linux/tools/perf/builtin-kwork.c
Yang Jihong 55c40e5052 perf kwork top: Introduce new top utility
Some common tools for collecting statistics on CPU usage, such as top,
obtain statistics from timer interrupt sampling, and then periodically
read statistics from /proc/stat.

This method has some deviations:

1. In the tick interrupt, the time between the last tick and the current
   tick is counted in the current task. However, the task may be running
   only part of the time.
2. For each task, the top tool periodically reads the /proc/{PID}/status
   information. For tasks with a short life cycle, it may be missed.

In conclusion, the top tool cannot accurately collect statistics on the
CPU usage and running time of tasks.

The statistical method based on sched_switch tracepoint can accurately
calculate the CPU usage of all tasks. This method is applicable to
scenarios where performance comparison data is of high precision.

Example usage:

  # perf kwork

   Usage: perf kwork [<options>] {record|report|latency|timehist|top}

      -D, --dump-raw-trace  dump raw trace in ASCII
      -f, --force           don't complain, do it
      -k, --kwork <kwork>   list of kwork to profile (irq, softirq, workqueue, sched, etc)
      -v, --verbose         be more verbose (show symbol address, etc)

  # perf kwork -k sched record -- perf bench sched messaging -g 1 -l 10000
  # Running 'sched/messaging' benchmark:
  # 20 sender and receiver processes per group
  # 1 groups == 40 processes run

       Total time: 14.074 [sec]
  [ perf record: Woken up 1 times to write data ]
  [ perf record: Captured and wrote 15.886 MB perf.data (129472 samples) ]
  # perf kwork top

  Total  : 115708.178 ms, 8 cpus
  %Cpu(s):   9.78% id
  %Cpu0   [|||||||||||||||||||||||||||     90.55%]
  %Cpu1   [|||||||||||||||||||||||||||     90.51%]
  %Cpu2   [||||||||||||||||||||||||||      88.57%]
  %Cpu3   [|||||||||||||||||||||||||||     91.18%]
  %Cpu4   [|||||||||||||||||||||||||||     91.09%]
  %Cpu5   [|||||||||||||||||||||||||||     90.88%]
  %Cpu6   [||||||||||||||||||||||||||      88.64%]
  %Cpu7   [|||||||||||||||||||||||||||     90.28%]

        PID    %CPU           RUNTIME  COMMMAND
    ----------------------------------------------------
       4113   22.23       3221.547 ms  sched-messaging
       4105   21.61       3131.495 ms  sched-messaging
       4119   21.53       3120.937 ms  sched-messaging
       4103   21.39       3101.614 ms  sched-messaging
       4106   21.37       3095.209 ms  sched-messaging
       4104   21.25       3077.269 ms  sched-messaging
       4115   21.21       3073.188 ms  sched-messaging
       4109   21.18       3069.022 ms  sched-messaging
       4111   20.78       3010.033 ms  sched-messaging
       4114   20.74       3007.073 ms  sched-messaging
       4108   20.73       3002.137 ms  sched-messaging
       4107   20.47       2967.292 ms  sched-messaging
       4117   20.39       2955.335 ms  sched-messaging
       4112   20.34       2947.080 ms  sched-messaging
       4118   20.32       2942.519 ms  sched-messaging
       4121   20.23       2929.865 ms  sched-messaging
       4110   20.22       2930.078 ms  sched-messaging
       4122   20.15       2919.542 ms  sched-messaging
       4120   19.77       2866.032 ms  sched-messaging
       4116   19.72       2857.660 ms  sched-messaging
       4127   16.19       2346.334 ms  sched-messaging
       4142   15.86       2297.600 ms  sched-messaging
       4141   15.62       2262.646 ms  sched-messaging
       4136   15.41       2231.408 ms  sched-messaging
       4130   15.38       2227.008 ms  sched-messaging
       4129   15.31       2217.692 ms  sched-messaging
       4126   15.21       2201.711 ms  sched-messaging
       4139   15.19       2200.722 ms  sched-messaging
       4137   15.10       2188.633 ms  sched-messaging
       4134   15.06       2182.082 ms  sched-messaging
       4132   15.02       2177.530 ms  sched-messaging
       4131   14.73       2131.973 ms  sched-messaging
       4125   14.68       2125.439 ms  sched-messaging
       4128   14.66       2122.255 ms  sched-messaging
       4123   14.65       2122.113 ms  sched-messaging
       4135   14.56       2107.144 ms  sched-messaging
       4133   14.51       2103.549 ms  sched-messaging
       4124   14.27       2066.671 ms  sched-messaging
       4140   14.17       2052.251 ms  sched-messaging
       4138   13.81       2000.361 ms  sched-messaging
          0   11.42       1652.009 ms  swapper/2
          0   11.35       1641.694 ms  swapper/6
          0    9.71       1405.108 ms  swapper/7
          0    9.48       1372.338 ms  swapper/1
          0    9.44       1366.013 ms  swapper/0
          0    9.11       1318.382 ms  swapper/5
          0    8.90       1287.582 ms  swapper/4
          0    8.81       1274.356 ms  swapper/3
       4100    2.61        379.328 ms  perf
       4101    1.16        169.487 ms  perf-exec
        151    0.65         94.741 ms  systemd-resolve
        249    0.36         53.030 ms  sd-resolve
        153    0.14         21.405 ms  systemd-timesyn
          1    0.10         16.200 ms  systemd
         16    0.09         15.785 ms  rcu_preempt
       4102    0.06          9.727 ms  perf
       4095    0.03          5.464 ms  kworker/7:1
         98    0.02          3.231 ms  jbd2/sda-8
        353    0.02          4.115 ms  sshd
         75    0.02          3.889 ms  kworker/2:1
         73    0.01          1.552 ms  kworker/5:1
         64    0.01          1.591 ms  kworker/4:1
         74    0.01          1.952 ms  kworker/3:1
         61    0.01          2.608 ms  kcompactd0
        397    0.01          1.602 ms  kworker/1:1
         69    0.01          1.817 ms  kworker/1:1H
         10    0.01          2.553 ms  kworker/u16:0
       2909    0.01          2.684 ms  kworker/0:2
       1211    0.00          0.426 ms  kworker/7:0
         97    0.00          0.153 ms  kworker/7:1H
         51    0.00          0.100 ms  ksoftirqd/7
        120    0.00          0.856 ms  systemd-journal
         76    0.00          1.414 ms  kworker/6:1
         46    0.00          0.246 ms  ksoftirqd/6
         45    0.00          0.164 ms  migration/6
         41    0.00          0.098 ms  ksoftirqd/5
         40    0.00          0.207 ms  migration/5
         86    0.00          1.339 ms  kworker/4:1H
         36    0.00          0.252 ms  ksoftirqd/4
         35    0.00          0.090 ms  migration/4
         31    0.00          0.156 ms  ksoftirqd/3
         30    0.00          0.073 ms  migration/3
         26    0.00          0.180 ms  ksoftirqd/2
         25    0.00          0.085 ms  migration/2
         21    0.00          0.106 ms  ksoftirqd/1
         20    0.00          0.118 ms  migration/1
        302    0.00          1.440 ms  systemd-logind
         17    0.00          0.132 ms  migration/0
         15    0.00          0.255 ms  ksoftirqd/0

Reviewed-by: Ian Rogers <irogers@google.com>
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Link: https://lore.kernel.org/r/20230812084917.169338-10-yangjihong1@huawei.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-09-12 17:31:59 -03:00

2323 lines
58 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* builtin-kwork.c
*
* Copyright (c) 2022 Huawei Inc, Yang Jihong <yangjihong1@huawei.com>
*/
#include "builtin.h"
#include "util/data.h"
#include "util/evlist.h"
#include "util/evsel.h"
#include "util/header.h"
