5694cecdb0
In the end, we ended up with quite a lot more than I expected: - Support for ARMv8.3 Pointer Authentication in userspace (CRIU and kernel-side support to come later) - Support for per-thread stack canaries, pending an update to GCC that is currently undergoing review - Support for kexec_file_load(), which permits secure boot of a kexec payload but also happens to improve the performance of kexec dramatically because we can avoid the sucky purgatory code from userspace. Kdump will come later (requires updates to libfdt). - Optimisation of our dynamic CPU feature framework, so that all detected features are enabled via a single stop_machine() invocation - KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that they can benefit from global TLB entries when KASLR is not in use - 52-bit virtual addressing for userspace (kernel remains 48-bit) - Patch in LSE atomics for per-cpu atomic operations - Custom preempt.h implementation to avoid unconditional calls to preempt_schedule() from preempt_enable() - Support for the new 'SB' Speculation Barrier instruction - Vectorised implementation of XOR checksumming and CRC32 optimisations - Workaround for Cortex-A76 erratum #1165522 - Improved compatibility with Clang/LLD - Support for TX2 system PMUS for profiling the L3 cache and DMC - Reflect read-only permissions in the linear map by default - Ensure MMIO reads are ordered with subsequent calls to Xdelay() - Initial support for memory hotplug - Tweak the threshold when we invalidate the TLB by-ASID, so that mremap() performance is improved for ranges spanning multiple PMDs. - Minor refactoring and cleanups -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABCgAGBQJcE4TmAAoJELescNyEwWM0Nr0H/iaU7/wQSzHyNXtZoImyKTul Blu2ga4/EqUrTU7AVVfmkl/3NBILWlgQVpY6tH6EfXQuvnxqD7CizbHyLdyO+z0S B5PsFUH2GLMNAi48AUNqGqkgb2knFbg+T+9IimijDBkKg1G/KhQnRg6bXX32mLJv Une8oshUPBVJMsHN1AcQknzKariuoE3u0SgJ+eOZ9yA2ZwKxP4yy1SkDt3xQrtI0 lojeRjxcyjTP1oGRNZC+BWUtGOT35p7y6cGTnBd/4TlqBGz5wVAJUcdoxnZ6JYVR O8+ob9zU+4I0+SKt80s7pTLqQiL9rxkKZ5joWK1pr1g9e0s5N5yoETXKFHgJYP8= =sYdt -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 festive updates from Will Deacon: "In the end, we ended up with quite a lot more than I expected: - Support for ARMv8.3 Pointer Authentication in userspace (CRIU and kernel-side support to come later) - Support for per-thread stack canaries, pending an update to GCC that is currently undergoing review - Support for kexec_file_load(), which permits secure boot of a kexec payload but also happens to improve the performance of kexec dramatically because we can avoid the sucky purgatory code from userspace. Kdump will come later (requires updates to libfdt). - Optimisation of our dynamic CPU feature framework, so that all detected features are enabled via a single stop_machine() invocation - KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that they can benefit from global TLB entries when KASLR is not in use - 52-bit virtual addressing for userspace (kernel remains 48-bit) - Patch in LSE atomics for per-cpu atomic operations - Custom preempt.h implementation to avoid unconditional calls to preempt_schedule() from preempt_enable() - Support for the new 'SB' Speculation Barrier instruction - Vectorised implementation of XOR checksumming and CRC32 optimisations - Workaround for Cortex-A76 erratum #1165522 - Improved compatibility with Clang/LLD - Support for TX2 system PMUS for profiling the L3 cache and DMC - Reflect read-only permissions in the linear map by default - Ensure MMIO reads are ordered with subsequent calls to Xdelay() - Initial support for memory hotplug - Tweak the threshold when we invalidate the TLB by-ASID, so that mremap() performance is improved for ranges spanning multiple PMDs. - Minor refactoring and cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (125 commits) arm64: kaslr: print PHYS_OFFSET in dump_kernel_offset() arm64: sysreg: Use _BITUL() when defining register bits arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4 arm64: docs: document pointer authentication arm64: ptr auth: Move per-thread keys from thread_info to thread_struct arm64: enable pointer authentication arm64: add prctl control for resetting ptrauth keys arm64: perf: strip PAC when unwinding userspace arm64: expose user PAC bit positions via ptrace arm64: add basic pointer authentication support arm64/cpufeature: detect pointer authentication arm64: Don't trap host pointer auth use to EL2 arm64/kvm: hide ptrauth from guests arm64/kvm: consistently handle host HCR_EL2 flags arm64: add pointer authentication register bits arm64: add comments about EC exception levels arm64: perf: Treat EXCLUDE_EL* bit definitions as unsigned arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field arm64: enable per-task stack canaries ...
2061 lines
65 KiB
C
2061 lines
65 KiB
C
/*
|
|
* Contains CPU feature definitions
|
|
*
|
|
* Copyright (C) 2015 ARM Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "CPU features: " fmt
|
|
|
|
#include <linux/bsearch.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cpu_ops.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/virt.h>
|
|
|
|
unsigned long elf_hwcap __read_mostly;
|
|
EXPORT_SYMBOL_GPL(elf_hwcap);
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#define COMPAT_ELF_HWCAP_DEFAULT \
|
|
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
|
|
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
|
|
COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
|
|
COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
|
|
COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
|
|
COMPAT_HWCAP_LPAE)
|
|
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
|
|
unsigned int compat_elf_hwcap2 __read_mostly;
|
|
#endif
|
|
|
|
DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
|
|
EXPORT_SYMBOL(cpu_hwcaps);
|
|
static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
|
|
|
|
/*
|
|
* Flag to indicate if we have computed the system wide
|
|
* capabilities based on the boot time active CPUs. This
|
|
* will be used to determine if a new booting CPU should
|
|
* go through the verification process to make sure that it
|
|
* supports the system capabilities, without using a hotplug
|
|
* notifier.
|
|
*/
|
|
static bool sys_caps_initialised;
|
|
|
|
static inline void set_sys_caps_initialised(void)
|
|
{
|
|
sys_caps_initialised = true;
|
|
}
|
|
|
|
static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
|
|
{
|
|
/* file-wide pr_fmt adds "CPU features: " prefix */
|
|
pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block cpu_hwcaps_notifier = {
|
|
.notifier_call = dump_cpu_hwcaps
|
|
};
|
|
|
|
static int __init register_cpu_hwcaps_dumper(void)
|
|
{
|
|
atomic_notifier_chain_register(&panic_notifier_list,
|
|
&cpu_hwcaps_notifier);
|
|
return 0;
|
|
}
|
|
__initcall(register_cpu_hwcaps_dumper);
|
|
|
|
DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
|
|
EXPORT_SYMBOL(cpu_hwcap_keys);
|
|
|
|
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
{ \
|
|
.sign = SIGNED, \
|
|
.visible = VISIBLE, \
|
|
.strict = STRICT, \
|
|
.type = TYPE, \
|
|
.shift = SHIFT, \
|
|
.width = WIDTH, \
|
|
.safe_val = SAFE_VAL, \
|
|
}
|
|
|
|
/* Define a feature with unsigned values */
|
|
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
|
|
|
|
/* Define a feature with a signed value */
|
|
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
|
|
|
|
#define ARM64_FTR_END \
|
|
{ \
|
|
.width = 0, \
|
|
}
|
|
|
|
/* meta feature for alternatives */
|
|
static bool __maybe_unused
|
|
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
|
|
|
|
static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
|
|
|
|
/*
|
|
* NOTE: Any changes to the visibility of features should be kept in
|
|
* sync with the documentation of the CPU feature register ABI.
