4e98cc905c
Certain types of filesystem metadata can only be checked by scanning every file in the entire filesystem. Specific examples of this include quota counts, file link counts, and reverse mappings of file extents. Directory and parent pointer reconstruction may also fall into this category. File scanning is much trickier than scanning AG metadata because we have to take inode locks in the same order as the rest of [VX]FS, we can't be holding buffer locks when we do that, and scanning the whole filesystem takes time. Earlier versions of the online repair patchset relied heavily on fsfreeze as a means to quiesce the filesystem so that we could take locks in the proper order without worrying about concurrent updates from other writers. Reviewers of those patches opined that freezing the entire fs to check and repair something was not sufficiently better than unmounting to run fsck offline. I don't agree with that 100%, but the message was clear: find a way to repair things that minimizes the quiet period where nobody can write to the filesystem. Generally, building btree indexes online can be split into two phases: a collection phase where we compute the records that will be put into the new btree; and a construction phase, where we construct the physical btree blocks and persist them. While it's simple to hold resource locks for the entirety of the two phases to ensure that the new index is consistent with the rest of the system, we don't need to hold resource locks during the collection phase if we have a means to receive live updates of other work going on elsewhere in the system. The goal of this patch, then, is to enable online fsck to learn about metadata updates going on in other threads while it constructs a shadow copy of the metadata records to verify or correct the real metadata. To minimize the overhead when online fsck isn't running, we use srcu notifiers because they prioritize fast access to the notifier call chain (particularly when the chain is empty) at a cost to configuring notifiers. Online fsck should be relatively infrequent, so this is acceptable. The intended usage model is fairly simple. Code that modifies a metadata structure of interest should declare a xfs_hook_chain structure in some well defined place, and call xfs_hook_call whenever an update happens. Online fsck code should define a struct notifier_block and use xfs_hook_add to attach the block to the chain, along with a function to be called. This function should synchronize with the fsck scanner to update whatever in-memory data the scanner is collecting. When finished, xfs_hook_del removes the notifier from the list and waits for them all to complete. Originally, I selected srcu notifiers over blocking notifiers to implement live hooks because they seemed to have fewer impacts to scalability. The per-call cost of srcu_notifier_call_chain is higher (19ns) than blocking_notifier_ (4ns) in the single threaded case, but blocking notifiers use an rwsem to stabilize the list. Cacheline bouncing for that rwsem is costly to runtime code when there are a lot of CPUs running regular filesystem operations. If there are no hooks installed, this is a total waste of CPU time. Therefore, I stuck with srcu notifiers, despite trading off single threaded performance for multithreaded performance. I also wasn't thrilled with the very high teardown time for srcu notifiers, since the caller has to wait for the next rcu grace period. This can take a long time if there are a lot of CPUs. Then I discovered the jump label implementation of static keys. Jump labels use kernel code patching to replace a branch with a nop sled when the key is disabled. IOWs, they can eliminate the overhead of _call_chain when there are no hooks enabled. This makes blocking notifiers competitive again -- scrub runs faster because teardown of the chain is a lot cheaper, and runtime code only pays the rwsem locking overhead when scrub is actually running. With jump labels enabled, calls to empty notifier chains are elided from the call sites when there are no hooks registered, which means that the overhead is 0.36ns when fsck is not running. This is perfect for most of the architectures that XFS is expected to run on (e.g. x86, powerpc, arm64, s390x, riscv). For architectures that don't support jump labels (e.g. m68k) the runtime overhead of checking the static key is an atomic counter read. This isn't great, but it's still cheaper than taking a shared rwsem. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
