Denis Efremov f29aa08852 drm/radeon: fix fb_div check in ni_init_smc_spll_table()
clk_s is checked twice in a row in ni_init_smc_spll_table().
fb_div should be checked instead.

Fixes: 69e0b57a91ad ("drm/radeon/kms: add dpm support for cayman (v5)")
Cc: stable@vger.kernel.org
Signed-off-by: Denis Efremov <efremov@linux.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-07-01 01:59:26 -04:00

4383 lines
129 KiB
C

/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/math64.h>
#include <linux/pci.h>
#include <linux/seq_file.h>
#include "atom.h"
#include "ni_dpm.h"
#include "nid.h"
#include "r600_dpm.h"
#include "radeon.h"
#include "radeon_asic.h"
#define MC_CG_ARB_FREQ_F0 0x0a
#define MC_CG_ARB_FREQ_F1 0x0b
#define MC_CG_ARB_FREQ_F2 0x0c
#define MC_CG_ARB_FREQ_F3 0x0d
#define SMC_RAM_END 0xC000
static const struct ni_cac_weights cac_weights_cayman_xt =
{
0x15,
0x2,
0x19,
0x2,
0x8,
0x14,
0x2,
0x16,
0xE,
0x17,
0x13,
0x2B,
0x10,
0x7,
0x5,
0x5,
0x5,
0x2,
0x3,
0x9,
0x10,
0x10,
0x2B,
0xA,
0x9,
0x4,
0xD,
0xD,
0x3E,
0x18,
0x14,
0,
0x3,
0x3,
0x5,
0,
0x2,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0x1CC,
0,
0x164,
1,
1,
1,
1,
12,
12,
12,
0x12,
0x1F,
132,
5,
7,
0,
{ 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
true
};
static const struct ni_cac_weights cac_weights_cayman_pro =
{
0x16,
0x4,
0x10,
0x2,
0xA,
0x16,
0x2,
0x18,
0x10,
0x1A,
0x16,
0x2D,
0x12,
0xA,
0x6,
0x6,
0x6,
0x2,
0x4,
0xB,
0x11,
0x11,
0x2D,
0xC,
0xC,
0x7,
0x10,
0x10,
0x3F,
0x1A,
0x16,
0,
0x7,
0x4,
0x6,
1,
0x2,
0x1,
0,
0,
0,
0,
0,
0,
0x30,
0,
0x1CF,
0,
0x166,
1,
1,
1,
1,
12,
12,
12,
0x15,
0x1F,
132,
6,
6,
0,
{ 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
true
};
static const struct ni_cac_weights cac_weights_cayman_le =
{
0x7,
0xE,
0x1,
0xA,
0x1,
0x3F,
0x2,
0x18,
0x10,
0x1A,
0x1,
0x3F,
0x1,
0xE,
0x6,
0x6,
0x6,
0x2,
0x4,
0x9,
0x1A,
0x1A,
0x2C,
0xA,
0x11,
0x8,
0x19,
0x19,
0x1,
0x1,
0x1A,
0,
0x8,
0x5,
0x8,
0x1,
0x3,
0x1,
0,
0,
0,
0,
0,
0,
0x38,
0x38,
0x239,
0x3,
0x18A,
1,
1,
1,
1,
12,
12,
12,
0x15,
0x22,
132,
6,
6,
0,
{ 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
true
};
#define NISLANDS_MGCG_SEQUENCE 300
static const u32 cayman_cgcg_cgls_default[] =
{
0x000008f8, 0x00000010, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000011, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000012, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000013, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000014, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000015, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000016, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000017, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000018, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000019, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x0000001a, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x0000001b, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000020, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000021, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000022, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000023, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000024, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000025, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000026, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000027, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000028, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000029, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x0000002a, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x0000002b, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff
};
#define CAYMAN_CGCG_CGLS_DEFAULT_LENGTH sizeof(cayman_cgcg_cgls_default) / (3 * sizeof(u32))
static const u32 cayman_cgcg_cgls_disable[] =
{
0x000008f8, 0x00000010, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000011, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000012, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000013, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000014, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000015, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000016, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000017, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000018, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000019, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x0000001a, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x0000001b, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000020, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000021, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000022, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000023, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000024, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000025, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000026, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000027, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000028, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000029, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x0000002a, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x0000002b, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x00000644, 0x000f7902, 0x001f4180,
0x00000644, 0x000f3802, 0x001f4180
};
#define CAYMAN_CGCG_CGLS_DISABLE_LENGTH sizeof(cayman_cgcg_cgls_disable) / (3 * sizeof(u32))
static const u32 cayman_cgcg_cgls_enable[] =
{
0x00000644, 0x000f7882, 0x001f4080,