|
|
*/
|
|
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
|
|
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
|
|
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
|
|
/* Linux doesn't care about the EL3 */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
|
|
/* Linux shouldn't care about secure memory */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
|
|
/*
|
|
* Differing PARange is fine as long as all peripherals and memory are mapped
|
|
* within the minimum PARange of all CPUs
|
|
*/
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_ctr[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
|
|
/*
|
|
* Linux can handle differing I-cache policies. Userspace JITs will
|
|
* make use of *minLine.
|
|
* If we have differing I-cache policies, report it as the weakest - VIPT.
|
|
*/
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
|
|
.name = "SYS_CTR_EL0",
|
|
.ftr_bits = ftr_ctr
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
|
|
/*
|
|
* We can instantiate multiple PMU instances with different levels
|
|
* of support.
|
|
*/
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_mvfr2[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_dczid[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
|
|
static const struct arm64_ftr_bits ftr_id_isar5[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_zcr[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
|
|
ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
/*
|
|
* Common ftr bits for a 32bit register with all hidden, strict
|
|
* attributes, with 4bit feature fields and a default safe value of
|
|
* 0. Covers the following 32bit registers:
|
|
* id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
|
|
*/
|
|
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
/* Table for a single 32bit feature value */
|
|
static const struct arm64_ftr_bits ftr_single32[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_raz[] = {
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
#define ARM64_FTR_REG(id, table) { \
|
|
.sys_id = id, \
|
|
.reg = &(struct arm64_ftr_reg){ \
|
|
.name = #id, \
|
|
.ftr_bits = &((table)[0]), \
|
|
}}
|
|
|
|
static const struct __ftr_reg_entry {
|
|
u32 sys_id;
|
|
struct arm64_ftr_reg *reg;
|
|
} arm64_ftr_regs[] = {
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 1 */
|
|
ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
|
|
ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
|
|
ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
|
|
ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 2 */
|
|
ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
|
|
ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 3 */
|
|
ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 4 */
|
|
ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
|
|
ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
|
|
ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 5 */
|
|
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
|
|
ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 6 */
|
|
ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
|
|
ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 7 */
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
|
|
|
|
/* Op1 = 0, CRn = 1, CRm = 2 */
|
|
ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
|
|
|
|
/* Op1 = 3, CRn = 0, CRm = 0 */
|
|
{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
|
|
ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
|
|
|
|
/* Op1 = 3, CRn = 14, CRm = 0 */
|
|
ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
|
|
};
|
|
|
|
static int search_cmp_ftr_reg(const void *id, const void *regp)
|
|
{
|
|
return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
|
|
}
|
|
|
|
/*
|
|
* get_arm64_ftr_reg - Lookup a feature register entry using its
|
|
* sys_reg() encoding. With the array arm64_ftr_regs sorted in the
|
|
* ascending order of sys_id , we use binary search to find a matching
|
|
* entry.
|
|
*
|
|
* returns - Upon success, matching ftr_reg entry for id.
|
|
* - NULL on failure. It is upto the caller to decide
|
|
* the impact of a failure.
|
|
*/
|
|
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
|
|
{
|
|
const struct __ftr_reg_entry *ret;
|
|
|
|
ret = bsearch((const void *)(unsigned long)sys_id,
|
|
arm64_ftr_regs,
|
|
ARRAY_SIZE(arm64_ftr_regs),
|
|
sizeof(arm64_ftr_regs[0]),
|
|
search_cmp_ftr_reg);
|
|
if (ret)
|
|
return ret->reg;
|
|
return NULL;
|
|
}
|
|
|
|
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
|
|
s64 ftr_val)
|
|
{
|
|
u64 mask = arm64_ftr_mask(ftrp);
|
|
|
|
reg &= ~mask;
|
|
reg |= (ftr_val << ftrp->shift) & mask;
|
|
return reg;
|
|
}
|
|
|
|
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
|
|
s64 cur)
|
|
{
|
|
s64 ret = 0;
|
|
|
|
switch (ftrp->type) {
|
|
case FTR_EXACT:
|
|
ret = ftrp->safe_val;
|
|
break;
|
|
case FTR_LOWER_SAFE:
|
|
ret = new < cur ? new : cur;
|
|
break;
|
|
case FTR_HIGHER_SAFE:
|
|
ret = new > cur ? new : cur;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __init sort_ftr_regs(void)
|
|
{
|
|
int i;
|
|
|
|
/* Check that the array is sorted so that we can do the binary search */
|
|
for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
|
|
BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
|
|
}
|
|
|
|
/*
|
|
* Initialise the CPU feature register from Boot CPU values.
|
|
* Also initiliases the strict_mask for the register.
|
|
* Any bits that are not covered by an arm64_ftr_bits entry are considered
|
|
* RES0 for the system-wide value, and must strictly match.
|
|
*/
|
|
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
|
|
{
|
|
u64 val = 0;
|
|
u64 strict_mask = ~0x0ULL;
|
|
u64 user_mask = 0;
|
|
u64 valid_mask = 0;
|
|
|
|
const struct arm64_ftr_bits *ftrp;
|
|
struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
|
|
|
|
BUG_ON(!reg);
|
|
|
|
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
|
|
u64 ftr_mask = arm64_ftr_mask(ftrp);
|
|
s64 ftr_new = arm64_ftr_value(ftrp, new);
|
|
|
|
val = arm64_ftr_set_value(ftrp, val, ftr_new);
|
|
|
|
valid_mask |= ftr_mask;
|
|
if (!ftrp->strict)
|
|
strict_mask &= ~ftr_mask;
|
|
if (ftrp->visible)
|
|
user_mask |= ftr_mask;
|
|
else
|
|
reg->user_val = arm64_ftr_set_value(ftrp,
|
|
reg->user_val,
|
|
ftrp->safe_val);
|
|
}
|
|
|
|
val &= valid_mask;
|
|
|
|
reg->sys_val = val;
|
|
reg->strict_mask = strict_mask;
|
|
reg->user_mask = user_mask;
|
|
}
|
|
|
|
extern const struct arm64_cpu_capabilities arm64_errata[];
|
|
static const struct arm64_cpu_capabilities arm64_features[];
|
|
|
|
static void __init
|
|
init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
|
|
{
|
|
for (; caps->matches; caps++) {
|
|
if (WARN(caps->capability >= ARM64_NCAPS,
|
|
"Invalid capability %d\n", caps->capability))
|
|
continue;
|
|
if (WARN(cpu_hwcaps_ptrs[caps->capability],
|
|
"Duplicate entry for capability %d\n",
|
|
caps->capability))
|
|
continue;
|
|
cpu_hwcaps_ptrs[caps->capability] = caps;
|
|
}
|
|
}
|
|
|
|
static void __init init_cpu_hwcaps_indirect_list(void)
|
|
{
|
|
init_cpu_hwcaps_indirect_list_from_array(arm64_features);
|
|
init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
|
|
}
|
|
|
|
static void __init setup_boot_cpu_capabilities(void);
|
|
|
|
void __init init_cpu_features(struct cpuinfo_arm64 *info)
|
|
{
|
|
/* Before we start using the tables, make sure it is sorted */
|
|
sort_ftr_regs();
|
|
|
|
init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
|
|
init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
|
|
init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
|
|
init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
|
|
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
|
|
|
|
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
|
|
init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
|
|
init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
|
|
init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
|
|
init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
|
|
init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
|
|
init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
|
|
}
|
|
|
|
if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
|
|
init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
|
|
sve_init_vq_map();
|
|
}
|
|
|
|
/*
|
|
* Initialize the indirect array of CPU hwcaps capabilities pointers
|
|
* before we handle the boot CPU below.