#include "util/kwork.h"
#include "util/debug.h"
#include "util/session.h"
#include "util/symbol.h"
#include "util/thread.h"
#include "util/string2.h"
#include "util/callchain.h"
#include "util/evsel_fprintf.h"
#include "util/util.h"
#include <subcmd/pager.h>
#include <subcmd/parse-options.h>
#include <traceevent/event-parse.h>
#include <errno.h>
#include <inttypes.h>
#include <signal.h>
#include <linux/err.h>
#include <linux/time64.h>
#include <linux/zalloc.h>
/*
* report header elements width
*/
#define PRINT_CPU_WIDTH 4
#define PRINT_COUNT_WIDTH 9
#define PRINT_RUNTIME_WIDTH 10
#define PRINT_LATENCY_WIDTH 10
#define PRINT_TIMESTAMP_WIDTH 17
#define PRINT_KWORK_NAME_WIDTH 30
#define RPINT_DECIMAL_WIDTH 3
#define PRINT_BRACKETPAIR_WIDTH 2
#define PRINT_TIME_UNIT_SEC_WIDTH 2
#define PRINT_TIME_UNIT_MESC_WIDTH 3
#define PRINT_PID_WIDTH 7
#define PRINT_TASK_NAME_WIDTH 16
#define PRINT_CPU_USAGE_WIDTH 6
#define PRINT_CPU_USAGE_DECIMAL_WIDTH 2
#define PRINT_CPU_USAGE_HIST_WIDTH 30
#define PRINT_RUNTIME_HEADER_WIDTH (PRINT_RUNTIME_WIDTH + PRINT_TIME_UNIT_MESC_WIDTH)
#define PRINT_LATENCY_HEADER_WIDTH (PRINT_LATENCY_WIDTH + PRINT_TIME_UNIT_MESC_WIDTH)
#define PRINT_TIMEHIST_CPU_WIDTH (PRINT_CPU_WIDTH + PRINT_BRACKETPAIR_WIDTH)
#define PRINT_TIMESTAMP_HEADER_WIDTH (PRINT_TIMESTAMP_WIDTH + PRINT_TIME_UNIT_SEC_WIDTH)
struct sort_dimension {
const char *name;
int (*cmp)(struct kwork_work *l, struct kwork_work *r);
struct list_head list;
};
static int id_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->cpu > r->cpu)
return 1;
if (l->cpu < r->cpu)
return -1;
if (l->id > r->id)
return 1;
if (l->id < r->id)
return -1;
return 0;
}
static int count_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->nr_atoms > r->nr_atoms)
return 1;
if (l->nr_atoms < r->nr_atoms)
return -1;
return 0;
}
static int runtime_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->total_runtime > r->total_runtime)
return 1;
if (l->total_runtime < r->total_runtime)
return -1;
return 0;
}
static int max_runtime_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->max_runtime > r->max_runtime)
return 1;
if (l->max_runtime < r->max_runtime)
return -1;
return 0;
}
static int avg_latency_cmp(struct kwork_work *l, struct kwork_work *r)
{
u64 avgl, avgr;
if (!r->nr_atoms)
return 1;
if (!l->nr_atoms)
return -1;
avgl = l->total_latency / l->nr_atoms;
avgr = r->total_latency / r->nr_atoms;
if (avgl > avgr)
return 1;
if (avgl < avgr)
return -1;
return 0;
}
static int max_latency_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->max_latency > r->max_latency)
return 1;
if (l->max_latency < r->max_latency)
return -1;
return 0;
}
static int cpu_usage_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->cpu_usage > r->cpu_usage)
return 1;
if (l->cpu_usage < r->cpu_usage)
return -1;
return 0;
}
static int sort_dimension__add(struct perf_kwork *kwork __maybe_unused,
const char *tok, struct list_head *list)
{
size_t i;
static struct sort_dimension max_sort_dimension = {
.name = "max",
.cmp = max_runtime_cmp,
};
static struct sort_dimension id_sort_dimension = {
.name = "id",
.cmp = id_cmp,
};
static struct sort_dimension runtime_sort_dimension = {
.name = "runtime",
.cmp = runtime_cmp,
};
static struct sort_dimension count_sort_dimension = {
.name = "count",
.cmp = count_cmp,
};
static struct sort_dimension avg_sort_dimension = {
.name = "avg",
.cmp = avg_latency_cmp,
};
static struct sort_dimension rate_sort_dimension = {
.name = "rate",
.cmp = cpu_usage_cmp,
};
struct sort_dimension *available_sorts[] = {
&id_sort_dimension,
&max_sort_dimension,
&count_sort_dimension,
&runtime_sort_dimension,
&avg_sort_dimension,
&rate_sort_dimension,
};
if (kwork->report == KWORK_REPORT_LATENCY)
max_sort_dimension.cmp = max_latency_cmp;
for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
if (!strcmp(available_sorts[i]->name, tok)) {
list_add_tail(&available_sorts[i]->list, list);
return 0;
}
}
return -1;
}
static void setup_sorting(struct perf_kwork *kwork,
const struct option *options,
const char * const usage_msg[])
{
char *tmp, *tok, *str = strdup(kwork->sort_order);
for (tok = strtok_r(str, ", ", &tmp);
tok; tok = strtok_r(NULL, ", ", &tmp)) {
if (sort_dimension__add(kwork, tok, &kwork->sort_list) < 0)
usage_with_options_msg(usage_msg, options,
"Unknown --sort key: `%s'", tok);
}
pr_debug("Sort order: %s\n", kwork->sort_order);
free(str);
}
static struct kwork_atom *atom_new(struct perf_kwork *kwork,
struct perf_sample *sample)
{
unsigned long i;
struct kwork_atom_page *page;
struct kwork_atom *atom = NULL;
list_for_each_entry(page, &kwork->atom_page_list, list) {
if (!bitmap_full(page->bitmap, NR_ATOM_PER_PAGE)) {
i = find_first_zero_bit(page->bitmap, NR_ATOM_PER_PAGE);
BUG_ON(i >= NR_ATOM_PER_PAGE);
atom = &page->atoms[i];
goto found_atom;
}
}
/*
* new page
*/
page = zalloc(sizeof(*page));
if (page == NULL) {
pr_err("Failed to zalloc kwork atom page\n");
return NULL;
}
i = 0;
atom = &page->atoms[0];
list_add_tail(&page->list, &kwork->atom_page_list);
found_atom:
__set_bit(i, page->bitmap);
atom->time = sample->time;
atom->prev = NULL;
atom->page_addr = page;
atom->bit_inpage = i;
return atom;
}
static void atom_free(struct kwork_atom *atom)
{
if (atom->prev != NULL)
atom_free(atom->prev);
__clear_bit(atom->bit_inpage,
((struct kwork_atom_page *)atom->page_addr)->bitmap);
}
static void atom_del(struct kwork_atom *atom)
{
list_del(&atom->list);
atom_free(atom);
}
static int work_cmp(struct list_head *list,
struct kwork_work *l, struct kwork_work *r)
{
int ret = 0;
struct sort_dimension *sort;
BUG_ON(list_empty(list));
list_for_each_entry(sort, list, list) {
ret = sort->cmp(l, r);
if (ret)
return ret;
}
return ret;
}
static struct kwork_work *work_search(struct rb_root_cached *root,
struct kwork_work *key,
struct list_head *sort_list)
{
int cmp;
struct kwork_work *work;
struct rb_node *node = root->rb_root.rb_node;
while (node) {
work = container_of(node, struct kwork_work, node);
cmp = work_cmp(sort_list, key, work);
if (cmp > 0)
node = node->rb_left;
else if (cmp < 0)
node = node->rb_right;
else {
if (work->name == NULL)
work->name = key->name;
return work;
}
}
return NULL;
}
static void work_insert(struct rb_root_cached *root,
struct kwork_work *key, struct list_head *sort_list)
{
int cmp;
bool leftmost = true;
struct kwork_work *cur;
struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
while (*new) {
cur = container_of(*new, struct kwork_work, node);
parent = *new;
cmp = work_cmp(sort_list, key, cur);
if (cmp > 0)
new = &((*new)->rb_left);
else {
new = &((*new)->rb_right);
leftmost = false;
}
}
rb_link_node(&key->node, parent, new);
rb_insert_color_cached(&key->node, root, leftmost);
}
static struct kwork_work *work_new(struct kwork_work *key)
{
int i;
struct kwork_work *work = zalloc(sizeof(*work));
if (work == NULL) {
pr_err("Failed to zalloc kwork work\n");
return NULL;
}
for (i = 0; i < KWORK_TRACE_MAX; i++)
INIT_LIST_HEAD(&work->atom_list[i]);
work->id = key->id;
work->cpu = key->cpu;
work->name = key->name;
work->class = key->class;
return work;
}
static struct kwork_work *work_findnew(struct rb_root_cached *root,
struct kwork_work *key,
struct list_head *sort_list)
{
struct kwork_work *work = work_search(root, key, sort_list);
if (work != NULL)
return work;
work = work_new(key);
if (work)
work_insert(root, work, sort_list);
return work;
}
static void profile_update_timespan(struct perf_kwork *kwork,
struct perf_sample *sample)
{
if (!kwork->summary)