284 lines
7.2 KiB
C
284 lines
7.2 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#ifndef __XFS_LINUX__
|
|
#define __XFS_LINUX__
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/uuid.h>
|
|
|
|
/*
|
|
* Kernel specific type declarations for XFS
|
|
*/
|
|
|
|
typedef __s64 xfs_off_t; /* <file offset> type */
|
|
typedef unsigned long long xfs_ino_t; /* <inode> type */
|
|
typedef __s64 xfs_daddr_t; /* <disk address> type */
|
|
typedef __u32 xfs_dev_t;
|
|
typedef __u32 xfs_nlink_t;
|
|
|
|
#include "xfs_types.h"
|
|
|
|
#include <linux/semaphore.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/crc32c.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/file.h>
|
|
#include <linux/filelock.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/major.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/vfs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/random.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/rhashtable.h>
|
|
#include <linux/xattr.h>
|
|
#include <linux/mnt_idmapping.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/div64.h>
|
|
#include <asm/param.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "xfs_fs.h"
|
|
#include "xfs_stats.h"
|
|
#include "xfs_sysctl.h"
|
|
#include "xfs_iops.h"
|
|
#include "xfs_aops.h"
|
|
#include "xfs_super.h"
|
|
#include "xfs_cksum.h"
|
|
#include "xfs_buf.h"
|
|
#include "xfs_message.h"
|
|
#include "xfs_drain.h"
|
|
#include "xfs_hooks.h"
|
|
|
|
#ifdef __BIG_ENDIAN
|
|
#define XFS_NATIVE_HOST 1
|
|
#else
|
|
#undef XFS_NATIVE_HOST
|
|
#endif
|
|
|
|
#define irix_sgid_inherit xfs_params.sgid_inherit.val
|
|
#define irix_symlink_mode xfs_params.symlink_mode.val
|
|
#define xfs_panic_mask xfs_params.panic_mask.val
|
|
#define xfs_error_level xfs_params.error_level.val
|
|
#define xfs_syncd_centisecs xfs_params.syncd_timer.val
|
|
#define xfs_stats_clear xfs_params.stats_clear.val
|
|
#define xfs_inherit_sync xfs_params.inherit_sync.val
|
|
#define xfs_inherit_nodump xfs_params.inherit_nodump.val
|
|
#define xfs_inherit_noatime xfs_params.inherit_noatim.val
|
|
#define xfs_inherit_nosymlinks xfs_params.inherit_nosym.val
|
|
#define xfs_rotorstep xfs_params.rotorstep.val
|
|
#define xfs_inherit_nodefrag xfs_params.inherit_nodfrg.val
|
|
#define xfs_fstrm_centisecs xfs_params.fstrm_timer.val
|
|
#define xfs_blockgc_secs xfs_params.blockgc_timer.val
|
|
|
|
#define current_cpu() (raw_smp_processor_id())
|
|
#define current_set_flags_nested(sp, f) \
|
|
(*(sp) = current->flags, current->flags |= (f))
|
|
#define current_restore_flags_nested(sp, f) \
|
|
(current->flags = ((current->flags & ~(f)) | (*(sp) & (f))))
|
|
|
|
#define NBBY 8 /* number of bits per byte */
|
|
|
|
/*
|
|
* Size of block device i/o is parameterized here.
|
|
* Currently the system supports page-sized i/o.
|
|
*/
|
|
#define BLKDEV_IOSHIFT PAGE_SHIFT
|
|
#define BLKDEV_IOSIZE (1<<BLKDEV_IOSHIFT)
|
|
/* number of BB's per block device block */
|
|
#define BLKDEV_BB BTOBB(BLKDEV_IOSIZE)
|
|
|
|
#define ENOATTR ENODATA /* Attribute not found */
|
|
#define EWRONGFS EINVAL /* Mount with wrong filesystem type */
|
|
#define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
|
|
#define EFSBADCRC EBADMSG /* Bad CRC detected */
|
|
|
|
#define __return_address __builtin_return_address(0)
|
|
|
|
/*
|
|
* Return the address of a label. Use barrier() so that the optimizer
|
|
* won't reorder code to refactor the error jumpouts into a single
|
|
* return, which throws off the reported address.
|
|
*/
|
|
#define __this_address ({ __label__ __here; __here: barrier(); &&__here; })
|
|
|
|
#define XFS_PROJID_DEFAULT 0
|
|
|
|
#define howmany(x, y) (((x)+((y)-1))/(y))
|
|
|
|
static inline void delay(long ticks)
|
|
{
|
|
schedule_timeout_uninterruptible(ticks);
|
|
}
|
|
|
|
/*
|
|
* XFS wrapper structure for sysfs support. It depends on external data
|
|
* structures and is embedded in various internal data structures to implement
|
|
* the XFS sysfs object heirarchy. Define it here for broad access throughout
|
|
* the codebase.