|
|
*/
|
|
init_cpu_hwcaps_indirect_list();
|
|
|
|
/*
|
|
* Detect and enable early CPU capabilities based on the boot CPU,
|
|
* after we have initialised the CPU feature infrastructure.
|
|
*/
|
|
setup_boot_cpu_capabilities();
|
|
}
|
|
|
|
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
|
|
{
|
|
const struct arm64_ftr_bits *ftrp;
|
|
|
|
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
|
|
s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
|
|
s64 ftr_new = arm64_ftr_value(ftrp, new);
|
|
|
|
if (ftr_cur == ftr_new)
|
|
continue;
|
|
/* Find a safe value */
|
|
ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
|
|
reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
|
|
}
|
|
|
|
}
|
|
|
|
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
|
|
{
|
|
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
|
|
|
|
BUG_ON(!regp);
|
|
update_cpu_ftr_reg(regp, val);
|
|
if ((boot & regp->strict_mask) == (val & regp->strict_mask))
|
|
return 0;
|
|
pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
|
|
regp->name, boot, cpu, val);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Update system wide CPU feature registers with the values from a
|
|
* non-boot CPU. Also performs SANITY checks to make sure that there
|
|
* aren't any insane variations from that of the boot CPU.
|
|
*/
|
|
void update_cpu_features(int cpu,
|
|
struct cpuinfo_arm64 *info,
|
|
struct cpuinfo_arm64 *boot)
|
|
{
|
|
int taint = 0;
|
|
|
|
/*
|
|
* The kernel can handle differing I-cache policies, but otherwise
|
|
* caches should look identical. Userspace JITs will make use of
|
|
* *minLine.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
|
|
info->reg_ctr, boot->reg_ctr);
|
|
|
|
/*
|
|
* Userspace may perform DC ZVA instructions. Mismatched block sizes
|
|
* could result in too much or too little memory being zeroed if a
|
|
* process is preempted and migrated between CPUs.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
|
|
info->reg_dczid, boot->reg_dczid);
|
|
|
|
/* If different, timekeeping will be broken (especially with KVM) */
|
|
taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
|
|
info->reg_cntfrq, boot->reg_cntfrq);
|
|
|
|
/*
|
|
* The kernel uses self-hosted debug features and expects CPUs to
|
|
* support identical debug features. We presently need CTX_CMPs, WRPs,
|
|
* and BRPs to be identical.
|
|
* ID_AA64DFR1 is currently RES0.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
|
|
info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
|
|
info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
|
|
/*
|
|
* Even in big.LITTLE, processors should be identical instruction-set
|
|
* wise.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
|
|
info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
|
|
info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
|
|
|
|
/*
|
|
* Differing PARange support is fine as long as all peripherals and
|
|
* memory are mapped within the minimum PARange of all CPUs.
|
|
* Linux should not care about secure memory.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
|
|
info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
|
|
info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
|
|
info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
|
|
|
|
/*
|
|
* EL3 is not our concern.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
|
|
info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
|
|
info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
|
|
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
|
|
info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
|
|
|
|
/*
|
|
* If we have AArch32, we care about 32-bit features for compat.
|
|
* If the system doesn't support AArch32, don't update them.
|
|
*/
|
|
if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
|
|
id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
|
|
|
|
taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
|
|
info->reg_id_dfr0, boot->reg_id_dfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
|
|
info->reg_id_isar0, boot->reg_id_isar0);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
|
|
info->reg_id_isar1, boot->reg_id_isar1);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
|
|
info->reg_id_isar2, boot->reg_id_isar2);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
|
|
info->reg_id_isar3, boot->reg_id_isar3);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
|
|
info->reg_id_isar4, boot->reg_id_isar4);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
|
|
info->reg_id_isar5, boot->reg_id_isar5);
|
|
|
|
/*
|
|
* Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
|
|
* ACTLR formats could differ across CPUs and therefore would have to
|
|
* be trapped for virtualization anyway.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
|
|
info->reg_id_mmfr0, boot->reg_id_mmfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
|
|
info->reg_id_mmfr1, boot->reg_id_mmfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
|
|
info->reg_id_mmfr2, boot->reg_id_mmfr2);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
|
|
info->reg_id_mmfr3, boot->reg_id_mmfr3);
|
|
taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
|
|
info->reg_id_pfr0, boot->reg_id_pfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
|
|
info->reg_id_pfr1, boot->reg_id_pfr1);
|
|
taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
|
|
info->reg_mvfr0, boot->reg_mvfr0);
|
|
taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
|
|
info->reg_mvfr1, boot->reg_mvfr1);
|
|
taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
|
|
info->reg_mvfr2, boot->reg_mvfr2);
|
|
}
|
|
|
|
if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
|
|
taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
|
|
info->reg_zcr, boot->reg_zcr);
|
|
|
|
/* Probe vector lengths, unless we already gave up on SVE */
|
|
if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
|
|
!sys_caps_initialised)
|
|
sve_update_vq_map();
|
|
}
|
|
|
|
/*
|
|
* Mismatched CPU features are a recipe for disaster. Don't even
|
|
* pretend to support them.