0x000008f8, 0x00000010, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000011, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000012, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000013, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000014, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000015, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000016, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000017, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000018, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000019, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x0000001a, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x0000001b, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000020, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000021, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000022, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000023, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000024, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000025, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000026, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000027, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000028, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000029, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x0000002a, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x0000002b, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff
};
#define CAYMAN_CGCG_CGLS_ENABLE_LENGTH sizeof(cayman_cgcg_cgls_enable) / (3 * sizeof(u32))
static const u32 cayman_mgcg_default[] =
{
0x0000802c, 0xc0000000, 0xffffffff,
0x00003fc4, 0xc0000000, 0xffffffff,
0x00005448, 0x00000100, 0xffffffff,
0x000055e4, 0x00000100, 0xffffffff,
0x0000160c, 0x00000100, 0xffffffff,
0x00008984, 0x06000100, 0xffffffff,
0x0000c164, 0x00000100, 0xffffffff,
0x00008a18, 0x00000100, 0xffffffff,
0x0000897c, 0x06000100, 0xffffffff,
0x00008b28, 0x00000100, 0xffffffff,
0x00009144, 0x00800200, 0xffffffff,
0x00009a60, 0x00000100, 0xffffffff,
0x00009868, 0x00000100, 0xffffffff,
0x00008d58, 0x00000100, 0xffffffff,
0x00009510, 0x00000100, 0xffffffff,
0x0000949c, 0x00000100, 0xffffffff,
0x00009654, 0x00000100, 0xffffffff,
0x00009030, 0x00000100, 0xffffffff,
0x00009034, 0x00000100, 0xffffffff,
0x00009038, 0x00000100, 0xffffffff,
0x0000903c, 0x00000100, 0xffffffff,
0x00009040, 0x00000100, 0xffffffff,
0x0000a200, 0x00000100, 0xffffffff,
0x0000a204, 0x00000100, 0xffffffff,
0x0000a208, 0x00000100, 0xffffffff,
0x0000a20c, 0x00000100, 0xffffffff,
0x00009744, 0x00000100, 0xffffffff,
0x00003f80, 0x00000100, 0xffffffff,
0x0000a210, 0x00000100, 0xffffffff,
0x0000a214, 0x00000100, 0xffffffff,
0x000004d8, 0x00000100, 0xffffffff,
0x00009664, 0x00000100, 0xffffffff,
0x00009698, 0x00000100, 0xffffffff,
0x000004d4, 0x00000200, 0xffffffff,
0x000004d0, 0x00000000, 0xffffffff,
0x000030cc, 0x00000104, 0xffffffff,
0x0000d0c0, 0x00000100, 0xffffffff,
0x0000d8c0, 0x00000100, 0xffffffff,
0x0000802c, 0x40000000, 0xffffffff,
0x00003fc4, 0x40000000, 0xffffffff,
0x0000915c, 0x00010000, 0xffffffff,
0x00009160, 0x00030002, 0xffffffff,
0x00009164, 0x00050004, 0xffffffff,
0x00009168, 0x00070006, 0xffffffff,
0x00009178, 0x00070000, 0xffffffff,
0x0000917c, 0x00030002, 0xffffffff,
0x00009180, 0x00050004, 0xffffffff,
0x0000918c, 0x00010006, 0xffffffff,
0x00009190, 0x00090008, 0xffffffff,
0x00009194, 0x00070000, 0xffffffff,
0x00009198, 0x00030002, 0xffffffff,
0x0000919c, 0x00050004, 0xffffffff,
0x000091a8, 0x00010006, 0xffffffff,
0x000091ac, 0x00090008, 0xffffffff,
0x000091b0, 0x00070000, 0xffffffff,
0x000091b4, 0x00030002, 0xffffffff,
0x000091b8, 0x00050004, 0xffffffff,
0x000091c4, 0x00010006, 0xffffffff,
0x000091c8, 0x00090008, 0xffffffff,
0x000091cc, 0x00070000, 0xffffffff,
0x000091d0, 0x00030002, 0xffffffff,
0x000091d4, 0x00050004, 0xffffffff,
0x000091e0, 0x00010006, 0xffffffff,
0x000091e4, 0x00090008, 0xffffffff,
0x000091e8, 0x00000000, 0xffffffff,
0x000091ec, 0x00070000, 0xffffffff,
0x000091f0, 0x00030002, 0xffffffff,
0x000091f4, 0x00050004, 0xffffffff,
0x00009200, 0x00010006, 0xffffffff,
0x00009204, 0x00090008, 0xffffffff,
0x00009208, 0x00070000, 0xffffffff,
0x0000920c, 0x00030002, 0xffffffff,
0x00009210, 0x00050004, 0xffffffff,
0x0000921c, 0x00010006, 0xffffffff,
0x00009220, 0x00090008, 0xffffffff,
0x00009224, 0x00070000, 0xffffffff,
0x00009228, 0x00030002, 0xffffffff,
0x0000922c, 0x00050004, 0xffffffff,
0x00009238, 0x00010006, 0xffffffff,
0x0000923c, 0x00090008, 0xffffffff,
0x00009240, 0x00070000, 0xffffffff,
0x00009244, 0x00030002, 0xffffffff,
0x00009248, 0x00050004, 0xffffffff,
0x00009254, 0x00010006, 0xffffffff,
0x00009258, 0x00090008, 0xffffffff,
0x0000925c, 0x00070000, 0xffffffff,
0x00009260, 0x00030002, 0xffffffff,
0x00009264, 0x00050004, 0xffffffff,
0x00009270, 0x00010006, 0xffffffff,
0x00009274, 0x00090008, 0xffffffff,
0x00009278, 0x00070000, 0xffffffff,
0x0000927c, 0x00030002, 0xffffffff,
0x00009280, 0x00050004, 0xffffffff,
0x0000928c, 0x00010006, 0xffffffff,
0x00009290, 0x00090008, 0xffffffff,
0x000092a8, 0x00070000, 0xffffffff,
0x000092ac, 0x00030002, 0xffffffff,
0x000092b0, 0x00050004, 0xffffffff,
0x000092bc, 0x00010006, 0xffffffff,
0x000092c0, 0x00090008, 0xffffffff,
0x000092c4, 0x00070000, 0xffffffff,
0x000092c8, 0x00030002, 0xffffffff,
0x000092cc, 0x00050004, 0xffffffff,
0x000092d8, 0x00010006, 0xffffffff,
0x000092dc, 0x00090008, 0xffffffff,
0x00009294, 0x00000000, 0xffffffff,
0x0000802c, 0x40010000, 0xffffffff,
0x00003fc4, 0x40010000, 0xffffffff,
0x0000915c, 0x00010000, 0xffffffff,
0x00009160, 0x00030002, 0xffffffff,
0x00009164, 0x00050004, 0xffffffff,
0x00009168, 0x00070006, 0xffffffff,
0x00009178, 0x00070000, 0xffffffff,
0x0000917c, 0x00030002, 0xffffffff,
0x00009180, 0x00050004, 0xffffffff,
0x0000918c, 0x00010006, 0xffffffff,
0x00009190, 0x00090008, 0xffffffff,
0x00009194, 0x00070000, 0xffffffff,
0x00009198, 0x00030002, 0xffffffff,
0x0000919c, 0x00050004, 0xffffffff,