return;
if ((kwork->timestart == 0) || (kwork->timestart > sample->time))
kwork->timestart = sample->time;
if (kwork->timeend < sample->time)
kwork->timeend = sample->time;
}
static bool profile_event_match(struct perf_kwork *kwork,
struct kwork_work *work,
struct perf_sample *sample)
{
int cpu = work->cpu;
u64 time = sample->time;
struct perf_time_interval *ptime = &kwork->ptime;
if ((kwork->cpu_list != NULL) && !test_bit(cpu, kwork->cpu_bitmap))
return false;
if (((ptime->start != 0) && (ptime->start > time)) ||
((ptime->end != 0) && (ptime->end < time)))
return false;
if ((kwork->profile_name != NULL) &&
(work->name != NULL) &&
(strcmp(work->name, kwork->profile_name) != 0))
return false;
profile_update_timespan(kwork, sample);
return true;
}
static int work_push_atom(struct perf_kwork *kwork,
struct kwork_class *class,
enum kwork_trace_type src_type,
enum kwork_trace_type dst_type,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine,
struct kwork_work **ret_work,
bool overwrite)
{
struct kwork_atom *atom, *dst_atom, *last_atom;
struct kwork_work *work, key;
BUG_ON(class->work_init == NULL);
class->work_init(kwork, class, &key, src_type, evsel, sample, machine);
atom = atom_new(kwork, sample);
if (atom == NULL)
return -1;
work = work_findnew(&class->work_root, &key, &kwork->cmp_id);
if (work == NULL) {
atom_free(atom);
return -1;
}
if (!profile_event_match(kwork, work, sample)) {
atom_free(atom);
return 0;
}
if (dst_type < KWORK_TRACE_MAX) {
dst_atom = list_last_entry_or_null(&work->atom_list[dst_type],
struct kwork_atom, list);
if (dst_atom != NULL) {
atom->prev = dst_atom;
list_del(&dst_atom->list);
}
}
if (ret_work != NULL)
*ret_work = work;
if (overwrite) {
last_atom = list_last_entry_or_null(&work->atom_list[src_type],
struct kwork_atom, list);
if (last_atom) {
atom_del(last_atom);
kwork->nr_skipped_events[src_type]++;
kwork->nr_skipped_events[KWORK_TRACE_MAX]++;
}
}
list_add_tail(&atom->list, &work->atom_list[src_type]);
return 0;
}
static struct kwork_atom *work_pop_atom(struct perf_kwork *kwork,
struct kwork_class *class,
enum kwork_trace_type src_type,
enum kwork_trace_type dst_type,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine,
struct kwork_work **ret_work)
{
struct kwork_atom *atom, *src_atom;
struct kwork_work *work, key;
BUG_ON(class->work_init == NULL);
class->work_init(kwork, class, &key, src_type, evsel, sample, machine);
work = work_findnew(&class->work_root, &key, &kwork->cmp_id);
if (ret_work != NULL)
*ret_work = work;
if (work == NULL)
return NULL;
if (!profile_event_match(kwork, work, sample))
return NULL;
atom = list_last_entry_or_null(&work->atom_list[dst_type],
struct kwork_atom, list);
if (atom != NULL)
return atom;
src_atom = atom_new(kwork, sample);
if (src_atom != NULL)
list_add_tail(&src_atom->list, &work->atom_list[src_type]);
else {
if (ret_work != NULL)
*ret_work = NULL;
}
return NULL;
}
static struct kwork_work *find_work_by_id(struct rb_root_cached *root,
u64 id, int cpu)
{
struct rb_node *next;
struct kwork_work *work;
next = rb_first_cached(root);
while (next) {
work = rb_entry(next, struct kwork_work, node);
if ((cpu != -1 && work->id == id && work->cpu == cpu) ||
(cpu == -1 && work->id == id))
return work;
next = rb_next(next);
}
return NULL;
}
static struct kwork_class *get_kwork_class(struct perf_kwork *kwork,
enum kwork_class_type type)
{
struct kwork_class *class;
list_for_each_entry(class, &kwork->class_list, list) {
if (class->type == type)
return class;
}
return NULL;
}
static void report_update_exit_event(struct kwork_work *work,
struct kwork_atom *atom,
struct perf_sample *sample)
{
u64 delta;
u64 exit_time = sample->time;
u64 entry_time = atom->time;
if ((entry_time != 0) && (exit_time >= entry_time)) {
delta = exit_time - entry_time;
if ((delta > work->max_runtime) ||
(work->max_runtime == 0)) {
work->max_runtime = delta;
work->max_runtime_start = entry_time;
work->max_runtime_end = exit_time;
}
work->total_runtime += delta;
work->nr_atoms++;
}
}
static int report_entry_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
return work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
KWORK_TRACE_MAX, evsel, sample,
machine, NULL, true);
}
static int report_exit_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct kwork_atom *atom = NULL;
struct kwork_work *work = NULL;
atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
KWORK_TRACE_ENTRY, evsel, sample,
machine, &work);
if (work == NULL)
return -1;
if (atom != NULL) {
report_update_exit_event(work, atom, sample);
atom_del(atom);
}
return 0;
}
static void latency_update_entry_event(struct kwork_work *work,
struct kwork_atom *atom,
struct perf_sample *sample)
{
u64 delta;
u64 entry_time = sample->time;
u64 raise_time = atom->time;
if ((raise_time != 0) && (entry_time >= raise_time)) {
delta = entry_time - raise_time;
if ((delta > work->max_latency) ||
(work->max_latency == 0)) {
work->max_latency = delta;
work->max_latency_start = raise_time;
work->max_latency_end = entry_time;
}
work->total_latency += delta;
work->nr_atoms++;
}
}
static int latency_raise_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
return work_push_atom(kwork, class, KWORK_TRACE_RAISE,
KWORK_TRACE_MAX, evsel, sample,
machine, NULL, true);
}
static int latency_entry_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct kwork_atom *atom = NULL;
struct kwork_work *work = NULL;
atom = work_pop_atom(kwork, class, KWORK_TRACE_ENTRY,
KWORK_TRACE_RAISE, evsel, sample,
machine, &work);
if (work == NULL)
return -1;
if (atom != NULL) {
latency_update_entry_event(work, atom, sample);
atom_del(atom);
}
return 0;
}
static void timehist_save_callchain(struct perf_kwork *kwork,
struct perf_sample *sample,
struct evsel *evsel,
struct machine *machine)
{
struct symbol *sym;
struct thread *thread;
struct callchain_cursor_node *node;
struct callchain_cursor *cursor;
if (!kwork->show_callchain || sample->callchain == NULL)
return;
/* want main thread for process - has maps */
thread = machine__findnew_thread(machine, sample->pid, sample->pid);
if (thread == NULL) {
pr_debug("Failed to get thread for pid %d\n", sample->pid);
return;
}
cursor = get_tls_callchain_cursor();
if (thread__resolve_callchain(thread, cursor, evsel, sample,
NULL, NULL, kwork->max_stack + 2) != 0) {
pr_debug("Failed to resolve callchain, skipping\n");
goto out_put;
}
callchain_cursor_commit(cursor);
while (true) {
node = callchain_cursor_current(cursor);
if (node == NULL)
break;
sym = node->ms.sym;
if (sym) {
if (!strcmp(sym->name, "__softirqentry_text_start") ||
!strcmp(sym->name, "__do_softirq"))
sym->ignore = 1;
}
callchain_cursor_advance(cursor);
}
out_put:
thread__put(thread);
}
static void timehist_print_event(struct perf_kwork *kwork,
struct kwork_work *work,
struct kwork_atom *atom,
struct perf_sample *sample,
struct addr_location *al)
{
char entrytime[32], exittime[32];
char kwork_name[PRINT_KWORK_NAME_WIDTH];
/*
* runtime start
*/
timestamp__scnprintf_usec(atom->time,
entrytime, sizeof(entrytime));
printf(" %*s ", PRINT_TIMESTAMP_WIDTH, entrytime);
/*
* runtime end
*/
timestamp__scnprintf_usec(sample->time,
exittime, sizeof(exittime));
printf(" %*s ", PRINT_TIMESTAMP_WIDTH, exittime);
/*
* cpu
*/
printf(" [%0*d] ", PRINT_CPU_WIDTH, work->cpu);
/*
* kwork name
*/
if (work->class && work->class->work_name) {
work->class->work_name(work, kwork_name,
PRINT_KWORK_NAME_WIDTH);
printf(" %-*s ", PRINT_KWORK_NAME_WIDTH, kwork_name);
} else