|
|
*/
|
|
struct xfs_kobj {
|
|
struct kobject kobject;
|
|
struct completion complete;
|
|
};
|
|
|
|
struct xstats {
|
|
struct xfsstats __percpu *xs_stats;
|
|
struct xfs_kobj xs_kobj;
|
|
};
|
|
|
|
extern struct xstats xfsstats;
|
|
|
|
static inline dev_t xfs_to_linux_dev_t(xfs_dev_t dev)
|
|
{
|
|
return MKDEV(sysv_major(dev) & 0x1ff, sysv_minor(dev));
|
|
}
|
|
|
|
static inline xfs_dev_t linux_to_xfs_dev_t(dev_t dev)
|
|
{
|
|
return sysv_encode_dev(dev);
|
|
}
|
|
|
|
/*
|
|
* Various platform dependent calls that don't fit anywhere else
|
|
*/
|
|
#define xfs_sort(a,n,s,fn) sort(a,n,s,fn,NULL)
|
|
#define xfs_stack_trace() dump_stack()
|
|
|
|
static inline uint64_t rounddown_64(uint64_t x, uint32_t y)
|
|
{
|
|
do_div(x, y);
|
|
return x * y;
|
|
}
|
|
|
|
static inline uint64_t roundup_64(uint64_t x, uint32_t y)
|
|
{
|
|
x += y - 1;
|
|
do_div(x, y);
|
|
return x * y;
|
|
}
|
|
|
|
static inline uint64_t howmany_64(uint64_t x, uint32_t y)
|
|
{
|
|
x += y - 1;
|
|
do_div(x, y);
|
|
return x;
|
|
}
|
|
|
|
/* If @b is a power of 2, return log2(b). Else return -1. */
|
|
static inline int8_t log2_if_power2(unsigned long b)
|
|
{
|
|
return is_power_of_2(b) ? ilog2(b) : -1;
|
|
}
|
|
|
|
/* If @b is a power of 2, return a mask of the lower bits, else return zero. */
|
|
static inline unsigned long long mask64_if_power2(unsigned long b)
|
|
{
|
|
return is_power_of_2(b) ? b - 1 : 0;
|
|
}
|
|
|
|
int xfs_rw_bdev(struct block_device *bdev, sector_t sector, unsigned int count,
|
|
char *data, enum req_op op);
|
|
|
|
#define ASSERT_ALWAYS(expr) \
|
|
(likely(expr) ? (void)0 : assfail(NULL, #expr, __FILE__, __LINE__))
|
|
|
|
#ifdef DEBUG
|
|
#define ASSERT(expr) \
|
|
(likely(expr) ? (void)0 : assfail(NULL, #expr, __FILE__, __LINE__))
|
|
|
|
#else /* !DEBUG */
|
|
|
|
#ifdef XFS_WARN
|
|
|
|
#define ASSERT(expr) \
|
|
(likely(expr) ? (void)0 : asswarn(NULL, #expr, __FILE__, __LINE__))
|
|
|
|
#else /* !DEBUG && !XFS_WARN */
|
|
|
|
#define ASSERT(expr) ((void)0)
|
|
|
|
#endif /* XFS_WARN */
|
|
#endif /* DEBUG */
|
|
|
|
#define XFS_IS_CORRUPT(mp, expr) \
|
|
(unlikely(expr) ? xfs_corruption_error(#expr, XFS_ERRLEVEL_LOW, (mp), \
|
|
NULL, 0, __FILE__, __LINE__, \
|
|
__this_address), \
|
|
true : false)
|
|
|
|
#define STATIC static noinline
|
|
|
|
#ifdef CONFIG_XFS_RT
|
|
|
|
/*
|
|
* make sure we ignore the inode flag if the filesystem doesn't have a
|
|
* configured realtime device.
|
|
*/
|
|
#define XFS_IS_REALTIME_INODE(ip) \
|
|
(((ip)->i_diflags & XFS_DIFLAG_REALTIME) && \
|
|
(ip)->i_mount->m_rtdev_targp)
|
|
#define XFS_IS_REALTIME_MOUNT(mp) ((mp)->m_rtdev_targp ? 1 : 0)
|
|
#else
|
|
#define XFS_IS_REALTIME_INODE(ip) (0)
|
|
#define XFS_IS_REALTIME_MOUNT(mp) (0)
|
|
#endif
|
|
|
|
/*
|
|
* Starting in Linux 4.15, the %p (raw pointer value) printk modifier
|
|
* prints a hashed version of the pointer to avoid leaking kernel
|
|
* pointers into dmesg. If we're trying to debug the kernel we want the
|
|
* raw values, so override this behavior as best we can.
|
|
*/
|
|
#ifdef DEBUG
|
|
# define PTR_FMT "%px"
|
|
#else
|
|
# define PTR_FMT "%p"
|
|
#endif
|
|
|
|
/*
|
|
* Helper for IO routines to grab backing pages from allocated kernel memory.
|
|
*/
|
|
static inline struct page *
|
|
kmem_to_page(void *addr)
|
|
{
|
|
if (is_vmalloc_addr(addr))
|
|
return vmalloc_to_page(addr);
|
|
return virt_to_page(addr);
|
|
}
|
|
|
|
#endif /* __XFS_LINUX__ */
|