0x000091a8, 0x00010006, 0xffffffff,
0x000091ac, 0x00090008, 0xffffffff,
0x000091b0, 0x00070000, 0xffffffff,
0x000091b4, 0x00030002, 0xffffffff,
0x000091b8, 0x00050004, 0xffffffff,
0x000091c4, 0x00010006, 0xffffffff,
0x000091c8, 0x00090008, 0xffffffff,
0x000091cc, 0x00070000, 0xffffffff,
0x000091d0, 0x00030002, 0xffffffff,
0x000091d4, 0x00050004, 0xffffffff,
0x000091e0, 0x00010006, 0xffffffff,
0x000091e4, 0x00090008, 0xffffffff,
0x000091e8, 0x00000000, 0xffffffff,
0x000091ec, 0x00070000, 0xffffffff,
0x000091f0, 0x00030002, 0xffffffff,
0x000091f4, 0x00050004, 0xffffffff,
0x00009200, 0x00010006, 0xffffffff,
0x00009204, 0x00090008, 0xffffffff,
0x00009208, 0x00070000, 0xffffffff,
0x0000920c, 0x00030002, 0xffffffff,
0x00009210, 0x00050004, 0xffffffff,
0x0000921c, 0x00010006, 0xffffffff,
0x00009220, 0x00090008, 0xffffffff,
0x00009224, 0x00070000, 0xffffffff,
0x00009228, 0x00030002, 0xffffffff,
0x0000922c, 0x00050004, 0xffffffff,
0x00009238, 0x00010006, 0xffffffff,
0x0000923c, 0x00090008, 0xffffffff,
0x00009240, 0x00070000, 0xffffffff,
0x00009244, 0x00030002, 0xffffffff,
0x00009248, 0x00050004, 0xffffffff,
0x00009254, 0x00010006, 0xffffffff,
0x00009258, 0x00090008, 0xffffffff,
0x0000925c, 0x00070000, 0xffffffff,
0x00009260, 0x00030002, 0xffffffff,
0x00009264, 0x00050004, 0xffffffff,
0x00009270, 0x00010006, 0xffffffff,
0x00009274, 0x00090008, 0xffffffff,
0x00009278, 0x00070000, 0xffffffff,
0x0000927c, 0x00030002, 0xffffffff,
0x00009280, 0x00050004, 0xffffffff,
0x0000928c, 0x00010006, 0xffffffff,
0x00009290, 0x00090008, 0xffffffff,
0x000092a8, 0x00070000, 0xffffffff,
0x000092ac, 0x00030002, 0xffffffff,
0x000092b0, 0x00050004, 0xffffffff,
0x000092bc, 0x00010006, 0xffffffff,
0x000092c0, 0x00090008, 0xffffffff,
0x000092c4, 0x00070000, 0xffffffff,
0x000092c8, 0x00030002, 0xffffffff,
0x000092cc, 0x00050004, 0xffffffff,
0x000092d8, 0x00010006, 0xffffffff,
0x000092dc, 0x00090008, 0xffffffff,
0x00009294, 0x00000000, 0xffffffff,
0x0000802c, 0xc0000000, 0xffffffff,
0x00003fc4, 0xc0000000, 0xffffffff,
0x000008f8, 0x00000010, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000011, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000012, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000013, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000014, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000015, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000016, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000017, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000018, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000019, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x0000001a, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x0000001b, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff
};
#define CAYMAN_MGCG_DEFAULT_LENGTH sizeof(cayman_mgcg_default) / (3 * sizeof(u32))
static const u32 cayman_mgcg_disable[] =
{
0x0000802c, 0xc0000000, 0xffffffff,
0x000008f8, 0x00000000, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000001, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000002, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x000008f8, 0x00000003, 0xffffffff,
0x000008fc, 0xffffffff, 0xffffffff,
0x00009150, 0x00600000, 0xffffffff
};
#define CAYMAN_MGCG_DISABLE_LENGTH sizeof(cayman_mgcg_disable) / (3 * sizeof(u32))
static const u32 cayman_mgcg_enable[] =
{
0x0000802c, 0xc0000000, 0xffffffff,
0x000008f8, 0x00000000, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000001, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x000008f8, 0x00000002, 0xffffffff,
0x000008fc, 0x00600000, 0xffffffff,
0x000008f8, 0x00000003, 0xffffffff,
0x000008fc, 0x00000000, 0xffffffff,
0x00009150, 0x96944200, 0xffffffff
};
#define CAYMAN_MGCG_ENABLE_LENGTH sizeof(cayman_mgcg_enable) / (3 * sizeof(u32))
#define NISLANDS_SYSLS_SEQUENCE 100
static const u32 cayman_sysls_default[] =
{
/* Register, Value, Mask bits */
0x000055e8, 0x00000000, 0xffffffff,
0x0000d0bc, 0x00000000, 0xffffffff,
0x0000d8bc, 0x00000000, 0xffffffff,
0x000015c0, 0x000c1401, 0xffffffff,
0x0000264c, 0x000c0400, 0xffffffff,
0x00002648, 0x000c0400, 0xffffffff,
0x00002650, 0x000c0400, 0xffffffff,
0x000020b8, 0x000c0400, 0xffffffff,
0x000020bc, 0x000c0400, 0xffffffff,
0x000020c0, 0x000c0c80, 0xffffffff,
0x0000f4a0, 0x000000c0, 0xffffffff,
0x0000f4a4, 0x00680fff, 0xffffffff,
0x00002f50, 0x00000404, 0xffffffff,
0x000004c8, 0x00000001, 0xffffffff,
0x000064ec, 0x00000000, 0xffffffff,
0x00000c7c, 0x00000000, 0xffffffff,
0x00008dfc, 0x00000000, 0xffffffff
};
#define CAYMAN_SYSLS_DEFAULT_LENGTH sizeof(cayman_sysls_default) / (3 * sizeof(u32))
static const u32 cayman_sysls_disable[] =
{
/* Register, Value, Mask bits */
0x0000d0c0, 0x00000000, 0xffffffff,
0x0000d8c0, 0x00000000, 0xffffffff,
0x000055e8, 0x00000000, 0xffffffff,
0x0000d0bc, 0x00000000, 0xffffffff,
0x0000d8bc, 0x00000000, 0xffffffff,
0x000015c0, 0x00041401, 0xffffffff,
0x0000264c, 0x00040400, 0xffffffff,
0x00002648, 0x00040400, 0xffffffff,
0x00002650, 0x00040400, 0xffffffff,
0x000020b8, 0x00040400, 0xffffffff,
0x000020bc, 0x00040400, 0xffffffff,
0x000020c0, 0x00040c80, 0xffffffff,
0x0000f4a0, 0x000000c0, 0xffffffff,
0x0000f4a4, 0x00680000, 0xffffffff,
0x00002f50, 0x00000404, 0xffffffff,
0x000004c8, 0x00000001, 0xffffffff,
0x000064ec, 0x00007ffd, 0xffffffff,
0x00000c7c, 0x0000ff00, 0xffffffff,
0x00008dfc, 0x0000007f, 0xffffffff
};
#define CAYMAN_SYSLS_DISABLE_LENGTH sizeof(cayman_sysls_disable) / (3 * sizeof(u32))
static const u32 cayman_sysls_enable[] =
{
/* Register, Value, Mask bits */
0x000055e8, 0x00000001, 0xffffffff,
0x0000d0bc, 0x00000100, 0xffffffff,
0x0000d8bc, 0x00000100, 0xffffffff,
0x000015c0, 0x000c1401, 0xffffffff,
0x0000264c, 0x000c0400, 0xffffffff,
0x00002648, 0x000c0400, 0xffffffff,