printf(" %-*s ", PRINT_KWORK_NAME_WIDTH, "");
/*
*runtime
*/
printf(" %*.*f ",
PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
(double)(sample->time - atom->time) / NSEC_PER_MSEC);
/*
* delaytime
*/
if (atom->prev != NULL)
printf(" %*.*f ", PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
(double)(atom->time - atom->prev->time) / NSEC_PER_MSEC);
else
printf(" %*s ", PRINT_LATENCY_WIDTH, " ");
/*
* callchain
*/
if (kwork->show_callchain) {
struct callchain_cursor *cursor = get_tls_callchain_cursor();
if (cursor == NULL)
return;
printf(" ");
sample__fprintf_sym(sample, al, 0,
EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
EVSEL__PRINT_CALLCHAIN_ARROW |
EVSEL__PRINT_SKIP_IGNORED,
cursor, symbol_conf.bt_stop_list,
stdout);
}
printf("\n");
}
static int timehist_raise_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
return work_push_atom(kwork, class, KWORK_TRACE_RAISE,
KWORK_TRACE_MAX, evsel, sample,
machine, NULL, true);
}
static int timehist_entry_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
int ret;
struct kwork_work *work = NULL;
ret = work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
KWORK_TRACE_RAISE, evsel, sample,
machine, &work, true);
if (ret)
return ret;
if (work != NULL)
timehist_save_callchain(kwork, sample, evsel, machine);
return 0;
}
static int timehist_exit_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct kwork_atom *atom = NULL;
struct kwork_work *work = NULL;
struct addr_location al;
int ret = 0;
addr_location__init(&al);
if (machine__resolve(machine, &al, sample) < 0) {
pr_debug("Problem processing event, skipping it\n");
ret = -1;
goto out;
}
atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
KWORK_TRACE_ENTRY, evsel, sample,
machine, &work);
if (work == NULL) {
ret = -1;
goto out;
}
if (atom != NULL) {
work->nr_atoms++;
timehist_print_event(kwork, work, atom, sample, &al);
atom_del(atom);
}
out:
addr_location__exit(&al);
return ret;
}
static void top_update_runtime(struct kwork_work *work,
struct kwork_atom *atom,
struct perf_sample *sample)
{
u64 delta;
u64 exit_time = sample->time;
u64 entry_time = atom->time;
if ((entry_time != 0) && (exit_time >= entry_time)) {
delta = exit_time - entry_time;
work->total_runtime += delta;
}
}
static int top_entry_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
return work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
KWORK_TRACE_MAX, evsel, sample,
machine, NULL, true);
}
static int top_sched_switch_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct kwork_atom *atom;
struct kwork_work *work;
atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
KWORK_TRACE_ENTRY, evsel, sample,
machine, &work);
if (!work)
return -1;
if (atom) {
top_update_runtime(work, atom, sample);
atom_del(atom);
}
return top_entry_event(kwork, class, evsel, sample, machine);
}
static struct kwork_class kwork_irq;
static int process_irq_handler_entry_event(struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->entry_event)
return kwork->tp_handler->entry_event(kwork, &kwork_irq,
evsel, sample, machine);
return 0;
}
static int process_irq_handler_exit_event(struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->exit_event)
return kwork->tp_handler->exit_event(kwork, &kwork_irq,
evsel, sample, machine);
return 0;
}
const struct evsel_str_handler irq_tp_handlers[] = {
{ "irq:irq_handler_entry", process_irq_handler_entry_event, },
{ "irq:irq_handler_exit", process_irq_handler_exit_event, },
};
static int irq_class_init(struct kwork_class *class,
struct perf_session *session)
{
if (perf_session__set_tracepoints_handlers(session, irq_tp_handlers)) {
pr_err("Failed to set irq tracepoints handlers\n");
return -1;
}
class->work_root = RB_ROOT_CACHED;
return 0;
}
static void irq_work_init(struct perf_kwork *kwork __maybe_unused,
struct kwork_class *class,
struct kwork_work *work,
enum kwork_trace_type src_type __maybe_unused,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine __maybe_unused)
{
work->class = class;
work->cpu = sample->cpu;
work->id = evsel__intval(evsel, sample, "irq");
work->name = evsel__strval(evsel, sample, "name");
}
static void irq_work_name(struct kwork_work *work, char *buf, int len)
{
snprintf(buf, len, "%s:%" PRIu64 "", work->name, work->id);
}
static struct kwork_class kwork_irq = {
.name = "irq",
.type = KWORK_CLASS_IRQ,
.nr_tracepoints = 2,
.tp_handlers = irq_tp_handlers,
.class_init = irq_class_init,
.work_init = irq_work_init,
.work_name = irq_work_name,
};
static struct kwork_class kwork_softirq;
static int process_softirq_raise_event(struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->raise_event)
return kwork->tp_handler->raise_event(kwork, &kwork_softirq,
evsel, sample, machine);
return 0;
}
static int process_softirq_entry_event(struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->entry_event)
return kwork->tp_handler->entry_event(kwork, &kwork_softirq,
evsel, sample, machine);
return 0;
}
static int process_softirq_exit_event(struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->exit_event)
return kwork->tp_handler->exit_event(kwork, &kwork_softirq,
evsel, sample, machine);
return 0;
}
const struct evsel_str_handler softirq_tp_handlers[] = {
{ "irq:softirq_raise", process_softirq_raise_event, },
{ "irq:softirq_entry", process_softirq_entry_event, },
{ "irq:softirq_exit", process_softirq_exit_event, },
};
static int softirq_class_init(struct kwork_class *class,
struct perf_session *session)
{
if (perf_session__set_tracepoints_handlers(session,
softirq_tp_handlers)) {
pr_err("Failed to set softirq tracepoints handlers\n");
return -1;
}
class->work_root = RB_ROOT_CACHED;
return 0;
}
static char *evsel__softirq_name(struct evsel *evsel, u64 num)
{
char *name = NULL;
bool found = false;
struct tep_print_flag_sym *sym = NULL;
struct tep_print_arg *args = evsel->tp_format->print_fmt.args;
if ((args == NULL) || (args->next == NULL))
return NULL;
/* skip softirq field: "REC->vec" */
for (sym = args->next->symbol.symbols; sym != NULL; sym = sym->next) {
if ((eval_flag(sym->value) == (unsigned long long)num) &&
(strlen(sym->str) != 0)) {
found = true;
break;
}
}
if (!found)
return NULL;
name = strdup(sym->str);
if (name == NULL) {
pr_err("Failed to copy symbol name\n");
return NULL;
}
return name;
}
static void softirq_work_init(struct perf_kwork *kwork __maybe_unused,
struct kwork_class *class,
struct kwork_work *work,
enum kwork_trace_type src_type __maybe_unused,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine __maybe_unused)
{
u64 num = evsel__intval(evsel, sample, "vec");
work->id = num;
work->class = class;
work->cpu = sample->cpu;
work->name = evsel__softirq_name(evsel, num);
}
static void softirq_work_name(struct kwork_work *work, char *buf, int len)
{
snprintf(buf, len, "(s)%s:%" PRIu64 "", work->name, work->id);
}
static struct kwork_class kwork_softirq = {
.name = "softirq",
.type = KWORK_CLASS_SOFTIRQ,
.nr_tracepoints = 3,
.tp_handlers = softirq_tp_handlers,
.class_init = softirq_class_init,
.work_init = softirq_work_init,
.work_name = softirq_work_name,
};
static struct kwork_class kwork_workqueue;
static int process_workqueue_activate_work_event(struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->raise_event)
return kwork->tp_handler->raise_event(kwork, &kwork_workqueue,
evsel, sample, machine);
return 0;
}
static int process_workqueue_execute_start_event(struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->entry_event)
