linux/tools/testing/selftests/kvm/memslot_perf_test.c
Vishal Annapurve 197ebb713a KVM: selftests: move common startup logic to kvm_util.c
Consolidate common startup logic in one place by implementing a single
setup function with __attribute((constructor)) for all selftests within
kvm_util.c.

This allows moving logic like:
        /* Tell stdout not to buffer its content */
        setbuf(stdout, NULL);
to a single file for all selftests.

This will also allow any required setup at entry in future to be done in
common main function.

Link: https://lore.kernel.org/lkml/Ywa9T+jKUpaHLu%2Fl@google.com
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Andrew Jones <andrew.jones@linux.dev>
Reviewed-by: Peter Gonda <pgonda@google.com>
Signed-off-by: Vishal Annapurve <vannapurve@google.com>
Link: https://lore.kernel.org/r/20221115213845.3348210-2-vannapurve@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2022-11-16 16:58:56 -08:00

1032 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* A memslot-related performance benchmark.
*
* Copyright (C) 2021 Oracle and/or its affiliates.
*
* Basic guest setup / host vCPU thread code lifted from set_memory_region_test.
*/
#include <pthread.h>
#include <sched.h>
#include <semaphore.h>
#include <stdatomic.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>
#include <linux/compiler.h>
#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>
#define MEM_SIZE ((512U << 20) + 4096)
#define MEM_SIZE_PAGES (MEM_SIZE / 4096)
#define MEM_GPA 0x10000000UL
#define MEM_AUX_GPA MEM_GPA
#define MEM_SYNC_GPA MEM_AUX_GPA
#define MEM_TEST_GPA (MEM_AUX_GPA + 4096)
#define MEM_TEST_SIZE (MEM_SIZE - 4096)
static_assert(MEM_SIZE % 4096 == 0, "invalid mem size");
static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size");
/*
* 32 MiB is max size that gets well over 100 iterations on 509 slots.
* Considering that each slot needs to have at least one page up to
* 8194 slots in use can then be tested (although with slightly
* limited resolution).
*/
#define MEM_SIZE_MAP ((32U << 20) + 4096)
#define MEM_SIZE_MAP_PAGES (MEM_SIZE_MAP / 4096)
#define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - 4096)
#define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096)
static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size");
static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size");
static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size");
static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size");
/*
* 128 MiB is min size that fills 32k slots with at least one page in each
* while at the same time gets 100+ iterations in such test
*/
#define MEM_TEST_UNMAP_SIZE (128U << 20)
#define MEM_TEST_UNMAP_SIZE_PAGES (MEM_TEST_UNMAP_SIZE / 4096)
/* 2 MiB chunk size like a typical huge page */
#define MEM_TEST_UNMAP_CHUNK_PAGES (2U << (20 - 12))
static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE,
"invalid unmap test region size");
static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0,
"invalid unmap test region size");
static_assert(MEM_TEST_UNMAP_SIZE_PAGES %
(2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0,
"invalid unmap test region size");
/*
* For the move active test the middle of the test area is placed on
* a memslot boundary: half lies in the memslot being moved, half in
* other memslot(s).
*
* When running this test with 32k memslots (32764, really) each memslot
* contains 4 pages.
* The last one additionally contains the remaining 21 pages of memory,
* for the total size of 25 pages.
* Hence, the maximum size here is 50 pages.
*/
#define MEM_TEST_MOVE_SIZE_PAGES (50)
#define MEM_TEST_MOVE_SIZE (MEM_TEST_MOVE_SIZE_PAGES * 4096)
#define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE)
static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
"invalid move test region size");
#define MEM_TEST_VAL_1 0x1122334455667788
#define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00
struct vm_data {
struct kvm_vm *vm;
struct kvm_vcpu *vcpu;
pthread_t vcpu_thread;
uint32_t nslots;
uint64_t npages;
uint64_t pages_per_slot;
void **hva_slots;
bool mmio_ok;
uint64_t mmio_gpa_min;
uint64_t mmio_gpa_max;
};
struct sync_area {
atomic_bool start_flag;
atomic_bool exit_flag;
atomic_bool sync_flag;
void *move_area_ptr;
};
/*
* Technically, we need also for the atomic bool to be address-free, which
* is recommended, but not strictly required, by C11 for lockless
* implementations.