0x00002650, 0x000c0400, 0xffffffff,
0x000020b8, 0x000c0400, 0xffffffff,
0x000020bc, 0x000c0400, 0xffffffff,
0x000020c0, 0x000c0c80, 0xffffffff,
0x0000f4a0, 0x000000c0, 0xffffffff,
0x0000f4a4, 0x00680fff, 0xffffffff,
0x00002f50, 0x00000903, 0xffffffff,
0x000004c8, 0x00000000, 0xffffffff,
0x000064ec, 0x00000000, 0xffffffff,
0x00000c7c, 0x00000000, 0xffffffff,
0x00008dfc, 0x00000000, 0xffffffff
};
#define CAYMAN_SYSLS_ENABLE_LENGTH sizeof(cayman_sysls_enable) / (3 * sizeof(u32))
struct rv7xx_power_info *rv770_get_pi(struct radeon_device *rdev);
struct evergreen_power_info *evergreen_get_pi(struct radeon_device *rdev);
extern int ni_mc_load_microcode(struct radeon_device *rdev);
struct ni_power_info *ni_get_pi(struct radeon_device *rdev)
{
struct ni_power_info *pi = rdev->pm.dpm.priv;
return pi;
}
struct ni_ps *ni_get_ps(struct radeon_ps *rps)
{
struct ni_ps *ps = rps->ps_priv;
return ps;
}
static void ni_calculate_leakage_for_v_and_t_formula(const struct ni_leakage_coeffients *coeff,
u16 v, s32 t,
u32 ileakage,
u32 *leakage)
{
s64 kt, kv, leakage_w, i_leakage, vddc, temperature;
i_leakage = div64_s64(drm_int2fixp(ileakage), 1000);
vddc = div64_s64(drm_int2fixp(v), 1000);
temperature = div64_s64(drm_int2fixp(t), 1000);
kt = drm_fixp_mul(div64_s64(drm_int2fixp(coeff->at), 1000),
drm_fixp_exp(drm_fixp_mul(div64_s64(drm_int2fixp(coeff->bt), 1000), temperature)));
kv = drm_fixp_mul(div64_s64(drm_int2fixp(coeff->av), 1000),
drm_fixp_exp(drm_fixp_mul(div64_s64(drm_int2fixp(coeff->bv), 1000), vddc)));
leakage_w = drm_fixp_mul(drm_fixp_mul(drm_fixp_mul(i_leakage, kt), kv), vddc);
*leakage = drm_fixp2int(leakage_w * 1000);
}
static void ni_calculate_leakage_for_v_and_t(struct radeon_device *rdev,
const struct ni_leakage_coeffients *coeff,
u16 v,
s32 t,
u32 i_leakage,
u32 *leakage)
{
ni_calculate_leakage_for_v_and_t_formula(coeff, v, t, i_leakage, leakage);
}
bool ni_dpm_vblank_too_short(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 vblank_time = r600_dpm_get_vblank_time(rdev);
/* we never hit the non-gddr5 limit so disable it */
u32 switch_limit = pi->mem_gddr5 ? 450 : 0;
if (vblank_time < switch_limit)
return true;
else
return false;
}
static void ni_apply_state_adjust_rules(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ni_ps *ps = ni_get_ps(rps);
struct radeon_clock_and_voltage_limits *max_limits;
bool disable_mclk_switching;
u32 mclk;
u16 vddci;
int i;
if ((rdev->pm.dpm.new_active_crtc_count > 1) ||
ni_dpm_vblank_too_short(rdev))
disable_mclk_switching = true;
else
disable_mclk_switching = false;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (rdev->pm.dpm.ac_power == false) {
for (i = 0; i < ps->performance_level_count; i++) {
if (ps->performance_levels[i].mclk > max_limits->mclk)
ps->performance_levels[i].mclk = max_limits->mclk;
if (ps->performance_levels[i].sclk > max_limits->sclk)
ps->performance_levels[i].sclk = max_limits->sclk;
if (ps->performance_levels[i].vddc > max_limits->vddc)
ps->performance_levels[i].vddc = max_limits->vddc;
if (ps->performance_levels[i].vddci > max_limits->vddci)
ps->performance_levels[i].vddci = max_limits->vddci;
}
}
/* XXX validate the min clocks required for display */
/* adjust low state */
if (disable_mclk_switching) {
ps->performance_levels[0].mclk =
ps->performance_levels[ps->performance_level_count - 1].mclk;
ps->performance_levels[0].vddci =
ps->performance_levels[ps->performance_level_count - 1].vddci;
}
btc_skip_blacklist_clocks(rdev, max_limits->sclk, max_limits->mclk,
&ps->performance_levels[0].sclk,
&ps->performance_levels[0].mclk);
for (i = 1; i < ps->performance_level_count; i++) {
if (ps->performance_levels[i].sclk < ps->performance_levels[i - 1].sclk)
ps->performance_levels[i].sclk = ps->performance_levels[i - 1].sclk;
if (ps->performance_levels[i].vddc < ps->performance_levels[i - 1].vddc)
ps->performance_levels[i].vddc = ps->performance_levels[i - 1].vddc;
}
/* adjust remaining states */
if (disable_mclk_switching) {
mclk = ps->performance_levels[0].mclk;
vddci = ps->performance_levels[0].vddci;
for (i = 1; i < ps->performance_level_count; i++) {
if (mclk < ps->performance_levels[i].mclk)
mclk = ps->performance_levels[i].mclk;
if (vddci < ps->performance_levels[i].vddci)
vddci = ps->performance_levels[i].vddci;
}
for (i = 0; i < ps->performance_level_count; i++) {
ps->performance_levels[i].mclk = mclk;
ps->performance_levels[i].vddci = vddci;
}
} else {
for (i = 1; i < ps->performance_level_count; i++) {
if (ps->performance_levels[i].mclk < ps->performance_levels[i - 1].mclk)
ps->performance_levels[i].mclk = ps->performance_levels[i - 1].mclk;
if (ps->performance_levels[i].vddci < ps->performance_levels[i - 1].vddci)
ps->performance_levels[i].vddci = ps->performance_levels[i - 1].vddci;
}
}
for (i = 1; i < ps->performance_level_count; i++)
btc_skip_blacklist_clocks(rdev, max_limits->sclk, max_limits->mclk,
&ps->performance_levels[i].sclk,
&ps->performance_levels[i].mclk);
for (i = 0; i < ps->performance_level_count; i++)
btc_adjust_clock_combinations(rdev, max_limits,
&ps->performance_levels[i]);
for (i = 0; i < ps->performance_level_count; i++) {
btc_apply_voltage_dependency_rules(&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
ps->performance_levels[i].sclk,
max_limits->vddc, &ps->performance_levels[i].vddc);
btc_apply_voltage_dependency_rules(&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
ps->performance_levels[i].mclk,
max_limits->vddci, &ps->performance_levels[i].vddci);
btc_apply_voltage_dependency_rules(&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
ps->performance_levels[i].mclk,
max_limits->vddc, &ps->performance_levels[i].vddc);
btc_apply_voltage_dependency_rules(&rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk,
