Validate address range if deleting by address, else we are
|
|
* deleting by index where base and size will be ignored.
|
|
*/
|
|
if (reg == -1) {
|
|
ret = imr_check_params(base, size);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Tweak the size value. */
|
|
raw_size = imr_raw_size(size);
|
|
end = base + raw_size;
|
|
|
|
mutex_lock(&idev->lock);
|
|
|
|
if (reg >= 0) {
|
|
/* If a specific IMR is given try to use it. */
|
|
ret = imr_read(idev, reg, &imr);
|
|
if (ret)
|
|
goto failed;
|
|
|
|
if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
|
|
ret = -ENODEV;
|
|
goto failed;
|
|
}
|
|
found = true;
|
|
} else {
|
|
/* Search for match based on address range. */
|
|
for (i = 0; i < idev->max_imr; i++) {
|
|
ret = imr_read(idev, i, &imr);
|
|
if (ret)
|
|
goto failed;
|
|
|
|
if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
|
|
continue;
|
|
|
|
if ((imr_to_phys(imr.addr_lo) == base) &&
|
|
(imr_to_phys(imr.addr_hi) == end)) {
|
|
found = true;
|
|
reg = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
ret = -ENODEV;
|
|
goto failed;
|
|
}
|
|
|
|
pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
|
|
|
|
/* Tear down the IMR. */
|
|
imr.addr_lo = 0;
|
|
imr.addr_hi = 0;
|
|
imr.rmask = IMR_READ_ACCESS_ALL;
|
|
imr.wmask = IMR_WRITE_ACCESS_ALL;
|
|
|
|
ret = imr_write(idev, reg, &imr);
|
|
|
|
failed:
|
|
mutex_unlock(&idev->lock);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* imr_remove_range - delete an Isolated Memory Region by address
|
|
*
|
|
* This function allows you to delete an IMR by an address range specified
|
|
* by base and size respectively.
|
|
* imr_remove_range(base, size); delete IMR from base to base+size.
|
|
*
|
|
* @base: physical base address of region aligned to 1 KiB.
|
|
* @size: physical size of region in bytes aligned to 1 KiB.
|
|
* @return: -EINVAL on invalid range or out or range id
|
|
* -ENODEV if reg is valid but no IMR exists or is locked
|
|
* 0 on success.
|
|
*/
|
|
int imr_remove_range(phys_addr_t base, size_t size)
|
|
{
|
|
return __imr_remove_range(-1, base, size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(imr_remove_range);
|
|
|
|
/**
|
|
* imr_clear - delete an Isolated Memory Region by index
|
|
*
|
|
* This function allows you to delete an IMR by an address range specified
|
|
* by the index of the IMR. Useful for initial sanitization of the IMR
|
|
* address map.
|
|
* imr_ge(base, size); delete IMR from base to base+size.
|
|
*
|
|
* @reg: imr index to remove.
|
|
* @return: -EINVAL on invalid range or out or range id
|
|
* -ENODEV if reg is valid but no IMR exists or is locked
|
|
* 0 on success.
|
|
*/
|
|
static inline int imr_clear(int reg)
|
|
{
|
|
return __imr_remove_range(reg, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* imr_fixup_memmap - Tear down IMRs used during bootup.
|
|
*
|
|
* BIOS and Grub both setup IMRs around compressed kernel, initrd memory
|
|
* that need to be removed before the kernel hands out one of the IMR
|
|
* encased addresses to a downstream DMA agent such as the SD or Ethernet.
|
|
* IMRs on Galileo are setup to immediately reset the system on violation.
|
|
* As a result if you're running a root filesystem from SD - you'll need
|
|
* the boot-time IMRs torn down or you'll find seemingly random resets when
|
|
* using your filesystem.
|
|
*
|
|
* @idev: pointer to imr_device structure.
|
|
* @return:
|
|
*/
|
|
static void __init imr_fixup_memmap(struct imr_device *idev)
|
|
{
|
|
phys_addr_t base = virt_to_phys(&_text);
|
|
size_t size = virt_to_phys(&__end_rodata) - base;
|
|
unsigned long start, end;
|
|
int i;
|
|
int ret;
|
|
|
|
/* Tear down all existing unlocked IMRs. */
|
|
for (i = 0; i < idev->max_imr; i++)
|
|
imr_clear(i);
|
|
|
|
start = (unsigned long)_text;
|
|
end = (unsigned long)__end_rodata - 1;
|
|
|
|
/*
|
|
* Setup an unlocked IMR around the physical extent of the kernel
|
|
* from the beginning of the .text secton to the end of the
|
|
* .rodata section as one physically contiguous block.
|
|
*
|
|
* We don't round up @size since it is already PAGE_SIZE aligned.
|
|
* See vmlinux.lds.S for details.
|
|
*/
|
|
ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
|
|
if (ret < 0) {
|
|
pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
|
|
size / 1024, start, end);
|
|
} else {
|
|
pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
|
|
size / 1024, start, end);
|
|
}
|
|
|
|
}
|
|
|
|
static const struct x86_cpu_id imr_ids[] __initconst = {
|
|
{ X86_VENDOR_INTEL, 5, 9 }, /* Intel Quark SoC X1000. */
|
|
{}
|
|
};
|
|
|
|
/**
|
|
* imr_init - entry point for IMR driver.
|
|
*
|
|
* return: -ENODEV for no IMR support 0 if good to go.
|
|
*/
|
|
static int __init imr_init(void)
|
|
{
|
|
struct imr_device *idev = &imr_dev;
|
|
|
|
if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
|
|
return -ENODEV;
|
|
|
|
idev->max_imr = QUARK_X1000_IMR_MAX;
|
|
idev->reg_base = QUARK_X1000_IMR_REGBASE;
|
|
idev->init = true;
|
|
|
|
mutex_init(&idev->lock);
|
|
imr_debugfs_register(idev);
|
|
imr_fixup_memmap(idev);
|
|
return 0;
|
|
}
|
|
device_initcall(imr_init);
|