* However, in practice both GCC and Clang fulfill this requirement on
* all KVM-supported platforms.
*/
static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless");
static sem_t vcpu_ready;
static bool map_unmap_verify;
static bool verbose;
#define pr_info_v(...) \
do { \
if (verbose) \
pr_info(__VA_ARGS__); \
} while (0)
static void check_mmio_access(struct vm_data *data, struct kvm_run *run)
{
TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit");
TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read");
TEST_ASSERT(run->mmio.len == 8,
"Unexpected exit mmio size = %u", run->mmio.len);
TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min &&
run->mmio.phys_addr <= data->mmio_gpa_max,
"Unexpected exit mmio address = 0x%llx",
run->mmio.phys_addr);
}
static void *vcpu_worker(void *__data)
{
struct vm_data *data = __data;
struct kvm_vcpu *vcpu = data->vcpu;
struct kvm_run *run = vcpu->run;
struct ucall uc;
while (1) {
vcpu_run(vcpu);
switch (get_ucall(vcpu, &uc)) {
case UCALL_SYNC:
TEST_ASSERT(uc.args[1] == 0,
"Unexpected sync ucall, got %lx",
(ulong)uc.args[1]);
sem_post(&vcpu_ready);
continue;
case UCALL_NONE:
if (run->exit_reason == KVM_EXIT_MMIO)
check_mmio_access(data, run);
else
goto done;
break;
case UCALL_ABORT:
REPORT_GUEST_ASSERT_1(uc, "val = %lu");
break;
case UCALL_DONE:
goto done;
default:
TEST_FAIL("Unknown ucall %lu", uc.cmd);
}
}
done:
return NULL;
}
static void wait_for_vcpu(void)
{
struct timespec ts;
TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
"clock_gettime() failed: %d\n", errno);
ts.tv_sec += 2;
TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
"sem_timedwait() failed: %d\n", errno);
}
static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
{
uint64_t gpage, pgoffs;
uint32_t slot, slotoffs;
void *base;
TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096,
"Too high gpa to translate");
gpa -= MEM_GPA;
gpage = gpa / 4096;
pgoffs = gpa % 4096;
slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
slotoffs = gpage - (slot * data->pages_per_slot);
if (rempages) {
uint64_t slotpages;
if (slot == data->nslots - 1)
slotpages = data->npages - slot * data->pages_per_slot;
else
slotpages = data->pages_per_slot;
TEST_ASSERT(!pgoffs,
"Asking for remaining pages in slot but gpa not page aligned");
*rempages = slotpages - slotoffs;
}
base = data->hva_slots[slot];
return (uint8_t *)base + slotoffs * 4096 + pgoffs;
}
static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
{
TEST_ASSERT(slot < data->nslots, "Too high slot number");
return MEM_GPA + slot * data->pages_per_slot * 4096;
}
static struct vm_data *alloc_vm(void)
{
struct vm_data *data;
data = malloc(sizeof(*data));
TEST_ASSERT(data, "malloc(vmdata) failed");
data->vm = NULL;
data->vcpu = NULL;
data->hva_slots = NULL;
return data;
}
static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
void *guest_code, uint64_t mempages,
struct timespec *slot_runtime)
{
uint32_t max_mem_slots;
uint64_t rempages;
uint64_t guest_addr;
uint32_t slot;
struct timespec tstart;
struct sync_area *sync;
max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
TEST_ASSERT(max_mem_slots > 1,
"KVM_CAP_NR_MEMSLOTS should be greater than 1");
TEST_ASSERT(nslots > 1 || nslots == -1,
"Slot count cap should be greater than 1");
if (nslots != -1)
max_mem_slots = min(max_mem_slots, (uint32_t)nslots);
pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots);
TEST_ASSERT(mempages > 1,
"Can't test without any memory");
data->npages = mempages;
data->nslots = max_mem_slots - 1;
data->pages_per_slot = mempages / data->nslots;
if (!data->pages_per_slot) {
*maxslots = mempages + 1;
return false;
}
rempages = mempages % data->nslots;
data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
TEST_ASSERT(data->hva_slots, "malloc() fail");
data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code);
pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
max_mem_slots - 1, data->pages_per_slot, rempages);
clock_gettime(CLOCK_MONOTONIC, &tstart);
for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) {
uint64_t npages;
npages = data->pages_per_slot;
if (slot == max_mem_slots - 1)