rdev->clock.current_dispclk,
max_limits->vddc, &ps->performance_levels[i].vddc);
}
for (i = 0; i < ps->performance_level_count; i++) {
btc_apply_voltage_delta_rules(rdev,
max_limits->vddc, max_limits->vddci,
&ps->performance_levels[i].vddc,
&ps->performance_levels[i].vddci);
}
ps->dc_compatible = true;
for (i = 0; i < ps->performance_level_count; i++) {
if (ps->performance_levels[i].vddc > rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc)
ps->dc_compatible = false;
if (ps->performance_levels[i].vddc < rdev->pm.dpm.dyn_state.min_vddc_for_pcie_gen2)
ps->performance_levels[i].flags &= ~ATOM_PPLIB_R600_FLAGS_PCIEGEN2;
}
}
static void ni_cg_clockgating_default(struct radeon_device *rdev)
{
u32 count;
const u32 *ps = NULL;
ps = (const u32 *)&cayman_cgcg_cgls_default;
count = CAYMAN_CGCG_CGLS_DEFAULT_LENGTH;
btc_program_mgcg_hw_sequence(rdev, ps, count);
}
static void ni_gfx_clockgating_enable(struct radeon_device *rdev,
bool enable)
{
u32 count;
const u32 *ps = NULL;
if (enable) {
ps = (const u32 *)&cayman_cgcg_cgls_enable;
count = CAYMAN_CGCG_CGLS_ENABLE_LENGTH;
} else {
ps = (const u32 *)&cayman_cgcg_cgls_disable;
count = CAYMAN_CGCG_CGLS_DISABLE_LENGTH;
}
btc_program_mgcg_hw_sequence(rdev, ps, count);
}
static void ni_mg_clockgating_default(struct radeon_device *rdev)
{
u32 count;
const u32 *ps = NULL;
ps = (const u32 *)&cayman_mgcg_default;
count = CAYMAN_MGCG_DEFAULT_LENGTH;
btc_program_mgcg_hw_sequence(rdev, ps, count);
}
static void ni_mg_clockgating_enable(struct radeon_device *rdev,
bool enable)
{
u32 count;
const u32 *ps = NULL;
if (enable) {
ps = (const u32 *)&cayman_mgcg_enable;
count = CAYMAN_MGCG_ENABLE_LENGTH;
} else {
ps = (const u32 *)&cayman_mgcg_disable;
count = CAYMAN_MGCG_DISABLE_LENGTH;
}
btc_program_mgcg_hw_sequence(rdev, ps, count);
}
static void ni_ls_clockgating_default(struct radeon_device *rdev)
{
u32 count;
const u32 *ps = NULL;
ps = (const u32 *)&cayman_sysls_default;
count = CAYMAN_SYSLS_DEFAULT_LENGTH;
btc_program_mgcg_hw_sequence(rdev, ps, count);
}
static void ni_ls_clockgating_enable(struct radeon_device *rdev,
bool enable)
{
u32 count;
const u32 *ps = NULL;
if (enable) {
ps = (const u32 *)&cayman_sysls_enable;
count = CAYMAN_SYSLS_ENABLE_LENGTH;
} else {
ps = (const u32 *)&cayman_sysls_disable;
count = CAYMAN_SYSLS_DISABLE_LENGTH;
}
btc_program_mgcg_hw_sequence(rdev, ps, count);
}
static int ni_patch_single_dependency_table_based_on_leakage(struct radeon_device *rdev,
struct radeon_clock_voltage_dependency_table *table)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 i;
if (table) {
for (i = 0; i < table->count; i++) {
if (0xff01 == table->entries[i].v) {
if (pi->max_vddc == 0)
return -EINVAL;
table->entries[i].v = pi->max_vddc;
}
}
}
return 0;
}
static int ni_patch_dependency_tables_based_on_leakage(struct radeon_device *rdev)
{
int ret = 0;
ret = ni_patch_single_dependency_table_based_on_leakage(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk);
ret = ni_patch_single_dependency_table_based_on_leakage(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk);
return ret;
}
static void ni_stop_dpm(struct radeon_device *rdev)
{
WREG32_P(GENERAL_PWRMGT, 0, ~GLOBAL_PWRMGT_EN);
}
#if 0
static int ni_notify_hw_of_power_source(struct radeon_device *rdev,
bool ac_power)
{
if (ac_power)
return (rv770_send_msg_to_smc(rdev, PPSMC_MSG_RunningOnAC) == PPSMC_Result_OK) ?
0 : -EINVAL;
return 0;
}
#endif
static PPSMC_Result ni_send_msg_to_smc_with_parameter(struct radeon_device *rdev,
PPSMC_Msg msg, u32 parameter)
{
WREG32(SMC_SCRATCH0, parameter);
return rv770_send_msg_to_smc(rdev, msg);
}
static int ni_restrict_performance_levels_before_switch(struct radeon_device *rdev)
{
if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_NoForcedLevel) != PPSMC_Result_OK)
return -EINVAL;
return (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetEnabledLevels, 1) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
int ni_dpm_force_performance_level(struct radeon_device *rdev,
enum radeon_dpm_forced_level level)
{
if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetEnabledLevels, 0) != PPSMC_Result_OK)
return -EINVAL;
if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetForcedLevels, 1) != PPSMC_Result_OK)
return -EINVAL;
} else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetForcedLevels, 0) != PPSMC_Result_OK)
return -EINVAL;
if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetEnabledLevels, 1) != PPSMC_Result_OK)
return -EINVAL;
} else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetForcedLevels, 0) != PPSMC_Result_OK)
return -EINVAL;
if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetEnabledLevels, 0) != PPSMC_Result_OK)
return -EINVAL;
}
rdev->pm.dpm.forced_level = level;
return 0;
}
static void ni_stop_smc(struct radeon_device *rdev)
{
u32 tmp;
int i;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(LB_SYNC_RESET_SEL) & LB_SYNC_RESET_SEL_MASK;
if (tmp != 1)
break;
udelay(1);
}
udelay(100);
r7xx_stop_smc(rdev);
}
static int ni_process_firmware_header(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
u32 tmp;
int ret;
ret = rv770_read_smc_sram_dword(rdev,
NISLANDS_SMC_FIRMWARE_HEADER_LOCATION +
NISLANDS_SMC_FIRMWARE_HEADER_stateTable,
&tmp, pi->sram_end);
if (ret)
return ret;
pi->state_table_start = (u16)tmp;
ret = rv770_read_smc_sram_dword(rdev,
NISLANDS_SMC_FIRMWARE_HEADER_LOCATION +
NISLANDS_SMC_FIRMWARE_HEADER_softRegisters,
&tmp, pi->sram_end);
if (ret)
return ret;
pi->soft_regs_start = (u16)tmp;
ret = rv770_read_smc_sram_dword(rdev,
NISLANDS_SMC_FIRMWARE_HEADER_LOCATION +
NISLANDS_SMC_FIRMWARE_HEADER_mcRegisterTable,
&tmp, pi->sram_end);
if (ret)
return ret;
eg_pi->mc_reg_table_start = (u16)tmp;
ret = rv770_read_smc_sram_dword(rdev,