return kwork->tp_handler->entry_event(kwork, &kwork_workqueue,
evsel, sample, machine);
return 0;
}
static int process_workqueue_execute_end_event(struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->exit_event)
return kwork->tp_handler->exit_event(kwork, &kwork_workqueue,
evsel, sample, machine);
return 0;
}
const struct evsel_str_handler workqueue_tp_handlers[] = {
{ "workqueue:workqueue_activate_work", process_workqueue_activate_work_event, },
{ "workqueue:workqueue_execute_start", process_workqueue_execute_start_event, },
{ "workqueue:workqueue_execute_end", process_workqueue_execute_end_event, },
};
static int workqueue_class_init(struct kwork_class *class,
struct perf_session *session)
{
if (perf_session__set_tracepoints_handlers(session,
workqueue_tp_handlers)) {
pr_err("Failed to set workqueue tracepoints handlers\n");
return -1;
}
class->work_root = RB_ROOT_CACHED;
return 0;
}
static void workqueue_work_init(struct perf_kwork *kwork __maybe_unused,
struct kwork_class *class,
struct kwork_work *work,
enum kwork_trace_type src_type __maybe_unused,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
char *modp = NULL;
unsigned long long function_addr = evsel__intval(evsel,
sample, "function");
work->class = class;
work->cpu = sample->cpu;
work->id = evsel__intval(evsel, sample, "work");
work->name = function_addr == 0 ? NULL :
machine__resolve_kernel_addr(machine, &function_addr, &modp);
}
static void workqueue_work_name(struct kwork_work *work, char *buf, int len)
{
if (work->name != NULL)
snprintf(buf, len, "(w)%s", work->name);
else
snprintf(buf, len, "(w)0x%" PRIx64, work->id);
}
static struct kwork_class kwork_workqueue = {
.name = "workqueue",
.type = KWORK_CLASS_WORKQUEUE,
.nr_tracepoints = 3,
.tp_handlers = workqueue_tp_handlers,
.class_init = workqueue_class_init,
.work_init = workqueue_work_init,
.work_name = workqueue_work_name,
};
static struct kwork_class kwork_sched;
static int process_sched_switch_event(struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->sched_switch_event)
return kwork->tp_handler->sched_switch_event(kwork, &kwork_sched,
evsel, sample, machine);
return 0;
}
const struct evsel_str_handler sched_tp_handlers[] = {
{ "sched:sched_switch", process_sched_switch_event, },
};
static int sched_class_init(struct kwork_class *class,
struct perf_session *session)
{
if (perf_session__set_tracepoints_handlers(session,
sched_tp_handlers)) {
pr_err("Failed to set sched tracepoints handlers\n");
return -1;
}
class->work_root = RB_ROOT_CACHED;
return 0;
}
static void sched_work_init(struct perf_kwork *kwork __maybe_unused,
struct kwork_class *class,
struct kwork_work *work,
enum kwork_trace_type src_type,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine __maybe_unused)
{
work->class = class;
work->cpu = sample->cpu;
if (src_type == KWORK_TRACE_EXIT) {
work->id = evsel__intval(evsel, sample, "prev_pid");
work->name = strdup(evsel__strval(evsel, sample, "prev_comm"));
} else if (src_type == KWORK_TRACE_ENTRY) {
work->id = evsel__intval(evsel, sample, "next_pid");
work->name = strdup(evsel__strval(evsel, sample, "next_comm"));
}
}
static void sched_work_name(struct kwork_work *work, char *buf, int len)
{
snprintf(buf, len, "%s", work->name);
}
static struct kwork_class kwork_sched = {
.name = "sched",
.type = KWORK_CLASS_SCHED,
.nr_tracepoints = ARRAY_SIZE(sched_tp_handlers),
.tp_handlers = sched_tp_handlers,
.class_init = sched_class_init,
.work_init = sched_work_init,
.work_name = sched_work_name,
};
static struct kwork_class *kwork_class_supported_list[KWORK_CLASS_MAX] = {
[KWORK_CLASS_IRQ] = &kwork_irq,
[KWORK_CLASS_SOFTIRQ] = &kwork_softirq,
[KWORK_CLASS_WORKQUEUE] = &kwork_workqueue,
[KWORK_CLASS_SCHED] = &kwork_sched,
};
static void print_separator(int len)
{
printf(" %.*s\n", len, graph_dotted_line);
}
static int report_print_work(struct perf_kwork *kwork, struct kwork_work *work)
{
int ret = 0;
char kwork_name[PRINT_KWORK_NAME_WIDTH];
char max_runtime_start[32], max_runtime_end[32];
char max_latency_start[32], max_latency_end[32];
printf(" ");
/*
* kwork name
*/
if (work->class && work->class->work_name) {
work->class->work_name(work, kwork_name,
PRINT_KWORK_NAME_WIDTH);
ret += printf(" %-*s |", PRINT_KWORK_NAME_WIDTH, kwork_name);
} else {
ret += printf(" %-*s |", PRINT_KWORK_NAME_WIDTH, "");
}
/*
* cpu
*/
ret += printf(" %0*d |", PRINT_CPU_WIDTH, work->cpu);
/*
* total runtime
*/
if (kwork->report == KWORK_REPORT_RUNTIME) {
ret += printf(" %*.*f ms |",
PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
(double)work->total_runtime / NSEC_PER_MSEC);
} else if (kwork->report == KWORK_REPORT_LATENCY) { // avg delay
ret += printf(" %*.*f ms |",
PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
(double)work->total_latency /
work->nr_atoms / NSEC_PER_MSEC);
}
/*
* count
*/
ret += printf(" %*" PRIu64 " |", PRINT_COUNT_WIDTH, work->nr_atoms);
/*
* max runtime, max runtime start, max runtime end
*/
if (kwork->report == KWORK_REPORT_RUNTIME) {
timestamp__scnprintf_usec(work->max_runtime_start,
max_runtime_start,
sizeof(max_runtime_start));
timestamp__scnprintf_usec(work->max_runtime_end,
max_runtime_end,
sizeof(max_runtime_end));
ret += printf(" %*.*f ms | %*s s | %*s s |",
PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
(double)work->max_runtime / NSEC_PER_MSEC,
PRINT_TIMESTAMP_WIDTH, max_runtime_start,
PRINT_TIMESTAMP_WIDTH, max_runtime_end);
}
/*
* max delay, max delay start, max delay end
*/
else if (kwork->report == KWORK_REPORT_LATENCY) {
timestamp__scnprintf_usec(work->max_latency_start,
max_latency_start,
sizeof(max_latency_start));
timestamp__scnprintf_usec(work->max_latency_end,
max_latency_end,
sizeof(max_latency_end));
ret += printf(" %*.*f ms | %*s s | %*s s |",
PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
(double)work->max_latency / NSEC_PER_MSEC,
PRINT_TIMESTAMP_WIDTH, max_latency_start,
PRINT_TIMESTAMP_WIDTH, max_latency_end);
}
printf("\n");
return ret;
}
static int report_print_header(struct perf_kwork *kwork)
{
int ret;
printf("\n ");
ret = printf(" %-*s | %-*s |",
PRINT_KWORK_NAME_WIDTH, "Kwork Name",
PRINT_CPU_WIDTH, "Cpu");
if (kwork->report == KWORK_REPORT_RUNTIME) {
ret += printf(" %-*s |",
PRINT_RUNTIME_HEADER_WIDTH, "Total Runtime");
} else if (kwork->report == KWORK_REPORT_LATENCY) {
ret += printf(" %-*s |",
PRINT_LATENCY_HEADER_WIDTH, "Avg delay");
}
ret += printf(" %-*s |", PRINT_COUNT_WIDTH, "Count");
if (kwork->report == KWORK_REPORT_RUNTIME) {
ret += printf(" %-*s | %-*s | %-*s |",
PRINT_RUNTIME_HEADER_WIDTH, "Max runtime",
PRINT_TIMESTAMP_HEADER_WIDTH, "Max runtime start",
PRINT_TIMESTAMP_HEADER_WIDTH, "Max runtime end");
} else if (kwork->report == KWORK_REPORT_LATENCY) {
ret += printf(" %-*s | %-*s | %-*s |",
PRINT_LATENCY_HEADER_WIDTH, "Max delay",
PRINT_TIMESTAMP_HEADER_WIDTH, "Max delay start",
PRINT_TIMESTAMP_HEADER_WIDTH, "Max delay end");
}
printf("\n");
print_separator(ret);
return ret;
}
static void timehist_print_header(void)
{
/*
* header row
*/
printf(" %-*s %-*s %-*s %-*s %-*s %-*s\n",
PRINT_TIMESTAMP_WIDTH, "Runtime start",
PRINT_TIMESTAMP_WIDTH, "Runtime end",
PRINT_TIMEHIST_CPU_WIDTH, "Cpu",
PRINT_KWORK_NAME_WIDTH, "Kwork name",
PRINT_RUNTIME_WIDTH, "Runtime",
PRINT_RUNTIME_WIDTH, "Delaytime");
/*
* units row
*/
printf(" %-*s %-*s %-*s %-*s %-*s %-*s\n",
PRINT_TIMESTAMP_WIDTH, "",
PRINT_TIMESTAMP_WIDTH, "",
PRINT_TIMEHIST_CPU_WIDTH, "",
PRINT_KWORK_NAME_WIDTH, "(TYPE)NAME:NUM",
PRINT_RUNTIME_WIDTH, "(msec)",