npages += rempages;
vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
guest_addr, slot, npages,
0);
guest_addr += npages * 4096;
}
*slot_runtime = timespec_elapsed(tstart);
for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) {
uint64_t npages;
uint64_t gpa;
npages = data->pages_per_slot;
if (slot == max_mem_slots - 2)
npages += rempages;
gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr,
slot + 1);
TEST_ASSERT(gpa == guest_addr,
"vm_phy_pages_alloc() failed\n");
data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr);
memset(data->hva_slots[slot], 0, npages * 4096);
guest_addr += npages * 4096;
}
virt_map(data->vm, MEM_GPA, MEM_GPA, mempages);
sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
atomic_init(&sync->start_flag, false);
atomic_init(&sync->exit_flag, false);
atomic_init(&sync->sync_flag, false);
data->mmio_ok = false;
return true;
}
static void launch_vm(struct vm_data *data)
{
pr_info_v("Launching the test VM\n");
pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data);
/* Ensure the guest thread is spun up. */
wait_for_vcpu();
}
static void free_vm(struct vm_data *data)
{
kvm_vm_free(data->vm);
free(data->hva_slots);
free(data);
}
static void wait_guest_exit(struct vm_data *data)
{
pthread_join(data->vcpu_thread, NULL);
}
static void let_guest_run(struct sync_area *sync)
{
atomic_store_explicit(&sync->start_flag, true, memory_order_release);
}
static void guest_spin_until_start(void)
{
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire))
;
}
static void make_guest_exit(struct sync_area *sync)
{
atomic_store_explicit(&sync->exit_flag, true, memory_order_release);
}
static bool _guest_should_exit(void)
{
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
return atomic_load_explicit(&sync->exit_flag, memory_order_acquire);
}
#define guest_should_exit() unlikely(_guest_should_exit())
/*
* noinline so we can easily see how much time the host spends waiting
* for the guest.
* For the same reason use alarm() instead of polling clock_gettime()
* to implement a wait timeout.
*/
static noinline void host_perform_sync(struct sync_area *sync)
{
alarm(2);
atomic_store_explicit(&sync->sync_flag, true, memory_order_release);
while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire))
;
alarm(0);
}
static bool guest_perform_sync(void)
{
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
bool expected;
do {
if (guest_should_exit())
return false;
expected = true;
} while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag,
&expected, false,
memory_order_acq_rel,
memory_order_relaxed));
return true;
}
static void guest_code_test_memslot_move(void)
{
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);
GUEST_SYNC(0);
guest_spin_until_start();
while (!guest_should_exit()) {
uintptr_t ptr;
for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
ptr += 4096)
*(uint64_t *)ptr = MEM_TEST_VAL_1;
/*
* No host sync here since the MMIO exits are so expensive
* that the host would spend most of its time waiting for
* the guest and so instead of measuring memslot move
* performance we would measure the performance and
* likelihood of MMIO exits
*/
}
GUEST_DONE();
}
static void guest_code_test_memslot_map(void)
{
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
GUEST_SYNC(0);
guest_spin_until_start();
while (1) {
uintptr_t ptr;
for (ptr = MEM_TEST_GPA;
ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096)
*(uint64_t *)ptr = MEM_TEST_VAL_1;
if (!guest_perform_sync())
break;
for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096)
*(uint64_t *)ptr = MEM_TEST_VAL_2;
if (!guest_perform_sync())
break;
}
GUEST_DONE();
}
static void guest_code_test_memslot_unmap(void)
{
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
GUEST_SYNC(0);
guest_spin_until_start();
while (1) {
uintptr_t ptr = MEM_TEST_GPA;
/*
* We can afford to access (map) just a small number of pages
* per host sync as otherwise the host will spend
* a significant amount of its time waiting for the guest
* (instead of doing unmap operations), so this will
* effectively turn this test into a map performance test.
*
* Just access a single page to be on the safe side.