NISLANDS_SMC_FIRMWARE_HEADER_LOCATION +
NISLANDS_SMC_FIRMWARE_HEADER_fanTable,
&tmp, pi->sram_end);
if (ret)
return ret;
ni_pi->fan_table_start = (u16)tmp;
ret = rv770_read_smc_sram_dword(rdev,
NISLANDS_SMC_FIRMWARE_HEADER_LOCATION +
NISLANDS_SMC_FIRMWARE_HEADER_mcArbDramAutoRefreshTable,
&tmp, pi->sram_end);
if (ret)
return ret;
ni_pi->arb_table_start = (u16)tmp;
ret = rv770_read_smc_sram_dword(rdev,
NISLANDS_SMC_FIRMWARE_HEADER_LOCATION +
NISLANDS_SMC_FIRMWARE_HEADER_cacTable,
&tmp, pi->sram_end);
if (ret)
return ret;
ni_pi->cac_table_start = (u16)tmp;
ret = rv770_read_smc_sram_dword(rdev,
NISLANDS_SMC_FIRMWARE_HEADER_LOCATION +
NISLANDS_SMC_FIRMWARE_HEADER_spllTable,
&tmp, pi->sram_end);
if (ret)
return ret;
ni_pi->spll_table_start = (u16)tmp;
return ret;
}
static void ni_read_clock_registers(struct radeon_device *rdev)
{
struct ni_power_info *ni_pi = ni_get_pi(rdev);
ni_pi->clock_registers.cg_spll_func_cntl = RREG32(CG_SPLL_FUNC_CNTL);
ni_pi->clock_registers.cg_spll_func_cntl_2 = RREG32(CG_SPLL_FUNC_CNTL_2);
ni_pi->clock_registers.cg_spll_func_cntl_3 = RREG32(CG_SPLL_FUNC_CNTL_3);
ni_pi->clock_registers.cg_spll_func_cntl_4 = RREG32(CG_SPLL_FUNC_CNTL_4);
ni_pi->clock_registers.cg_spll_spread_spectrum = RREG32(CG_SPLL_SPREAD_SPECTRUM);
ni_pi->clock_registers.cg_spll_spread_spectrum_2 = RREG32(CG_SPLL_SPREAD_SPECTRUM_2);
ni_pi->clock_registers.mpll_ad_func_cntl = RREG32(MPLL_AD_FUNC_CNTL);
ni_pi->clock_registers.mpll_ad_func_cntl_2 = RREG32(MPLL_AD_FUNC_CNTL_2);
ni_pi->clock_registers.mpll_dq_func_cntl = RREG32(MPLL_DQ_FUNC_CNTL);
ni_pi->clock_registers.mpll_dq_func_cntl_2 = RREG32(MPLL_DQ_FUNC_CNTL_2);
ni_pi->clock_registers.mclk_pwrmgt_cntl = RREG32(MCLK_PWRMGT_CNTL);
ni_pi->clock_registers.dll_cntl = RREG32(DLL_CNTL);
ni_pi->clock_registers.mpll_ss1 = RREG32(MPLL_SS1);
ni_pi->clock_registers.mpll_ss2 = RREG32(MPLL_SS2);
}
#if 0
static int ni_enter_ulp_state(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
if (pi->gfx_clock_gating) {
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN);
WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON);
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON);
RREG32(GB_ADDR_CONFIG);
}
WREG32_P(SMC_MSG, HOST_SMC_MSG(PPSMC_MSG_SwitchToMinimumPower),
~HOST_SMC_MSG_MASK);
udelay(25000);
return 0;
}
#endif
static void ni_program_response_times(struct radeon_device *rdev)
{
u32 voltage_response_time, backbias_response_time, acpi_delay_time, vbi_time_out;
u32 vddc_dly, bb_dly, acpi_dly, vbi_dly, mclk_switch_limit;
u32 reference_clock;
rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_mvdd_chg_time, 1);
voltage_response_time = (u32)rdev->pm.dpm.voltage_response_time;
backbias_response_time = (u32)rdev->pm.dpm.backbias_response_time;
if (voltage_response_time == 0)
voltage_response_time = 1000;
if (backbias_response_time == 0)
backbias_response_time = 1000;
acpi_delay_time = 15000;
vbi_time_out = 100000;
reference_clock = radeon_get_xclk(rdev);
vddc_dly = (voltage_response_time * reference_clock) / 1600;
bb_dly = (backbias_response_time * reference_clock) / 1600;
acpi_dly = (acpi_delay_time * reference_clock) / 1600;
vbi_dly = (vbi_time_out * reference_clock) / 1600;
mclk_switch_limit = (460 * reference_clock) / 100;
rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_delay_vreg, vddc_dly);
rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_delay_bbias, bb_dly);
rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_delay_acpi, acpi_dly);
rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_mclk_chg_timeout, vbi_dly);
rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_mc_block_delay, 0xAA);
rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_mclk_switch_lim, mclk_switch_limit);
}
static void ni_populate_smc_voltage_table(struct radeon_device *rdev,
struct atom_voltage_table *voltage_table,
NISLANDS_SMC_STATETABLE *table)
{
unsigned int i;
for (i = 0; i < voltage_table->count; i++) {
table->highSMIO[i] = 0;
table->lowSMIO[i] |= cpu_to_be32(voltage_table->entries[i].smio_low);
}
}
static void ni_populate_smc_voltage_tables(struct radeon_device *rdev,
NISLANDS_SMC_STATETABLE *table)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
unsigned char i;
if (eg_pi->vddc_voltage_table.count) {
ni_populate_smc_voltage_table(rdev, &eg_pi->vddc_voltage_table, table);
table->voltageMaskTable.highMask[NISLANDS_SMC_VOLTAGEMASK_VDDC] = 0;
table->voltageMaskTable.lowMask[NISLANDS_SMC_VOLTAGEMASK_VDDC] =
cpu_to_be32(eg_pi->vddc_voltage_table.mask_low);
for (i = 0; i < eg_pi->vddc_voltage_table.count; i++) {
if (pi->max_vddc_in_table <= eg_pi->vddc_voltage_table.entries[i].value) {
table->maxVDDCIndexInPPTable = i;
break;
}
}
}
if (eg_pi->vddci_voltage_table.count) {
ni_populate_smc_voltage_table(rdev, &eg_pi->vddci_voltage_table, table);
table->voltageMaskTable.highMask[NISLANDS_SMC_VOLTAGEMASK_VDDCI] = 0;
table->voltageMaskTable.lowMask[NISLANDS_SMC_VOLTAGEMASK_VDDCI] =
cpu_to_be32(eg_pi->vddci_voltage_table.mask_low);
}
}
static int ni_populate_voltage_value(struct radeon_device *rdev,
struct atom_voltage_table *table,
u16 value,
NISLANDS_SMC_VOLTAGE_VALUE *voltage)
{
unsigned int i;
for (i = 0; i < table->count; i++) {
if (value <= table->entries[i].value) {
voltage->index = (u8)i;
voltage->value = cpu_to_be16(table->entries[i].value);
break;
}
}
if (i >= table->count)
return -EINVAL;
return 0;
}
static void ni_populate_mvdd_value(struct radeon_device *rdev,
u32 mclk,
NISLANDS_SMC_VOLTAGE_VALUE *voltage)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
if (!pi->mvdd_control) {
voltage->index = eg_pi->mvdd_high_index;
voltage->value = cpu_to_be16(MVDD_HIGH_VALUE);
return;
}
if (mclk <= pi->mvdd_split_frequency) {
voltage->index = eg_pi->mvdd_low_index;