PRINT_RUNTIME_WIDTH, "(msec)");
/*
* separator
*/
printf(" %.*s %.*s %.*s %.*s %.*s %.*s\n",
PRINT_TIMESTAMP_WIDTH, graph_dotted_line,
PRINT_TIMESTAMP_WIDTH, graph_dotted_line,
PRINT_TIMEHIST_CPU_WIDTH, graph_dotted_line,
PRINT_KWORK_NAME_WIDTH, graph_dotted_line,
PRINT_RUNTIME_WIDTH, graph_dotted_line,
PRINT_RUNTIME_WIDTH, graph_dotted_line);
}
static void print_summary(struct perf_kwork *kwork)
{
u64 time = kwork->timeend - kwork->timestart;
printf(" Total count : %9" PRIu64 "\n", kwork->all_count);
printf(" Total runtime (msec) : %9.3f (%.3f%% load average)\n",
(double)kwork->all_runtime / NSEC_PER_MSEC,
time == 0 ? 0 : (double)kwork->all_runtime / time);
printf(" Total time span (msec) : %9.3f\n",
(double)time / NSEC_PER_MSEC);
}
static unsigned long long nr_list_entry(struct list_head *head)
{
struct list_head *pos;
unsigned long long n = 0;
list_for_each(pos, head)
n++;
return n;
}
static void print_skipped_events(struct perf_kwork *kwork)
{
int i;
const char *const kwork_event_str[] = {
[KWORK_TRACE_RAISE] = "raise",
[KWORK_TRACE_ENTRY] = "entry",
[KWORK_TRACE_EXIT] = "exit",
};
if ((kwork->nr_skipped_events[KWORK_TRACE_MAX] != 0) &&
(kwork->nr_events != 0)) {
printf(" INFO: %.3f%% skipped events (%" PRIu64 " including ",
(double)kwork->nr_skipped_events[KWORK_TRACE_MAX] /
(double)kwork->nr_events * 100.0,
kwork->nr_skipped_events[KWORK_TRACE_MAX]);
for (i = 0; i < KWORK_TRACE_MAX; i++) {
printf("%" PRIu64 " %s%s",
kwork->nr_skipped_events[i],
kwork_event_str[i],
(i == KWORK_TRACE_MAX - 1) ? ")\n" : ", ");
}
}
if (verbose > 0)
printf(" INFO: use %lld atom pages\n",
nr_list_entry(&kwork->atom_page_list));
}
static void print_bad_events(struct perf_kwork *kwork)
{
if ((kwork->nr_lost_events != 0) && (kwork->nr_events != 0)) {
printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
(double)kwork->nr_lost_events /
(double)kwork->nr_events * 100.0,
kwork->nr_lost_events, kwork->nr_events,
kwork->nr_lost_chunks);
}
}
const char *graph_load = "||||||||||||||||||||||||||||||||||||||||||||||||";
const char *graph_idle = " ";
static void top_print_per_cpu_load(struct perf_kwork *kwork)
{
int i, load_width;
u64 total, load, load_ratio;
struct kwork_top_stat *stat = &kwork->top_stat;
for (i = 0; i < MAX_NR_CPUS; i++) {
total = stat->cpus_runtime[i].total;
load = stat->cpus_runtime[i].load;
if (test_bit(i, stat->all_cpus_bitmap) && total) {
load_ratio = load * 10000 / total;
load_width = PRINT_CPU_USAGE_HIST_WIDTH *
load_ratio / 10000;
printf("%%Cpu%-*d[%.*s%.*s %*.*f%%]\n",
PRINT_CPU_WIDTH, i,
load_width, graph_load,
PRINT_CPU_USAGE_HIST_WIDTH - load_width,
graph_idle,
PRINT_CPU_USAGE_WIDTH,
PRINT_CPU_USAGE_DECIMAL_WIDTH,
(double)load_ratio / 100);
}
}
}
static void top_print_cpu_usage(struct perf_kwork *kwork)
{
struct kwork_top_stat *stat = &kwork->top_stat;
u64 idle_time = stat->cpus_runtime[MAX_NR_CPUS].idle;
int cpus_nr = bitmap_weight(stat->all_cpus_bitmap, MAX_NR_CPUS);
u64 cpus_total_time = stat->cpus_runtime[MAX_NR_CPUS].total;
printf("Total : %*.*f ms, %d cpus\n",
PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
(double)cpus_total_time / NSEC_PER_MSEC,
cpus_nr);
printf("%%Cpu(s): %*.*f%% id\n",
PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
cpus_total_time ? (double)idle_time * 100 / cpus_total_time : 0);
top_print_per_cpu_load(kwork);
}
static void top_print_header(struct perf_kwork *kwork __maybe_unused)
{
int ret;
printf("\n ");
ret = printf(" %*s %*s %*s %-*s",
PRINT_PID_WIDTH, "PID",
PRINT_CPU_USAGE_WIDTH, "%CPU",
PRINT_RUNTIME_HEADER_WIDTH + RPINT_DECIMAL_WIDTH, "RUNTIME",
PRINT_TASK_NAME_WIDTH, "COMMMAND");
printf("\n ");
print_separator(ret);
}
static int top_print_work(struct perf_kwork *kwork __maybe_unused, struct kwork_work *work)
{
int ret = 0;
printf(" ");
/*
* pid
*/
ret += printf(" %*ld ", PRINT_PID_WIDTH, work->id);
/*
* cpu usage
*/
ret += printf(" %*.*f ",
PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
(double)work->cpu_usage / 100);
/*
* total runtime
*/
ret += printf(" %*.*f ms ",
PRINT_RUNTIME_WIDTH + RPINT_DECIMAL_WIDTH, RPINT_DECIMAL_WIDTH,
(double)work->total_runtime / NSEC_PER_MSEC);
/*
* command
*/
ret += printf(" %-*s", PRINT_TASK_NAME_WIDTH, work->name);
printf("\n");
return ret;
}
static void work_sort(struct perf_kwork *kwork,
struct kwork_class *class, struct rb_root_cached *root)
{
struct rb_node *node;
struct kwork_work *data;
pr_debug("Sorting %s ...\n", class->name);
for (;;) {
node = rb_first_cached(root);
if (!node)
break;
rb_erase_cached(node, root);
data = rb_entry(node, struct kwork_work, node);
work_insert(&kwork->sorted_work_root,
data, &kwork->sort_list);
}
}
static void perf_kwork__sort(struct perf_kwork *kwork)
{
struct kwork_class *class;
list_for_each_entry(class, &kwork->class_list, list)
work_sort(kwork, class, &class->work_root);
}
static int perf_kwork__check_config(struct perf_kwork *kwork,
struct perf_session *session)
{
int ret;
struct evsel *evsel;
struct kwork_class *class;
static struct trace_kwork_handler report_ops = {
.entry_event = report_entry_event,
.exit_event = report_exit_event,
};
static struct trace_kwork_handler latency_ops = {
.raise_event = latency_raise_event,
.entry_event = latency_entry_event,
};
static struct trace_kwork_handler timehist_ops = {
.raise_event = timehist_raise_event,
.entry_event = timehist_entry_event,
.exit_event = timehist_exit_event,
};
static struct trace_kwork_handler top_ops = {
.sched_switch_event = top_sched_switch_event,
};
switch (kwork->report) {
case KWORK_REPORT_RUNTIME:
kwork->tp_handler = &report_ops;
break;
case KWORK_REPORT_LATENCY:
kwork->tp_handler = &latency_ops;
break;
case KWORK_REPORT_TIMEHIST:
kwork->tp_handler = &timehist_ops;
break;
case KWORK_REPORT_TOP:
kwork->tp_handler = &top_ops;
break;
default:
pr_debug("Invalid report type %d\n", kwork->report);
return -1;
}
list_for_each_entry(class, &kwork->class_list, list)
if ((class->class_init != NULL) &&
(class->class_init(class, session) != 0))
return -1;
if (kwork->cpu_list != NULL) {
ret = perf_session__cpu_bitmap(session,
kwork->cpu_list,
kwork->cpu_bitmap);
if (ret < 0) {
pr_err("Invalid cpu bitmap\n");
return -1;
}
}
if (kwork->time_str != NULL) {
ret = perf_time__parse_str(&kwork->ptime, kwork->time_str);
if (ret != 0) {
pr_err("Invalid time span\n");
return -1;
}
}
list_for_each_entry(evsel, &session->evlist->core.entries, core.node) {
if (kwork->show_callchain && !evsel__has_callchain(evsel)) {
pr_debug("Samples do not have callchains\n");
kwork->show_callchain = 0;
symbol_conf.use_callchain = 0;
}
}
return 0;
}
static int perf_kwork__read_events(struct perf_kwork *kwork)
{
int ret = -1;
struct perf_session *session = NULL;
struct perf_data data = {
.path = input_name,
.mode = PERF_DATA_MODE_READ,
.force = kwork->force,
};
session = perf_session__new(&data, &kwork->tool);
if (IS_ERR(session)) {
pr_debug("Error creating perf session\n");
return PTR_ERR(session);
}
symbol__init(&session->header.env);
if (perf_kwork__check_config(kwork, session) != 0)
goto out_delete;
if (session->tevent.pevent &&
tep_set_function_resolver(session->tevent.pevent,
machine__resolve_kernel_addr,
&session->machines.host) < 0) {
pr_err("Failed to set libtraceevent function resolver\n");
goto out_delete;
}
if (kwork->report == KWORK_REPORT_TIMEHIST)
timehist_print_header();
ret = perf_session__process_events(session);
if (ret) {
pr_debug("Failed to process events, error %d\n", ret);
goto out_delete;
}
kwork->nr_events = session->evlist->stats.nr_events[0];