*/
*(uint64_t *)ptr = MEM_TEST_VAL_1;
if (!guest_perform_sync())
break;
ptr += MEM_TEST_UNMAP_SIZE / 2;
*(uint64_t *)ptr = MEM_TEST_VAL_2;
if (!guest_perform_sync())
break;
}
GUEST_DONE();
}
static void guest_code_test_memslot_rw(void)
{
GUEST_SYNC(0);
guest_spin_until_start();
while (1) {
uintptr_t ptr;
for (ptr = MEM_TEST_GPA;
ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096)
*(uint64_t *)ptr = MEM_TEST_VAL_1;
if (!guest_perform_sync())
break;
for (ptr = MEM_TEST_GPA + 4096 / 2;
ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) {
uint64_t val = *(uint64_t *)ptr;
GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val);
*(uint64_t *)ptr = 0;
}
if (!guest_perform_sync())
break;
}
GUEST_DONE();
}
static bool test_memslot_move_prepare(struct vm_data *data,
struct sync_area *sync,
uint64_t *maxslots, bool isactive)
{
uint64_t movesrcgpa, movetestgpa;
movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
if (isactive) {
uint64_t lastpages;
vm_gpa2hva(data, movesrcgpa, &lastpages);
if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) {
*maxslots = 0;
return false;
}
}
movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1));
sync->move_area_ptr = (void *)movetestgpa;
if (isactive) {
data->mmio_ok = true;
data->mmio_gpa_min = movesrcgpa;
data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1;
}
return true;
}
static bool test_memslot_move_prepare_active(struct vm_data *data,
struct sync_area *sync,
uint64_t *maxslots)
{
return test_memslot_move_prepare(data, sync, maxslots, true);
}
static bool test_memslot_move_prepare_inactive(struct vm_data *data,
struct sync_area *sync,
uint64_t *maxslots)
{
return test_memslot_move_prepare(data, sync, maxslots, false);
}
static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync)
{
uint64_t movesrcgpa;
movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
vm_mem_region_move(data->vm, data->nslots - 1 + 1,
MEM_TEST_MOVE_GPA_DEST);
vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa);
}
static void test_memslot_do_unmap(struct vm_data *data,
uint64_t offsp, uint64_t count)
{
uint64_t gpa, ctr;
for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) {
uint64_t npages;
void *hva;
int ret;
hva = vm_gpa2hva(data, gpa, &npages);
TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
npages = min(npages, count - ctr);
ret = madvise(hva, npages * 4096, MADV_DONTNEED);
TEST_ASSERT(!ret,
"madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
hva, gpa);
ctr += npages;
gpa += npages * 4096;
}
TEST_ASSERT(ctr == count,
"madvise(MADV_DONTNEED) should exactly cover all of the requested area");
}
static void test_memslot_map_unmap_check(struct vm_data *data,
uint64_t offsp, uint64_t valexp)
{
uint64_t gpa;
uint64_t *val;
if (!map_unmap_verify)
return;
gpa = MEM_TEST_GPA + offsp * 4096;
val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
TEST_ASSERT(*val == valexp,
"Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
*val, valexp, gpa);
*val = 0;
}
static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
{
/*
* Unmap the second half of the test area while guest writes to (maps)
* the first half.
*/
test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2,
MEM_TEST_MAP_SIZE_PAGES / 2);
/*
* Wait for the guest to finish writing the first half of the test
* area, verify the written value on the first and the last page of
* this area and then unmap it.
* Meanwhile, the guest is writing to (mapping) the second half of
* the test area.
*/
host_perform_sync(sync);
test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
test_memslot_map_unmap_check(data,
MEM_TEST_MAP_SIZE_PAGES / 2 - 1,
MEM_TEST_VAL_1);
test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2);
/*
* Wait for the guest to finish writing the second half of the test
* area and verify the written value on the first and the last page
* of this area.
* The area will be unmapped at the beginning of the next loop
* iteration.
* Meanwhile, the guest is writing to (mapping) the first half of
* the test area.
*/
host_perform_sync(sync);
test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2,
MEM_TEST_VAL_2);
test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1,
MEM_TEST_VAL_2);
}
static void test_memslot_unmap_loop_common(struct vm_data *data,
struct sync_area *sync,
uint64_t chunk)
{
uint64_t ctr;
/*
* Wait for the guest to finish mapping page(s) in the first half
* of the test area, verify the written value and then perform unmap
* of this area.