|
|
*/
|
|
if (taint) {
|
|
pr_warn_once("Unsupported CPU feature variation detected.\n");
|
|
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
|
|
}
|
|
}
|
|
|
|
u64 read_sanitised_ftr_reg(u32 id)
|
|
{
|
|
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
|
|
|
|
/* We shouldn't get a request for an unsupported register */
|
|
BUG_ON(!regp);
|
|
return regp->sys_val;
|
|
}
|
|
|
|
#define read_sysreg_case(r) \
|
|
case r: return read_sysreg_s(r)
|
|
|
|
/*
|
|
* __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
|
|
* Read the system register on the current CPU
|
|
*/
|
|
static u64 __read_sysreg_by_encoding(u32 sys_id)
|
|
{
|
|
switch (sys_id) {
|
|
read_sysreg_case(SYS_ID_PFR0_EL1);
|
|
read_sysreg_case(SYS_ID_PFR1_EL1);
|
|
read_sysreg_case(SYS_ID_DFR0_EL1);
|
|
read_sysreg_case(SYS_ID_MMFR0_EL1);
|
|
read_sysreg_case(SYS_ID_MMFR1_EL1);
|
|
read_sysreg_case(SYS_ID_MMFR2_EL1);
|
|
read_sysreg_case(SYS_ID_MMFR3_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR0_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR1_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR2_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR3_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR4_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR5_EL1);
|
|
read_sysreg_case(SYS_MVFR0_EL1);
|
|
read_sysreg_case(SYS_MVFR1_EL1);
|
|
read_sysreg_case(SYS_MVFR2_EL1);
|
|
|
|
read_sysreg_case(SYS_ID_AA64PFR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64PFR1_EL1);
|
|
read_sysreg_case(SYS_ID_AA64DFR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64DFR1_EL1);
|
|
read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
|
|
read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
|
|
read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
|
|
|
|
read_sysreg_case(SYS_CNTFRQ_EL0);
|
|
read_sysreg_case(SYS_CTR_EL0);
|
|
read_sysreg_case(SYS_DCZID_EL0);
|
|
|
|
default:
|
|
BUG();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
|
|
static bool
|
|
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
|
|
{
|
|
int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
|
|
|
|
return val >= entry->min_field_value;
|
|
}
|
|
|
|
static bool
|
|
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
u64 val;
|
|
|
|
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
|
|
if (scope == SCOPE_SYSTEM)
|
|
val = read_sanitised_ftr_reg(entry->sys_reg);
|
|
else
|
|
val = __read_sysreg_by_encoding(entry->sys_reg);
|
|
|
|
return feature_matches(val, entry);
|
|
}
|
|
|
|
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
bool has_sre;
|
|
|
|
if (!has_cpuid_feature(entry, scope))
|
|
return false;
|
|
|
|
has_sre = gic_enable_sre();
|
|
if (!has_sre)
|
|
pr_warn_once("%s present but disabled by higher exception level\n",
|
|
entry->desc);
|
|
|
|
return has_sre;
|
|
}
|
|
|
|
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
u32 midr = read_cpuid_id();
|
|
|
|
/* Cavium ThunderX pass 1.x and 2.x */
|
|
return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
|
|
MIDR_CPU_VAR_REV(0, 0),
|
|
MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
|
|
}
|
|
|
|
static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
|
|
|
|
return cpuid_feature_extract_signed_field(pfr0,
|
|
ID_AA64PFR0_FP_SHIFT) < 0;
|
|
}
|
|
|
|
static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
|
|
int scope)
|
|
{
|
|
u64 ctr;
|
|
|
|
if (scope == SCOPE_SYSTEM)
|
|
ctr = arm64_ftr_reg_ctrel0.sys_val;
|
|
else
|
|
ctr = read_cpuid_effective_cachetype();
|
|
|
|
return ctr & BIT(CTR_IDC_SHIFT);
|
|
}
|
|
|
|
static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
/*
|
|
* If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
|
|
* CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
|
|
* to the CTR_EL0 on this CPU and emulate it with the real/safe
|
|
* value.
|
|
*/
|
|
if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
|
|
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
|
|
}
|
|
|
|
static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
|
|
int scope)
|
|
{
|
|
u64 ctr;
|
|
|
|
if (scope == SCOPE_SYSTEM)
|
|
ctr = arm64_ftr_reg_ctrel0.sys_val;
|
|
else
|
|
ctr = read_cpuid_cachetype();
|
|
|
|
return ctr & BIT(CTR_DIC_SHIFT);
|
|
}
|
|
|
|
static bool __maybe_unused
|
|
has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
/*
|
|
* Kdump isn't guaranteed to power-off all secondary CPUs, CNP
|
|
* may share TLB entries with a CPU stuck in the crashed
|
|
* kernel.
|
|
*/
|
|
if (is_kdump_kernel())
|
|
return false;
|
|
|
|
return has_cpuid_feature(entry, scope);
|
|
}
|
|
|
|
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
|
|
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
|
|
|
|
static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
|
|
int scope)
|
|
{
|
|
/* List of CPUs that are not vulnerable and don't need KPTI */
|
|
static const struct midr_range kpti_safe_list[] = {
|
|
MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
|
|
MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
|
|
{ /* sentinel */ }
|
|
};
|
|
char const *str = "command line option";
|
|
|
|
/*
|
|
* For reasons that aren't entirely clear, enabling KPTI on Cavium
|
|
* ThunderX leads to apparent I-cache corruption of kernel text, which
|
|
* ends as well as you might imagine. Don't even try.
|
|
*/
|
|
if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
|
|
str = "ARM64_WORKAROUND_CAVIUM_27456";
|
|
__kpti_forced = -1;
|
|
}
|
|
|
|
/* Forced? */
|
|
if (__kpti_forced) {
|
|
pr_info_once("kernel page table isolation forced %s by %s\n",
|
|
__kpti_forced > 0 ? "ON" : "OFF", str);
|
|
return __kpti_forced > 0;
|
|
}
|
|
|
|
/* Useful for KASLR robustness */
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
|
|
return true;
|
|
|
|
/* Don't force KPTI for CPUs that are not vulnerable */
|
|
if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
|
|
return false;
|
|
|
|
/* Defer to CPU feature registers */
|
|
return !has_cpuid_feature(entry, scope);
|
|
}
|
|
|
|
static void
|
|
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
typedef void (kpti_remap_fn)(int, int, phys_addr_t);
|
|
extern kpti_remap_fn idmap_kpti_install_ng_mappings;
|
|
kpti_remap_fn *remap_fn;
|
|
|
|
static bool kpti_applied = false;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (kpti_applied)
|
|
return;
|
|
|
|
remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
|
|
|
|
cpu_install_idmap();
|
|
remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
|
|
cpu_uninstall_idmap();
|
|
|
|
if (!cpu)
|
|
kpti_applied = true;
|
|
|
|
return;
|
|
}
|
|
|
|
static int __init parse_kpti(char *str)
|
|
{
|
|
bool enabled;
|
|
int ret = strtobool(str, &enabled);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
__kpti_forced = enabled ? 1 : -1;
|
|
return 0;
|
|
}
|
|
early_param("kpti", parse_kpti);
|
|
#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
|
|
|
|
#ifdef CONFIG_ARM64_HW_AFDBM
|
|
static inline void __cpu_enable_hw_dbm(void)
|
|
{
|
|
u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
|
|
|
|
write_sysreg(tcr, tcr_el1);
|
|
isb();
|
|
}
|
|
|
|
static bool cpu_has_broken_dbm(void)
|
|
{
|
|
/* List of CPUs which have broken DBM support. */
|
|
static const struct midr_range cpus[] = {
|
|
#ifdef CONFIG_ARM64_ERRATUM_1024718
|
|
MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
|
|
#endif
|
|
{},
|
|
};
|
|
|
|
return is_midr_in_range_list(read_cpuid_id(), cpus);
|
|
}
|
|
|
|
static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
|
|
!cpu_has_broken_dbm();
|
|
}
|
|
|
|
static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
|
|
{
|
|
if (cpu_can_use_dbm(cap))
|
|
__cpu_enable_hw_dbm();
|
|
}
|
|
|
|
static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
|
|
int __unused)
|
|
{
|
|
static bool detected = false;
|
|
/*
|
|
* DBM is a non-conflicting feature. i.e, the kernel can safely
|
|
* run a mix of CPUs with and without the feature. So, we
|
|
* unconditionally enable the capability to allow any late CPU
|
|
* to use the feature. We only enable the control bits on the
|
|
* CPU, if it actually supports.
|
|
*
|
|
* We have to make sure we print the "feature" detection only
|
|
* when at least one CPU actually uses it. So check if this CPU
|
|
* can actually use it and print the message exactly once.