kwork->nr_lost_events = session->evlist->stats.total_lost;
kwork->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
out_delete:
perf_session__delete(session);
return ret;
}
static void process_skipped_events(struct perf_kwork *kwork,
struct kwork_work *work)
{
int i;
unsigned long long count;
for (i = 0; i < KWORK_TRACE_MAX; i++) {
count = nr_list_entry(&work->atom_list[i]);
kwork->nr_skipped_events[i] += count;
kwork->nr_skipped_events[KWORK_TRACE_MAX] += count;
}
}
struct kwork_work *perf_kwork_add_work(struct perf_kwork *kwork,
struct kwork_class *class,
struct kwork_work *key)
{
struct kwork_work *work = NULL;
work = work_new(key);
if (work == NULL)
return NULL;
work_insert(&class->work_root, work, &kwork->cmp_id);
return work;
}
static void sig_handler(int sig)
{
/*
* Simply capture termination signal so that
* the program can continue after pause returns
*/
pr_debug("Captuer signal %d\n", sig);
}
static int perf_kwork__report_bpf(struct perf_kwork *kwork)
{
int ret;
signal(SIGINT, sig_handler);
signal(SIGTERM, sig_handler);
ret = perf_kwork__trace_prepare_bpf(kwork);
if (ret)
return -1;
printf("Starting trace, Hit <Ctrl+C> to stop and report\n");
perf_kwork__trace_start();
/*
* a simple pause, wait here for stop signal
*/
pause();
perf_kwork__trace_finish();
perf_kwork__report_read_bpf(kwork);
perf_kwork__report_cleanup_bpf();
return 0;
}
static int perf_kwork__report(struct perf_kwork *kwork)
{
int ret;
struct rb_node *next;
struct kwork_work *work;
if (kwork->use_bpf)
ret = perf_kwork__report_bpf(kwork);
else
ret = perf_kwork__read_events(kwork);
if (ret != 0)
return -1;
perf_kwork__sort(kwork);
setup_pager();
ret = report_print_header(kwork);
next = rb_first_cached(&kwork->sorted_work_root);
while (next) {
work = rb_entry(next, struct kwork_work, node);
process_skipped_events(kwork, work);
if (work->nr_atoms != 0) {
report_print_work(kwork, work);
if (kwork->summary) {
kwork->all_runtime += work->total_runtime;
kwork->all_count += work->nr_atoms;
}
}
next = rb_next(next);
}
print_separator(ret);
if (kwork->summary) {
print_summary(kwork);
print_separator(ret);
}
print_bad_events(kwork);
print_skipped_events(kwork);
printf("\n");
return 0;
}
typedef int (*tracepoint_handler)(struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine);
static int perf_kwork__process_tracepoint_sample(struct perf_tool *tool,
union perf_event *event __maybe_unused,
struct perf_sample *sample,
struct evsel *evsel,
struct machine *machine)
{
int err = 0;
if (evsel->handler != NULL) {
tracepoint_handler f = evsel->handler;
err = f(tool, evsel, sample, machine);
}
return err;
}
static int perf_kwork__timehist(struct perf_kwork *kwork)
{
/*
* event handlers for timehist option
*/
kwork->tool.comm = perf_event__process_comm;
kwork->tool.exit = perf_event__process_exit;
kwork->tool.fork = perf_event__process_fork;
kwork->tool.attr = perf_event__process_attr;
kwork->tool.tracing_data = perf_event__process_tracing_data;
kwork->tool.build_id = perf_event__process_build_id;
kwork->tool.ordered_events = true;
kwork->tool.ordering_requires_timestamps = true;
symbol_conf.use_callchain = kwork->show_callchain;
if (symbol__validate_sym_arguments()) {
pr_err("Failed to validate sym arguments\n");
return -1;
}
setup_pager();
return perf_kwork__read_events(kwork);
}
static void top_calc_total_runtime(struct perf_kwork *kwork)
{
struct kwork_class *class;
struct kwork_work *work;
struct rb_node *next;
struct kwork_top_stat *stat = &kwork->top_stat;
class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
if (!class)
return;
next = rb_first_cached(&class->work_root);
while (next) {
work = rb_entry(next, struct kwork_work, node);
BUG_ON(work->cpu >= MAX_NR_CPUS);
stat->cpus_runtime[work->cpu].total += work->total_runtime;
stat->cpus_runtime[MAX_NR_CPUS].total += work->total_runtime;
next = rb_next(next);
}
}
static void top_calc_idle_time(struct perf_kwork *kwork,
struct kwork_work *work)
{
struct kwork_top_stat *stat = &kwork->top_stat;
if (work->id == 0) {
stat->cpus_runtime[work->cpu].idle += work->total_runtime;
stat->cpus_runtime[MAX_NR_CPUS].idle += work->total_runtime;
}
}
static void top_calc_cpu_usage(struct perf_kwork *kwork)
{
struct kwork_class *class;
struct kwork_work *work;
struct rb_node *next;
struct kwork_top_stat *stat = &kwork->top_stat;
class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
if (!class)
return;
next = rb_first_cached(&class->work_root);
while (next) {
work = rb_entry(next, struct kwork_work, node);
if (work->total_runtime == 0)
goto next;
__set_bit(work->cpu, stat->all_cpus_bitmap);
work->cpu_usage = work->total_runtime * 10000 /
stat->cpus_runtime[work->cpu].total;
top_calc_idle_time(kwork, work);
next:
next = rb_next(next);
}
}
static void top_calc_load_runtime(struct perf_kwork *kwork,
struct kwork_work *work)
{
struct kwork_top_stat *stat = &kwork->top_stat;
if (work->id != 0) {
stat->cpus_runtime[work->cpu].load += work->total_runtime;
stat->cpus_runtime[MAX_NR_CPUS].load += work->total_runtime;
}
}
static void top_merge_tasks(struct perf_kwork *kwork)
{
struct kwork_work *merged_work, *data;
struct kwork_class *class;
struct rb_node *node;
int cpu;
struct rb_root_cached merged_root = RB_ROOT_CACHED;
class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
if (!class)
return;
for (;;) {
node = rb_first_cached(&class->work_root);
if (!node)
break;
rb_erase_cached(node, &class->work_root);
data = rb_entry(node, struct kwork_work, node);
cpu = data->cpu;
merged_work = find_work_by_id(&merged_root, data->id,
data->id == 0 ? cpu : -1);
if (!merged_work) {
work_insert(&merged_root, data, &kwork->cmp_id);
} else {
merged_work->total_runtime += data->total_runtime;
merged_work->cpu_usage += data->cpu_usage;
}
top_calc_load_runtime(kwork, data);
}
work_sort(kwork, class, &merged_root);
}
static void perf_kwork__top_report(struct perf_kwork *kwork)
{
struct kwork_work *work;
struct rb_node *next;
printf("\n");
top_print_cpu_usage(kwork);
top_print_header(kwork);
next = rb_first_cached(&kwork->sorted_work_root);
while (next) {
work = rb_entry(next, struct kwork_work, node);
process_skipped_events(kwork, work);
if (work->total_runtime == 0)
goto next;
top_print_work(kwork, work);
next:
next = rb_next(next);
}
printf("\n");
}
static int perf_kwork__top(struct perf_kwork *kwork)
{
struct __top_cpus_runtime *cpus_runtime;
int ret = 0;
cpus_runtime = zalloc(sizeof(struct __top_cpus_runtime) * (MAX_NR_CPUS + 1));
if (!cpus_runtime)
return -1;
kwork->top_stat.cpus_runtime = cpus_runtime;
bitmap_zero(kwork->top_stat.all_cpus_bitmap, MAX_NR_CPUS);
ret = perf_kwork__read_events(kwork);
if (ret)
goto out;
top_calc_total_runtime(kwork);
top_calc_cpu_usage(kwork);
top_merge_tasks(kwork);
setup_pager();
perf_kwork__top_report(kwork);
out:
free(kwork->top_stat.cpus_runtime);
return ret;
}
static void setup_event_list(struct perf_kwork *kwork,
const struct option *options,
const char * const usage_msg[])
{
int i;
struct kwork_class *class;
char *tmp, *tok, *str;
/*
* set default events list if not specified
*/
if (kwork->event_list_str == NULL)
kwork->event_list_str = "irq, softirq, workqueue";
str = strdup(kwork->event_list_str);
for (tok = strtok_r(str, ", ", &tmp);
tok; tok = strtok_r(NULL, ", ", &tmp)) {
for (i = 0; i < KWORK_CLASS_MAX; i++) {
class = kwork_class_supported_list[i];
if (strcmp(tok, class->name) == 0) {
list_add_tail(&class->list, &kwork->class_list);
break;
}
}
if (i == KWORK_CLASS_MAX) {