* Meanwhile, the guest is writing to (mapping) page(s) in the second
* half of the test area.
*/
host_perform_sync(sync);
test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk)
test_memslot_do_unmap(data, ctr, chunk);
/* Likewise, but for the opposite host / guest areas */
host_perform_sync(sync);
test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2,
MEM_TEST_VAL_2);
for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2;
ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk)
test_memslot_do_unmap(data, ctr, chunk);
}
static void test_memslot_unmap_loop(struct vm_data *data,
struct sync_area *sync)
{
test_memslot_unmap_loop_common(data, sync, 1);
}
static void test_memslot_unmap_loop_chunked(struct vm_data *data,
struct sync_area *sync)
{
test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES);
}
static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
{
uint64_t gptr;
for (gptr = MEM_TEST_GPA + 4096 / 2;
gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096)
*(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;
host_perform_sync(sync);
for (gptr = MEM_TEST_GPA;
gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) {
uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
uint64_t val = *vptr;
TEST_ASSERT(val == MEM_TEST_VAL_1,
"Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")",
val, gptr);
*vptr = 0;
}
host_perform_sync(sync);
}
struct test_data {
const char *name;
uint64_t mem_size;
void (*guest_code)(void);
bool (*prepare)(struct vm_data *data, struct sync_area *sync,
uint64_t *maxslots);
void (*loop)(struct vm_data *data, struct sync_area *sync);
};
static bool test_execute(int nslots, uint64_t *maxslots,
unsigned int maxtime,
const struct test_data *tdata,
uint64_t *nloops,
struct timespec *slot_runtime,
struct timespec *guest_runtime)
{
uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES;
struct vm_data *data;
struct sync_area *sync;
struct timespec tstart;
bool ret = true;
data = alloc_vm();
if (!prepare_vm(data, nslots, maxslots, tdata->guest_code,
mem_size, slot_runtime)) {
ret = false;
goto exit_free;
}
sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
if (tdata->prepare &&
!tdata->prepare(data, sync, maxslots)) {
ret = false;
goto exit_free;
}
launch_vm(data);
clock_gettime(CLOCK_MONOTONIC, &tstart);
let_guest_run(sync);
while (1) {
*guest_runtime = timespec_elapsed(tstart);
if (guest_runtime->tv_sec >= maxtime)
break;
tdata->loop(data, sync);
(*nloops)++;
}
make_guest_exit(sync);
wait_guest_exit(data);
exit_free:
free_vm(data);
return ret;
}
static const struct test_data tests[] = {
{
.name = "map",
.mem_size = MEM_SIZE_MAP_PAGES,
.guest_code = guest_code_test_memslot_map,
.loop = test_memslot_map_loop,
},
{
.name = "unmap",
.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
.guest_code = guest_code_test_memslot_unmap,
.loop = test_memslot_unmap_loop,
},
{
.name = "unmap chunked",
.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
.guest_code = guest_code_test_memslot_unmap,
.loop = test_memslot_unmap_loop_chunked,
},
{
.name = "move active area",
.guest_code = guest_code_test_memslot_move,
.prepare = test_memslot_move_prepare_active,
.loop = test_memslot_move_loop,
},
{
.name = "move inactive area",
.guest_code = guest_code_test_memslot_move,
.prepare = test_memslot_move_prepare_inactive,
.loop = test_memslot_move_loop,
},
{
.name = "RW",
.guest_code = guest_code_test_memslot_rw,
.loop = test_memslot_rw_loop
},
};
#define NTESTS ARRAY_SIZE(tests)
struct test_args {
int tfirst;
int tlast;
int nslots;
int seconds;
int runs;
};
static void help(char *name, struct test_args *targs)
{
int ctr;
pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n",
name);
pr_info(" -h: print this help screen.\n");
pr_info(" -v: enable verbose mode (not for benchmarking).\n");
pr_info(" -d: enable extra debug checks.\n");
pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n",
targs->nslots);
pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n",
targs->tfirst, NTESTS - 1);
pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n",
targs->tlast, NTESTS - 1);