|
|
*
|
|
* This is safe as all CPUs (including secondary CPUs - due to the
|
|
* LOCAL_CPU scope - and the hotplugged CPUs - via verification)
|
|
* goes through the "matches" check exactly once. Also if a CPU
|
|
* matches the criteria, it is guaranteed that the CPU will turn
|
|
* the DBM on, as the capability is unconditionally enabled.
|
|
*/
|
|
if (!detected && cpu_can_use_dbm(cap)) {
|
|
detected = true;
|
|
pr_info("detected: Hardware dirty bit management\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARM64_VHE
|
|
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
return is_kernel_in_hyp_mode();
|
|
}
|
|
|
|
static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
/*
|
|
* Copy register values that aren't redirected by hardware.
|
|
*
|
|
* Before code patching, we only set tpidr_el1, all CPUs need to copy
|
|
* this value to tpidr_el2 before we patch the code. Once we've done
|
|
* that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
|
|
* do anything here.
|
|
*/
|
|
if (!alternatives_applied)
|
|
write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
|
|
}
|
|
#endif
|
|
|
|
static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
u64 val = read_sysreg_s(SYS_CLIDR_EL1);
|
|
|
|
/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
|
|
WARN_ON(val & (7 << 27 | 7 << 21));
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_SSBD
|
|
static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
|
|
{
|
|
if (user_mode(regs))
|
|
return 1;
|
|
|
|
if (instr & BIT(PSTATE_Imm_shift))
|
|
regs->pstate |= PSR_SSBS_BIT;
|
|
else
|
|
regs->pstate &= ~PSR_SSBS_BIT;
|
|
|
|
arm64_skip_faulting_instruction(regs, 4);
|
|
return 0;
|
|
}
|
|
|
|
static struct undef_hook ssbs_emulation_hook = {
|
|
.instr_mask = ~(1U << PSTATE_Imm_shift),
|
|
.instr_val = 0xd500401f | PSTATE_SSBS,
|
|
.fn = ssbs_emulation_handler,
|
|
};
|
|
|
|
static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
static bool undef_hook_registered = false;
|
|
static DEFINE_SPINLOCK(hook_lock);
|
|
|
|
spin_lock(&hook_lock);
|
|
if (!undef_hook_registered) {
|
|
register_undef_hook(&ssbs_emulation_hook);
|
|
undef_hook_registered = true;
|
|
}
|
|
spin_unlock(&hook_lock);
|
|
|
|
if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
|
|
sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
|
|
arm64_set_ssbd_mitigation(false);
|
|
} else {
|
|
arm64_set_ssbd_mitigation(true);
|
|
}
|
|
}
|
|
#endif /* CONFIG_ARM64_SSBD */
|
|
|
|
#ifdef CONFIG_ARM64_PAN
|
|
static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
/*
|
|
* We modify PSTATE. This won't work from irq context as the PSTATE
|
|
* is discarded once we return from the exception.
|
|
*/
|
|
WARN_ON_ONCE(in_interrupt());
|
|
|
|
sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
|
|
asm(SET_PSTATE_PAN(1));
|
|
}
|
|
#endif /* CONFIG_ARM64_PAN */
|
|
|
|
#ifdef CONFIG_ARM64_RAS_EXTN
|
|
static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
/* Firmware may have left a deferred SError in this register. */
|
|
write_sysreg_s(0, SYS_DISR_EL1);
|
|
}
|
|
#endif /* CONFIG_ARM64_RAS_EXTN */
|
|
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
|
|
{
|
|
sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
|
|
SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
|
|
}
|
|
#endif /* CONFIG_ARM64_PTR_AUTH */
|
|
|
|
static const struct arm64_cpu_capabilities arm64_features[] = {
|
|
{
|
|
.desc = "GIC system register CPU interface",
|
|
.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_useable_gicv3_cpuif,
|
|
.sys_reg = SYS_ID_AA64PFR0_EL1,
|
|
.field_pos = ID_AA64PFR0_GIC_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = 1,
|
|
},
|
|
#ifdef CONFIG_ARM64_PAN
|
|
{
|
|
.desc = "Privileged Access Never",
|
|
.capability = ARM64_HAS_PAN,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64MMFR1_EL1,
|
|
.field_pos = ID_AA64MMFR1_PAN_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = 1,
|
|
.cpu_enable = cpu_enable_pan,
|
|
},
|
|
#endif /* CONFIG_ARM64_PAN */
|
|
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
|
|
{
|
|
.desc = "LSE atomic instructions",
|
|
.capability = ARM64_HAS_LSE_ATOMICS,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64ISAR0_EL1,
|
|
.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = 2,
|
|
},
|
|
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
|
|
{
|
|
.desc = "Software prefetching using PRFM",
|
|
.capability = ARM64_HAS_NO_HW_PREFETCH,
|
|
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
|
|
.matches = has_no_hw_prefetch,
|
|
},
|
|
#ifdef CONFIG_ARM64_UAO
|
|
{
|
|
.desc = "User Access Override",
|
|
.capability = ARM64_HAS_UAO,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64MMFR2_EL1,
|
|
.field_pos = ID_AA64MMFR2_UAO_SHIFT,
|
|
.min_field_value = 1,
|
|
/*
|
|
* We rely on stop_machine() calling uao_thread_switch() to set
|
|
* UAO immediately after patching.
|
|
*/
|
|
},
|
|
#endif /* CONFIG_ARM64_UAO */
|
|
#ifdef CONFIG_ARM64_PAN
|
|
{
|
|
.capability = ARM64_ALT_PAN_NOT_UAO,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = cpufeature_pan_not_uao,
|
|
},
|
|
#endif /* CONFIG_ARM64_PAN */
|
|
#ifdef CONFIG_ARM64_VHE
|
|
{
|
|
.desc = "Virtualization Host Extensions",
|
|
.capability = ARM64_HAS_VIRT_HOST_EXTN,
|
|
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
|
|
.matches = runs_at_el2,
|
|
.cpu_enable = cpu_copy_el2regs,
|
|
},
|
|
#endif /* CONFIG_ARM64_VHE */
|
|
{
|
|
.desc = "32-bit EL0 Support",
|
|
.capability = ARM64_HAS_32BIT_EL0,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64PFR0_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64PFR0_EL0_SHIFT,
|
|
.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
|
|
},
|
|
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
|
|
{
|
|
.desc = "Kernel page table isolation (KPTI)",
|
|
.capability = ARM64_UNMAP_KERNEL_AT_EL0,
|
|
.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
|
|
/*
|
|
* The ID feature fields below are used to indicate that
|
|
* the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
|
|
* more details.