usage_with_options_msg(usage_msg, options,
"Unknown --event key: `%s'", tok);
}
}
free(str);
pr_debug("Config event list:");
list_for_each_entry(class, &kwork->class_list, list)
pr_debug(" %s", class->name);
pr_debug("\n");
}
static int perf_kwork__record(struct perf_kwork *kwork,
int argc, const char **argv)
{
const char **rec_argv;
unsigned int rec_argc, i, j;
struct kwork_class *class;
const char *const record_args[] = {
"record",
"-a",
"-R",
"-m", "1024",
"-c", "1",
};
rec_argc = ARRAY_SIZE(record_args) + argc - 1;
list_for_each_entry(class, &kwork->class_list, list)
rec_argc += 2 * class->nr_tracepoints;
rec_argv = calloc(rec_argc + 1, sizeof(char *));
if (rec_argv == NULL)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(record_args); i++)
rec_argv[i] = strdup(record_args[i]);
list_for_each_entry(class, &kwork->class_list, list) {
for (j = 0; j < class->nr_tracepoints; j++) {
rec_argv[i++] = strdup("-e");
rec_argv[i++] = strdup(class->tp_handlers[j].name);
}
}
for (j = 1; j < (unsigned int)argc; j++, i++)
rec_argv[i] = argv[j];
BUG_ON(i != rec_argc);
pr_debug("record comm: ");
for (j = 0; j < rec_argc; j++)
pr_debug("%s ", rec_argv[j]);
pr_debug("\n");
return cmd_record(i, rec_argv);
}
int cmd_kwork(int argc, const char **argv)
{
static struct perf_kwork kwork = {
.class_list = LIST_HEAD_INIT(kwork.class_list),
.tool = {
.mmap = perf_event__process_mmap,
.mmap2 = perf_event__process_mmap2,
.sample = perf_kwork__process_tracepoint_sample,
.ordered_events = true,
},
.atom_page_list = LIST_HEAD_INIT(kwork.atom_page_list),
.sort_list = LIST_HEAD_INIT(kwork.sort_list),
.cmp_id = LIST_HEAD_INIT(kwork.cmp_id),
.sorted_work_root = RB_ROOT_CACHED,
.tp_handler = NULL,
.profile_name = NULL,
.cpu_list = NULL,
.time_str = NULL,
.force = false,
.event_list_str = NULL,
.summary = false,
.sort_order = NULL,
.show_callchain = false,
.max_stack = 5,
.timestart = 0,
.timeend = 0,
.nr_events = 0,
.nr_lost_chunks = 0,
.nr_lost_events = 0,
.all_runtime = 0,
.all_count = 0,
.nr_skipped_events = { 0 },
};
static const char default_report_sort_order[] = "runtime, max, count";
static const char default_latency_sort_order[] = "avg, max, count";
static const char default_top_sort_order[] = "rate, runtime";
const struct option kwork_options[] = {
OPT_INCR('v', "verbose", &verbose,
"be more verbose (show symbol address, etc)"),
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
"dump raw trace in ASCII"),
OPT_STRING('k', "kwork", &kwork.event_list_str, "kwork",
"list of kwork to profile (irq, softirq, workqueue, sched, etc)"),
OPT_BOOLEAN('f', "force", &kwork.force, "don't complain, do it"),
OPT_END()
};
const struct option report_options[] = {
OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
"sort by key(s): runtime, max, count"),
OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
"list of cpus to profile"),
OPT_STRING('n', "name", &kwork.profile_name, "name",
"event name to profile"),
OPT_STRING(0, "time", &kwork.time_str, "str",
"Time span for analysis (start,stop)"),
OPT_STRING('i', "input", &input_name, "file",
"input file name"),
OPT_BOOLEAN('S', "with-summary", &kwork.summary,
"Show summary with statistics"),
#ifdef HAVE_BPF_SKEL
OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
"Use BPF to measure kwork runtime"),
#endif
OPT_PARENT(kwork_options)
};
const struct option latency_options[] = {
OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
"sort by key(s): avg, max, count"),
OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
"list of cpus to profile"),
OPT_STRING('n', "name", &kwork.profile_name, "name",
"event name to profile"),
OPT_STRING(0, "time", &kwork.time_str, "str",
"Time span for analysis (start,stop)"),
OPT_STRING('i', "input", &input_name, "file",
"input file name"),
#ifdef HAVE_BPF_SKEL
OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
"Use BPF to measure kwork latency"),
#endif
OPT_PARENT(kwork_options)
};
const struct option timehist_options[] = {
OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
"file", "vmlinux pathname"),
OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
"file", "kallsyms pathname"),
OPT_BOOLEAN('g', "call-graph", &kwork.show_callchain,
"Display call chains if present"),
OPT_UINTEGER(0, "max-stack", &kwork.max_stack,
"Maximum number of functions to display backtrace."),
OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
"Look for files with symbols relative to this directory"),
OPT_STRING(0, "time", &kwork.time_str, "str",
"Time span for analysis (start,stop)"),
OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
"list of cpus to profile"),
OPT_STRING('n', "name", &kwork.profile_name, "name",
"event name to profile"),
OPT_STRING('i', "input", &input_name, "file",
"input file name"),
OPT_PARENT(kwork_options)
};
const struct option top_options[] = {
OPT_PARENT(kwork_options)
};
const char *kwork_usage[] = {
NULL,
NULL
};
const char * const report_usage[] = {
"perf kwork report [<options>]",
NULL
};
const char * const latency_usage[] = {
"perf kwork latency [<options>]",
NULL
};
const char * const timehist_usage[] = {
"perf kwork timehist [<options>]",
NULL
};
const char * const top_usage[] = {
"perf kwork top [<options>]",
NULL
};
const char *const kwork_subcommands[] = {
"record", "report", "latency", "timehist", "top", NULL
};
argc = parse_options_subcommand(argc, argv, kwork_options,
kwork_subcommands, kwork_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
if (!argc)
usage_with_options(kwork_usage, kwork_options);
sort_dimension__add(&kwork, "id", &kwork.cmp_id);
if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
setup_event_list(&kwork, kwork_options, kwork_usage);
return perf_kwork__record(&kwork, argc, argv);
} else if (strlen(argv[0]) > 2 && strstarts("report", argv[0])) {
kwork.sort_order = default_report_sort_order;
if (argc > 1) {
argc = parse_options(argc, argv, report_options, report_usage, 0);
if (argc)
usage_with_options(report_usage, report_options);
}
kwork.report = KWORK_REPORT_RUNTIME;
setup_sorting(&kwork, report_options, report_usage);
setup_event_list(&kwork, kwork_options, kwork_usage);
return perf_kwork__report(&kwork);
} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
kwork.sort_order = default_latency_sort_order;
if (argc > 1) {
argc = parse_options(argc, argv, latency_options, latency_usage, 0);
if (argc)
usage_with_options(latency_usage, latency_options);
}
kwork.report = KWORK_REPORT_LATENCY;
setup_sorting(&kwork, latency_options, latency_usage);
setup_event_list(&kwork, kwork_options, kwork_usage);
return perf_kwork__report(&kwork);
} else if (strlen(argv[0]) > 2 && strstarts("timehist", argv[0])) {
if (argc > 1) {
argc = parse_options(argc, argv, timehist_options, timehist_usage, 0);
if (argc)
usage_with_options(timehist_usage, timehist_options);
}
kwork.report = KWORK_REPORT_TIMEHIST;
setup_event_list(&kwork, kwork_options, kwork_usage);
return perf_kwork__timehist(&kwork);
} else if (strlen(argv[0]) > 2 && strstarts("top", argv[0])) {
kwork.sort_order = default_top_sort_order;
if (argc > 1) {
argc = parse_options(argc, argv, top_options, top_usage, 0);
if (argc)
usage_with_options(top_usage, top_options);
}
kwork.report = KWORK_REPORT_TOP;
if (!kwork.event_list_str)
kwork.event_list_str = "sched";
setup_event_list(&kwork, kwork_options, kwork_usage);
setup_sorting(&kwork, top_options, top_usage);
return perf_kwork__top(&kwork);
} else
usage_with_options(kwork_usage, kwork_options);
return 0;
}