pr_info(" -l: specify the test length in seconds (currently: %i)\n",
targs->seconds);
pr_info(" -r: specify the number of runs per test (currently: %i)\n",
targs->runs);
pr_info("\nAvailable tests:\n");
for (ctr = 0; ctr < NTESTS; ctr++)
pr_info("%d: %s\n", ctr, tests[ctr].name);
}
static bool parse_args(int argc, char *argv[],
struct test_args *targs)
{
int opt;
while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) {
switch (opt) {
case 'h':
default:
help(argv[0], targs);
return false;
case 'v':
verbose = true;
break;
case 'd':
map_unmap_verify = true;
break;
case 's':
targs->nslots = atoi_paranoid(optarg);
if (targs->nslots <= 0 && targs->nslots != -1) {
pr_info("Slot count cap has to be positive or -1 for no cap\n");
return false;
}
break;
case 'f':
targs->tfirst = atoi_non_negative("First test", optarg);
break;
case 'e':
targs->tlast = atoi_non_negative("Last test", optarg);
if (targs->tlast >= NTESTS) {
pr_info("Last test to run has to be non-negative and less than %zu\n",
NTESTS);
return false;
}
break;
case 'l':
targs->seconds = atoi_non_negative("Test length", optarg);
break;
case 'r':
targs->runs = atoi_positive("Runs per test", optarg);
break;
}
}
if (optind < argc) {
help(argv[0], targs);
return false;
}
if (targs->tfirst > targs->tlast) {
pr_info("First test to run cannot be greater than the last test to run\n");
return false;
}
return true;
}
struct test_result {
struct timespec slot_runtime, guest_runtime, iter_runtime;
int64_t slottimens, runtimens;
uint64_t nloops;
};
static bool test_loop(const struct test_data *data,
const struct test_args *targs,
struct test_result *rbestslottime,
struct test_result *rbestruntime)
{
uint64_t maxslots;
struct test_result result;
result.nloops = 0;
if (!test_execute(targs->nslots, &maxslots, targs->seconds, data,
&result.nloops,
&result.slot_runtime, &result.guest_runtime)) {
if (maxslots)
pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n",
maxslots);
else
pr_info("Memslot count may be too high for this test, try adjusting the cap\n");
return false;
}
pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n",
result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec,
result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec);
if (!result.nloops) {
pr_info("No full loops done - too short test time or system too loaded?\n");
return true;
}
result.iter_runtime = timespec_div(result.guest_runtime,
result.nloops);
pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n",
result.nloops,
result.iter_runtime.tv_sec,
result.iter_runtime.tv_nsec);
result.slottimens = timespec_to_ns(result.slot_runtime);
result.runtimens = timespec_to_ns(result.iter_runtime);
/*
* Only rank the slot setup time for tests using the whole test memory
* area so they are comparable
*/
if (!data->mem_size &&
(!rbestslottime->slottimens ||
result.slottimens < rbestslottime->slottimens))
*rbestslottime = result;
if (!rbestruntime->runtimens ||
result.runtimens < rbestruntime->runtimens)
*rbestruntime = result;
return true;
}
int main(int argc, char *argv[])
{
struct test_args targs = {
.tfirst = 0,
.tlast = NTESTS - 1,
.nslots = -1,
.seconds = 5,
.runs = 1,
};
struct test_result rbestslottime;
int tctr;
if (!parse_args(argc, argv, &targs))
return -1;
rbestslottime.slottimens = 0;
for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) {
const struct test_data *data = &tests[tctr];
unsigned int runctr;
struct test_result rbestruntime;
if (tctr > targs.tfirst)
pr_info("\n");
pr_info("Testing %s performance with %i runs, %d seconds each\n",
data->name, targs.runs, targs.seconds);
rbestruntime.runtimens = 0;
for (runctr = 0; runctr < targs.runs; runctr++)
if (!test_loop(data, &targs,
&rbestslottime, &rbestruntime))
break;
if (rbestruntime.runtimens)
pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n",
rbestruntime.iter_runtime.tv_sec,
rbestruntime.iter_runtime.tv_nsec,
rbestruntime.nloops);
}
if (rbestslottime.slottimens)
pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n",
rbestslottime.slot_runtime.tv_sec,
rbestslottime.slot_runtime.tv_nsec);
return 0;
}