|
|
*/
|
|
.sys_reg = SYS_ID_AA64PFR0_EL1,
|
|
.field_pos = ID_AA64PFR0_CSV3_SHIFT,
|
|
.min_field_value = 1,
|
|
.matches = unmap_kernel_at_el0,
|
|
.cpu_enable = kpti_install_ng_mappings,
|
|
},
|
|
#endif
|
|
{
|
|
/* FP/SIMD is not implemented */
|
|
.capability = ARM64_HAS_NO_FPSIMD,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.min_field_value = 0,
|
|
.matches = has_no_fpsimd,
|
|
},
|
|
#ifdef CONFIG_ARM64_PMEM
|
|
{
|
|
.desc = "Data cache clean to Point of Persistence",
|
|
.capability = ARM64_HAS_DCPOP,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64ISAR1_EL1,
|
|
.field_pos = ID_AA64ISAR1_DPB_SHIFT,
|
|
.min_field_value = 1,
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_ARM64_SVE
|
|
{
|
|
.desc = "Scalable Vector Extension",
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.capability = ARM64_SVE,
|
|
.sys_reg = SYS_ID_AA64PFR0_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64PFR0_SVE_SHIFT,
|
|
.min_field_value = ID_AA64PFR0_SVE,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = sve_kernel_enable,
|
|
},
|
|
#endif /* CONFIG_ARM64_SVE */
|
|
#ifdef CONFIG_ARM64_RAS_EXTN
|
|
{
|
|
.desc = "RAS Extension Support",
|
|
.capability = ARM64_HAS_RAS_EXTN,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64PFR0_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64PFR0_RAS_SHIFT,
|
|
.min_field_value = ID_AA64PFR0_RAS_V1,
|
|
.cpu_enable = cpu_clear_disr,
|
|
},
|
|
#endif /* CONFIG_ARM64_RAS_EXTN */
|
|
{
|
|
.desc = "Data cache clean to the PoU not required for I/D coherence",
|
|
.capability = ARM64_HAS_CACHE_IDC,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cache_idc,
|
|
.cpu_enable = cpu_emulate_effective_ctr,
|
|
},
|
|
{
|
|
.desc = "Instruction cache invalidation not required for I/D coherence",
|
|
.capability = ARM64_HAS_CACHE_DIC,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cache_dic,
|
|
},
|
|
{
|
|
.desc = "Stage-2 Force Write-Back",
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.capability = ARM64_HAS_STAGE2_FWB,
|
|
.sys_reg = SYS_ID_AA64MMFR2_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64MMFR2_FWB_SHIFT,
|
|
.min_field_value = 1,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_has_fwb,
|
|
},
|
|
#ifdef CONFIG_ARM64_HW_AFDBM
|
|
{
|
|
/*
|
|
* Since we turn this on always, we don't want the user to
|
|
* think that the feature is available when it may not be.
|
|
* So hide the description.
|
|
*
|
|
* .desc = "Hardware pagetable Dirty Bit Management",
|
|
*
|
|
*/
|
|
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
|
|
.capability = ARM64_HW_DBM,
|
|
.sys_reg = SYS_ID_AA64MMFR1_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
|
|
.min_field_value = 2,
|
|
.matches = has_hw_dbm,
|
|
.cpu_enable = cpu_enable_hw_dbm,
|
|
},
|
|
#endif
|
|
{
|
|
.desc = "CRC32 instructions",
|
|
.capability = ARM64_HAS_CRC32,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64ISAR0_EL1,
|
|
.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
|
|
.min_field_value = 1,
|
|
},
|
|
#ifdef CONFIG_ARM64_SSBD
|
|
{
|
|
.desc = "Speculative Store Bypassing Safe (SSBS)",
|
|
.capability = ARM64_SSBS,
|
|
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64PFR1_EL1,
|
|
.field_pos = ID_AA64PFR1_SSBS_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
|
|
.cpu_enable = cpu_enable_ssbs,
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_ARM64_CNP
|
|
{
|
|
.desc = "Common not Private translations",
|
|
.capability = ARM64_HAS_CNP,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_useable_cnp,
|
|
.sys_reg = SYS_ID_AA64MMFR2_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64MMFR2_CNP_SHIFT,
|
|
.min_field_value = 1,
|
|
.cpu_enable = cpu_enable_cnp,
|
|
},
|
|
#endif
|
|
{
|
|
.desc = "Speculation barrier (SB)",
|
|
.capability = ARM64_HAS_SB,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.sys_reg = SYS_ID_AA64ISAR1_EL1,
|
|
.field_pos = ID_AA64ISAR1_SB_SHIFT,
|
|
.sign = FTR_UNSIGNED,
|
|
.min_field_value = 1,
|
|
},
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
{
|
|
.desc = "Address authentication (architected algorithm)",
|
|
.capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.sys_reg = SYS_ID_AA64ISAR1_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64ISAR1_APA_SHIFT,
|
|
.min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_address_auth,
|
|
},
|
|
{
|
|
.desc = "Address authentication (IMP DEF algorithm)",
|
|
.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.sys_reg = SYS_ID_AA64ISAR1_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64ISAR1_API_SHIFT,
|
|
.min_field_value = ID_AA64ISAR1_API_IMP_DEF,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_address_auth,
|
|
},
|
|
{
|
|
.desc = "Generic authentication (architected algorithm)",
|
|
.capability = ARM64_HAS_GENERIC_AUTH_ARCH,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.sys_reg = SYS_ID_AA64ISAR1_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64ISAR1_GPA_SHIFT,
|
|
.min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
|
|
.matches = has_cpuid_feature,
|
|
},
|
|
{
|
|
.desc = "Generic authentication (IMP DEF algorithm)",
|
|
.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.sys_reg = SYS_ID_AA64ISAR1_EL1,
|
|
.sign = FTR_UNSIGNED,
|
|
.field_pos = ID_AA64ISAR1_GPI_SHIFT,
|
|
.min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
|
|
.matches = has_cpuid_feature,
|
|
},
|
|
#endif /* CONFIG_ARM64_PTR_AUTH */
|
|
{},
|
|
};
|
|
|
|
#define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
|
|
.matches = has_cpuid_feature, \
|
|
.sys_reg = reg, \
|
|
.field_pos = field, \
|
|
.sign = s, \
|
|
.min_field_value = min_value,
|
|
|
|
#define __HWCAP_CAP(name, cap_type, cap) \
|
|
.desc = name, \
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE, \
|
|
.hwcap_type = cap_type, \
|
|
.hwcap = cap, \
|
|
|
|
#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
|
|
{ \
|
|
__HWCAP_CAP(#cap, cap_type, cap) \
|
|
HWCAP_CPUID_MATCH(reg, field, s, min_value) \
|
|
}
|
|
|
|
#define HWCAP_MULTI_CAP(list, cap_type, cap) \
|
|
{ \
|
|
__HWCAP_CAP(#cap, cap_type, cap) \
|
|
.matches = cpucap_multi_entry_cap_matches, \
|
|
.match_list = list, \
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
|
|
{
|
|
HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
|
|
FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
|
|
},
|
|
{
|
|
HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
|
|
FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
|
|
},
|
|
{},
|
|
};
|
|
|
|
static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
|
|
{
|
|
HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
|
|
FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
|
|
},
|
|
{
|
|
HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
|
|
FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
|
|
},
|
|
{},
|
|
};
|
|
#endif
|
|
|
|
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
|
|
HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SB),
|
|
HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
|
|
#ifdef CONFIG_ARM64_SVE
|
|
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
|
|
#endif
|
|
HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, HWCAP_PACA),
|
|
HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, HWCAP_PACG),
|
|
#endif
|
|
{},
|
|
};
|
|
|
|
static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
|
|
#ifdef CONFIG_COMPAT
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
|
|
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
|
|
#endif
|
|
{},
|
|
};
|
|
|
|
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
switch (cap->hwcap_type) {
|
|
case CAP_HWCAP:
|
|
elf_hwcap |= cap->hwcap;
|
|
break;
|
|
#ifdef CONFIG_COMPAT
|
|
case CAP_COMPAT_HWCAP:
|
|
compat_elf_hwcap |= (u32)cap->hwcap;
|
|
break;
|
|
case CAP_COMPAT_HWCAP2:
|
|
compat_elf_hwcap2 |= (u32)cap->hwcap;
|
|
break;
|
|
#endif
|
|
default:
|
|
WARN_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check if we have a particular HWCAP enabled */
|
|
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
bool rc;
|
|
|
|
switch (cap->hwcap_type) {
|
|
case CAP_HWCAP:
|
|
rc = (elf_hwcap & cap->hwcap) != 0;
|
|
break;
|
|
#ifdef CONFIG_COMPAT
|
|
case CAP_COMPAT_HWCAP:
|
|
rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
|
|
break;
|
|
case CAP_COMPAT_HWCAP2:
|
|
rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
|
|
break;
|
|
#endif
|
|
default:
|
|
WARN_ON(1);
|
|
rc = false;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
|
|
{
|
|
/* We support emulation of accesses to CPU ID feature registers */
|
|
elf_hwcap |= HWCAP_CPUID;
|
|
for (; hwcaps->matches; hwcaps++)
|
|
if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
|
|
cap_set_elf_hwcap(hwcaps);
|
|
}
|
|
|
|
static void update_cpu_capabilities(u16 scope_mask)
|
|
{
|
|
int i;
|
|
const struct arm64_cpu_capabilities *caps;
|
|
|
|
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
|
|
for (i = 0; i < ARM64_NCAPS; i++) {
|
|
caps = cpu_hwcaps_ptrs[i];
|
|
if (!caps || !(caps->type & scope_mask) ||
|
|
cpus_have_cap(caps->capability) ||
|
|
!caps->matches(caps, cpucap_default_scope(caps)))
|
|
continue;
|
|
|
|
if (caps->desc)
|
|
pr_info("detected: %s\n", caps->desc);
|
|
cpus_set_cap(caps->capability);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enable all the available capabilities on this CPU. The capabilities
|
|
* with BOOT_CPU scope are handled separately and hence skipped here.
|
|
*/
|
|
static int cpu_enable_non_boot_scope_capabilities(void *__unused)
|
|
{
|
|
int i;
|
|
u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
|
|
|
|
for_each_available_cap(i) {
|
|
const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
|
|
|
|
if (WARN_ON(!cap))
|
|
continue;
|
|
|
|
if (!(cap->type & non_boot_scope))
|
|
continue;
|
|
|
|
if (cap->cpu_enable)
|
|
cap->cpu_enable(cap);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Run through the enabled capabilities and enable() it on all active
|
|
* CPUs
|
|
*/
|
|
static void __init enable_cpu_capabilities(u16 scope_mask)
|
|
{
|
|
int i;
|
|
const struct arm64_cpu_capabilities *caps;
|
|
bool boot_scope;
|
|
|
|
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
|
|
boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
|
|
|
|
for (i = 0; i < ARM64_NCAPS; i++) {
|
|
unsigned int num;
|
|
|
|
caps = cpu_hwcaps_ptrs[i];
|
|
if (!caps || !(caps->type & scope_mask))
|
|
continue;
|
|
num = caps->capability;
|
|
if (!cpus_have_cap(num))
|
|
continue;
|
|
|
|
/* Ensure cpus_have_const_cap(num) works */
|
|
static_branch_enable(&cpu_hwcap_keys[num]);
|
|
|
|
if (boot_scope && caps->cpu_enable)
|
|
/*
|
|
* Capabilities with SCOPE_BOOT_CPU scope are finalised
|
|
* before any secondary CPU boots. Thus, each secondary
|
|
* will enable the capability as appropriate via
|
|
* check_local_cpu_capabilities(). The only exception is
|
|
* the boot CPU, for which the capability must be
|
|
* enabled here. This approach avoids costly
|
|
* stop_machine() calls for this case.
|
|
*/
|
|
caps->cpu_enable(caps);
|
|
}
|
|
|
|
/*
|
|
* For all non-boot scope capabilities, use stop_machine()
|
|
* as it schedules the work allowing us to modify PSTATE,
|
|
* instead of on_each_cpu() which uses an IPI, giving us a
|
|
* PSTATE that disappears when we return.
|
|
*/
|
|
if (!boot_scope)
|
|
stop_machine(cpu_enable_non_boot_scope_capabilities,
|
|
NULL, cpu_online_mask);
|
|
}
|
|
|
|
/*
|
|
* Run through the list of capabilities to check for conflicts.
|
|
* If the system has already detected a capability, take necessary
|
|
* action on this CPU.
|
|
*
|
|
* Returns "false" on conflicts.
|
|
*/
|
|
static bool verify_local_cpu_caps(u16 scope_mask)
|
|
{
|
|
int i;
|
|
bool cpu_has_cap, system_has_cap;
|
|
const struct arm64_cpu_capabilities *caps;
|
|
|
|
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
|
|
|
|
for (i = 0; i < ARM64_NCAPS; i++) {
|
|
caps = cpu_hwcaps_ptrs[i];
|
|
if (!caps || !(caps->type & scope_mask))
|
|
continue;
|
|
|
|
cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
|
|
system_has_cap = cpus_have_cap(caps->capability);
|
|
|
|
if (system_has_cap) {
|
|
/*
|
|
* Check if the new CPU misses an advertised feature,
|
|
* which is not safe to miss.
|
|
*/
|
|
if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
|
|
break;
|
|
/*
|
|
* We have to issue cpu_enable() irrespective of
|
|
* whether the CPU has it or not, as it is enabeld
|
|
* system wide. It is upto the call back to take
|
|
* appropriate action on this CPU.
|
|
*/
|
|
if (caps->cpu_enable)
|
|
caps->cpu_enable(caps);
|
|
} else {
|
|
/*
|
|
* Check if the CPU has this capability if it isn't
|
|
* safe to have when the system doesn't.
|
|
*/
|
|
if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i < ARM64_NCAPS) {
|
|
pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
|
|
smp_processor_id(), caps->capability,
|
|
caps->desc, system_has_cap, cpu_has_cap);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check for CPU features that are used in early boot
|
|
* based on the Boot CPU value.
|
|
*/
|
|
static void check_early_cpu_features(void)
|
|
{
|
|
verify_cpu_asid_bits();
|
|
/*
|
|
* Early features are used by the kernel already. If there
|
|
* is a conflict, we cannot proceed further.
|
|
*/
|
|
if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
|
|
cpu_panic_kernel();
|
|
}
|
|
|
|
static void
|
|
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
|
|
{
|
|
|
|
for (; caps->matches; caps++)
|
|
if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
|
|
pr_crit("CPU%d: missing HWCAP: %s\n",
|
|
smp_processor_id(), caps->desc);
|
|
cpu_die_early();
|
|
}
|
|
}
|
|
|
|
static void verify_sve_features(void)
|
|
{
|
|
u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
|
|
u64 zcr = read_zcr_features();
|
|
|
|
unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
|
|
unsigned int len = zcr & ZCR_ELx_LEN_MASK;
|
|
|
|
if (len < safe_len || sve_verify_vq_map()) {
|
|
pr_crit("CPU%d: SVE: required vector length(s) missing\n",
|
|
smp_processor_id());
|
|
cpu_die_early();
|
|
}
|
|
|
|
/* Add checks on other ZCR bits here if necessary */
|
|
}
|
|
|
|
|
|
/*
|
|
* Run through the enabled system capabilities and enable() it on this CPU.
|
|
* The capabilities were decided based on the available CPUs at the boot time.
|
|
* Any new CPU should match the system wide status of the capability. If the
|
|
* new CPU doesn't have a capability which the system now has enabled, we
|
|
* cannot do anything to fix it up and could cause unexpected failures. So
|
|
* we park the CPU.
|
|
*/
|
|
static void verify_local_cpu_capabilities(void)
|
|
{
|
|
/*
|
|
* The capabilities with SCOPE_BOOT_CPU are checked from
|
|
* check_early_cpu_features(), as they need to be verified
|
|
* on all secondary CPUs.
|
|
*/
|
|
if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
|
|
cpu_die_early();
|
|
|
|
verify_local_elf_hwcaps(arm64_elf_hwcaps);
|
|
|
|
if (system_supports_32bit_el0())
|
|
verify_local_elf_hwcaps(compat_elf_hwcaps);
|
|
|
|
if (system_supports_sve())
|
|
verify_sve_features();
|
|
}
|
|
|
|
void check_local_cpu_capabilities(void)
|
|
{
|
|
/*
|
|
* All secondary CPUs should conform to the early CPU features
|
|
* in use by the kernel based on boot CPU.
|
|
*/
|
|
check_early_cpu_features();
|
|
|
|
/*
|
|
* If we haven't finalised the system capabilities, this CPU gets
|
|
* a chance to update the errata work arounds and local features.
|
|
* Otherwise, this CPU should verify that it has all the system
|
|
* advertised capabilities.
|
|
*/
|
|
if (!sys_caps_initialised)
|
|
update_cpu_capabilities(SCOPE_LOCAL_CPU);
|
|
else
|
|
verify_local_cpu_capabilities();
|
|
}
|
|
|
|
static void __init setup_boot_cpu_capabilities(void)
|
|
{
|
|
/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
|
|
update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
|
|
/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
|
|
enable_cpu_capabilities(SCOPE_BOOT_CPU);
|
|
}
|
|
|
|
DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
|
|
EXPORT_SYMBOL(arm64_const_caps_ready);
|
|
|
|
static void __init mark_const_caps_ready(void)
|
|
{
|
|
static_branch_enable(&arm64_const_caps_ready);
|
|
}
|
|
|
|
bool this_cpu_has_cap(unsigned int n)
|
|
{
|
|
if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
|
|
const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
|
|
|
|
if (cap)
|
|
return cap->matches(cap, SCOPE_LOCAL_CPU);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void __init setup_system_capabilities(void)
|
|
{
|
|
/*
|
|
* We have finalised the system-wide safe feature
|
|
* registers, finalise the capabilities that depend
|
|
* on it. Also enable all the available capabilities,
|
|
* that are not enabled already.
|
|
*/
|
|
update_cpu_capabilities(SCOPE_SYSTEM);
|
|
enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
|
|
}
|
|
|
|
void __init setup_cpu_features(void)
|
|
{
|
|
u32 cwg;
|
|
|
|
setup_system_capabilities();
|
|
mark_const_caps_ready();
|
|
setup_elf_hwcaps(arm64_elf_hwcaps);
|
|
|
|
if (system_supports_32bit_el0())
|
|
setup_elf_hwcaps(compat_elf_hwcaps);
|
|
|
|
if (system_uses_ttbr0_pan())
|
|
pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
|
|
|
|
sve_setup();
|
|
minsigstksz_setup();
|
|
|
|
/* Advertise that we have computed the system capabilities */
|
|
set_sys_caps_initialised();
|
|
|
|
/*
|
|
* Check for sane CTR_EL0.CWG value.
|
|
*/
|
|
cwg = cache_type_cwg();
|
|
if (!cwg)
|
|
pr_warn("No Cache Writeback Granule information, assuming %d\n",
|
|
ARCH_DMA_MINALIGN);
|
|
}
|
|
|
|
static bool __maybe_unused
|
|
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
|
|
}
|
|
|
|
static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
|
|
{
|
|
cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
|
|
}
|
|
|
|
/*
|
|
* We emulate only the following system register space.
|
|
* Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
|
|
* See Table C5-6 System instruction encodings for System register accesses,
|
|
* ARMv8 ARM(ARM DDI 0487A.f) for more details.
|
|
*/
|
|
static inline bool __attribute_const__ is_emulated(u32 id)
|
|
{
|
|
return (sys_reg_Op0(id) == 0x3 &&
|
|
sys_reg_CRn(id) == 0x0 &&
|
|
sys_reg_Op1(id) == 0x0 &&
|
|
(sys_reg_CRm(id) == 0 ||
|
|
((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
|
|
}
|
|
|
|
/*
|
|
* With CRm == 0, reg should be one of :
|
|
* MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
|
|
*/
|
|
static inline int emulate_id_reg(u32 id, u64 *valp)
|
|
{
|
|
switch (id) {
|
|
case SYS_MIDR_EL1:
|
|
*valp = read_cpuid_id();
|
|
break;
|
|
case SYS_MPIDR_EL1:
|
|
*valp = SYS_MPIDR_SAFE_VAL;
|
|
break;
|
|
case SYS_REVIDR_EL1:
|
|
/* IMPLEMENTATION DEFINED values are emulated with 0 */
|
|
*valp = 0;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emulate_sys_reg(u32 id, u64 *valp)
|
|
{
|
|
struct arm64_ftr_reg *regp;
|
|
|
|
if (!is_emulated(id))
|
|
return -EINVAL;
|
|
|
|
if (sys_reg_CRm(id) == 0)
|
|
return emulate_id_reg(id, valp);
|
|
|
|
regp = get_arm64_ftr_reg(id);
|
|
if (regp)
|
|
*valp = arm64_ftr_reg_user_value(regp);
|
|
else
|
|
/*
|
|
* The untracked registers are either IMPLEMENTATION DEFINED
|
|
* (e.g, ID_AFR0_EL1) or reserved RAZ.
|
|
*/
|
|
*valp = 0;
|
|
return 0;
|
|
}
|
|
|
|
int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
|
|
{
|
|
int rc;
|
|
u64 val;
|
|
|
|
rc = emulate_sys_reg(sys_reg, &val);
|
|
if (!rc) {
|
|
pt_regs_write_reg(regs, rt, val);
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int emulate_mrs(struct pt_regs *regs, u32 insn)
|
|
{
|
|
u32 sys_reg, rt;
|
|
|
|
/*
|
|
* sys_reg values are defined as used in mrs/msr instruction.
|
|
* shift the imm value to get the encoding.
|
|
*/
|
|
sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
|
|
rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
|
|
return do_emulate_mrs(regs, sys_reg, rt);
|
|
}
|
|
|
|
static struct undef_hook mrs_hook = {
|
|
.instr_mask = 0xfff00000,
|
|
.instr_val = 0xd5300000,
|
|
.pstate_mask = PSR_AA32_MODE_MASK,
|
|
.pstate_val = PSR_MODE_EL0t,
|
|
.fn = emulate_mrs,
|
|
};
|
|
|
|
static int __init enable_mrs_emulation(void)
|
|
{
|
|
register_undef_hook(&mrs_hook);
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(enable_mrs_emulation);
|