voltage->value = cpu_to_be16(MVDD_LOW_VALUE);
} else {
voltage->index = eg_pi->mvdd_high_index;
voltage->value = cpu_to_be16(MVDD_HIGH_VALUE);
}
}
static int ni_get_std_voltage_value(struct radeon_device *rdev,
NISLANDS_SMC_VOLTAGE_VALUE *voltage,
u16 *std_voltage)
{
if (rdev->pm.dpm.dyn_state.cac_leakage_table.entries &&
((u32)voltage->index < rdev->pm.dpm.dyn_state.cac_leakage_table.count))
*std_voltage = rdev->pm.dpm.dyn_state.cac_leakage_table.entries[voltage->index].vddc;
else
*std_voltage = be16_to_cpu(voltage->value);
return 0;
}
static void ni_populate_std_voltage_value(struct radeon_device *rdev,
u16 value, u8 index,
NISLANDS_SMC_VOLTAGE_VALUE *voltage)
{
voltage->index = index;
voltage->value = cpu_to_be16(value);
}
static u32 ni_get_smc_power_scaling_factor(struct radeon_device *rdev)
{
u32 xclk_period;
u32 xclk = radeon_get_xclk(rdev);
u32 tmp = RREG32(CG_CAC_CTRL) & TID_CNT_MASK;
xclk_period = (1000000000UL / xclk);
xclk_period /= 10000UL;
return tmp * xclk_period;
}
static u32 ni_scale_power_for_smc(u32 power_in_watts, u32 scaling_factor)
{
return (power_in_watts * scaling_factor) << 2;
}
static u32 ni_calculate_power_boost_limit(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
u32 near_tdp_limit)
{
struct ni_ps *state = ni_get_ps(radeon_state);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
u32 power_boost_limit = 0;
int ret;
if (ni_pi->enable_power_containment &&
ni_pi->use_power_boost_limit) {
NISLANDS_SMC_VOLTAGE_VALUE vddc;
u16 std_vddc_med;
u16 std_vddc_high;
u64 tmp, n, d;
if (state->performance_level_count < 3)
return 0;
ret = ni_populate_voltage_value(rdev, &eg_pi->vddc_voltage_table,
state->performance_levels[state->performance_level_count - 2].vddc,
&vddc);
if (ret)
return 0;
ret = ni_get_std_voltage_value(rdev, &vddc, &std_vddc_med);
if (ret)
return 0;
ret = ni_populate_voltage_value(rdev, &eg_pi->vddc_voltage_table,
state->performance_levels[state->performance_level_count - 1].vddc,
&vddc);
if (ret)
return 0;
ret = ni_get_std_voltage_value(rdev, &vddc, &std_vddc_high);
if (ret)
return 0;
n = ((u64)near_tdp_limit * ((u64)std_vddc_med * (u64)std_vddc_med) * 90);
d = ((u64)std_vddc_high * (u64)std_vddc_high * 100);
tmp = div64_u64(n, d);
if (tmp >> 32)
return 0;
power_boost_limit = (u32)tmp;
}
return power_boost_limit;
}
static int ni_calculate_adjusted_tdp_limits(struct radeon_device *rdev,
bool adjust_polarity,
u32 tdp_adjustment,
u32 *tdp_limit,
u32 *near_tdp_limit)
{
if (tdp_adjustment > (u32)rdev->pm.dpm.tdp_od_limit)
return -EINVAL;
if (adjust_polarity) {
*tdp_limit = ((100 + tdp_adjustment) * rdev->pm.dpm.tdp_limit) / 100;
*near_tdp_limit = rdev->pm.dpm.near_tdp_limit + (*tdp_limit - rdev->pm.dpm.tdp_limit);
} else {
*tdp_limit = ((100 - tdp_adjustment) * rdev->pm.dpm.tdp_limit) / 100;
*near_tdp_limit = rdev->pm.dpm.near_tdp_limit - (rdev->pm.dpm.tdp_limit - *tdp_limit);
}
return 0;
}
static int ni_populate_smc_tdp_limits(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
if (ni_pi->enable_power_containment) {
NISLANDS_SMC_STATETABLE *smc_table = &ni_pi->smc_statetable;
u32 scaling_factor = ni_get_smc_power_scaling_factor(rdev);
u32 tdp_limit;
u32 near_tdp_limit;
u32 power_boost_limit;
int ret;
if (scaling_factor == 0)
return -EINVAL;
memset(smc_table, 0, sizeof(NISLANDS_SMC_STATETABLE));
ret = ni_calculate_adjusted_tdp_limits(rdev,
false, /* ??? */
rdev->pm.dpm.tdp_adjustment,
&tdp_limit,
&near_tdp_limit);
if (ret)
return ret;
power_boost_limit = ni_calculate_power_boost_limit(rdev, radeon_state,
near_tdp_limit);
smc_table->dpm2Params.TDPLimit =
cpu_to_be32(ni_scale_power_for_smc(tdp_limit, scaling_factor));
smc_table->dpm2Params.NearTDPLimit =
cpu_to_be32(ni_scale_power_for_smc(near_tdp_limit, scaling_factor));
smc_table->dpm2Params.SafePowerLimit =
cpu_to_be32(ni_scale_power_for_smc((near_tdp_limit * NISLANDS_DPM2_TDP_SAFE_LIMIT_PERCENT) / 100,
scaling_factor));
smc_table->dpm2Params.PowerBoostLimit =
cpu_to_be32(ni_scale_power_for_smc(power_boost_limit, scaling_factor));
ret = rv770_copy_bytes_to_smc(rdev,
(u16)(pi->state_table_start + offsetof(NISLANDS_SMC_STATETABLE, dpm2Params) +
offsetof(PP_NIslands_DPM2Parameters, TDPLimit)),
(u8 *)(&smc_table->dpm2Params.TDPLimit),
sizeof(u32) * 4, pi->sram_end);
if (ret)
return ret;
}
return 0;
}
int ni_copy_and_switch_arb_sets(struct radeon_device *rdev,
u32 arb_freq_src, u32 arb_freq_dest)
{
u32 mc_arb_dram_timing;
u32 mc_arb_dram_timing2;
u32 burst_time;
u32 mc_cg_config;
switch (arb_freq_src) {
case MC_CG_ARB_FREQ_F0:
mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING);
mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2);
burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE0_MASK) >> STATE0_SHIFT;
break;
case MC_CG_ARB_FREQ_F1:
mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING_1);
mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2_1);
burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE1_MASK) >> STATE1_SHIFT;
break;
case MC_CG_ARB_FREQ_F2:
mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING_2);
mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2_2);
burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE2_MASK) >> STATE2_SHIFT;
break;
case MC_CG_ARB_FREQ_F3:
mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING_3);
mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2_3);
burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE3_MASK) >> STATE3_SHIFT;
break;
default:
return -EINVAL;
}
switch (arb_freq_dest) {
case MC_CG_ARB_FREQ_F0:
WREG32(MC_ARB_DRAM_TIMING, mc_arb_dram_timing);
WREG32(MC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
WREG32_P(MC_ARB_BURST_TIME, STATE0(burst_time), ~STATE0_MASK);
break;
case MC_CG_ARB_FREQ_F1:
WREG32(MC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
WREG32(MC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
WREG32_P(MC_ARB_BURST_TIME, STATE1(burst_time), ~STATE1_MASK);
break;
case MC_CG_ARB_FREQ_F2:
WREG32(MC_ARB_DRAM_TIMING_2, mc_arb_dram_timing);
WREG32(MC_ARB_DRAM_TIMING2_2, mc_arb_dram_timing2);
WREG32_P(MC_ARB_BURST_TIME, STATE2(burst_time), ~STATE2_MASK);
break;
case MC_CG_ARB_FREQ_F3:
WREG32(MC_ARB_DRAM_TIMING_3, mc_arb_dram_timing);
WREG32(MC_ARB_DRAM_TIMING2_3, mc_arb_dram_timing2);
WREG32_P(MC_ARB_BURST_TIME, STATE3(burst_time), ~STATE3_MASK);
break;
default:
return -EINVAL;
}
mc_cg_config = RREG32(MC_CG_CONFIG) | 0x0000000F;
WREG32(MC_CG_CONFIG, mc_cg_config);
WREG32_P(MC_ARB_CG, CG_ARB_REQ(arb_freq_dest), ~CG_ARB_REQ_MASK);
return 0;
}
static int ni_init_arb_table_index(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
u32 tmp;
int ret;
ret = rv770_read_smc_sram_dword(rdev, ni_pi->arb_table_start,
&tmp, pi->sram_end);
if (ret)
return ret;
tmp &= 0x00FFFFFF;
tmp |= ((u32)MC_CG_ARB_FREQ_F1) << 24;
return rv770_write_smc_sram_dword(rdev, ni_pi->arb_table_start,
tmp, pi->sram_end);
}
static int ni_initial_switch_from_arb_f0_to_f1(struct radeon_device *rdev)
{
return ni_copy_and_switch_arb_sets(rdev, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}
static int ni_force_switch_to_arb_f0(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
u32 tmp;
int ret;
ret = rv770_read_smc_sram_dword(rdev, ni_pi->arb_table_start,
&tmp, pi->sram_end);
if (ret)
return ret;
tmp = (tmp >> 24) & 0xff;
if (tmp == MC_CG_ARB_FREQ_F0)
return 0;
return ni_copy_and_switch_arb_sets(rdev, tmp, MC_CG_ARB_FREQ_F0);
}
static int ni_populate_memory_timing_parameters(struct radeon_device *rdev,
struct rv7xx_pl *pl,
SMC_NIslands_MCArbDramTimingRegisterSet *arb_regs)
{
u32 dram_timing;
u32 dram_timing2;
arb_regs->mc_arb_rfsh_rate =
(u8)rv770_calculate_memory_refresh_rate(rdev, pl->sclk);
radeon_atom_set_engine_dram_timings(rdev, pl->sclk, pl->mclk);
dram_timing = RREG32(MC_ARB_DRAM_TIMING);
dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2);
arb_regs->mc_arb_dram_timing = cpu_to_be32(dram_timing);
arb_regs->mc_arb_dram_timing2 = cpu_to_be32(dram_timing2);
return 0;
}
static int ni_do_program_memory_timing_parameters(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
unsigned int first_arb_set)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
struct ni_ps *state = ni_get_ps(radeon_state);
SMC_NIslands_MCArbDramTimingRegisterSet arb_regs = { 0 };
int i, ret = 0;
for (i = 0; i < state->performance_level_count; i++) {
ret = ni_populate_memory_timing_parameters(rdev, &state->performance_levels[i], &arb_regs);
if (ret)
break;
ret = rv770_copy_bytes_to_smc(rdev,
(u16)(ni_pi->arb_table_start +
offsetof(SMC_NIslands_MCArbDramTimingRegisters, data) +
sizeof(SMC_NIslands_MCArbDramTimingRegisterSet) * (first_arb_set + i)),
(u8 *)&arb_regs,
(u16)sizeof(SMC_NIslands_MCArbDramTimingRegisterSet),
pi->sram_end);
if (ret)
break;
}
return ret;
}
static int ni_program_memory_timing_parameters(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state)
{
return ni_do_program_memory_timing_parameters(rdev, radeon_new_state,
NISLANDS_DRIVER_STATE_ARB_INDEX);
}
static void ni_populate_initial_mvdd_value(struct radeon_device *rdev,
struct NISLANDS_SMC_VOLTAGE_VALUE *voltage)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
voltage->index = eg_pi->mvdd_high_index;
voltage->value = cpu_to_be16(MVDD_HIGH_VALUE);
}
static int ni_populate_smc_initial_state(struct radeon_device *rdev,
struct radeon_ps *radeon_initial_state,
NISLANDS_SMC_STATETABLE *table)
{
struct ni_ps *initial_state = ni_get_ps(radeon_initial_state);
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
u32 reg;
int ret;
table->initialState.levels[0].mclk.vMPLL_AD_FUNC_CNTL =
cpu_to_be32(ni_pi->clock_registers.mpll_ad_func_cntl);
table->initialState.levels[0].mclk.vMPLL_AD_FUNC_CNTL_2 =
cpu_to_be32(ni_pi->clock_registers.mpll_ad_func_cntl_2);
table->initialState.levels[0].mclk.vMPLL_DQ_FUNC_CNTL =
cpu_to_be32(ni_pi->clock_registers.mpll_dq_func_cntl);
table->initialState.levels[0].mclk.vMPLL_DQ_FUNC_CNTL_2 =
cpu_to_be32(ni_pi->clock_registers.mpll_dq_func_cntl_2);
table->initialState.levels[0].mclk.vMCLK_PWRMGT_CNTL =
cpu_to_be32(ni_pi->clock_registers.mclk_pwrmgt_cntl);
table->initialState.levels[0].mclk.vDLL_CNTL =
cpu_to_be32(ni_pi->clock_registers.dll_cntl);
table->initialState.levels[0].mclk.vMPLL_SS =
cpu_to_be32(ni_pi->clock_registers.mpll_ss1);
table->initialState.levels[0].mclk.vMPLL_SS2 =
cpu_to_be32(ni_pi->clock_registers.mpll_ss2);
table->initialState.levels[0].mclk.mclk_value =
cpu_to_be32(initial_state->performance_levels[0].mclk);
table->initialState.levels[0].sclk.vCG_SPLL_FUNC_CNTL =
cpu_to_be32(ni_pi->clock_registers.cg_spll_func_cntl);
table->initialState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_2 =
cpu_to_be32(ni_pi->clock_registers.cg_spll_func_cntl_2);
table->initialState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_3 =
cpu_to_be32(ni_pi->clock_registers.cg_spll_func_cntl_3);
table->initialState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_4 =
cpu_to_be32(ni_pi->clock_registers.cg_spll_func_cntl_4);
table->initialState.levels[0].sclk.vCG_SPLL_SPREAD_SPECTRUM =
cpu_to_be32(ni_pi->clock_registers.cg_spll_spread_spectrum);
table->initialState.levels[0].sclk.vCG_SPLL_SPREAD_SPECTRUM_2 =
cpu_to_be32(ni_pi->clock_registers.cg_spll_spread_spectrum_2);
table->initialState.levels[0].sclk.sclk_value =
cpu_to_be32(initial_state->performance_levels[0].sclk);
table->initialState.levels[0].arbRefreshState =
NISLANDS_INITIAL_STATE_ARB_INDEX;
table->initialState.levels[0].ACIndex = 0;
ret = ni_populate_voltage_value(rdev, &eg_pi->vddc_voltage_table,
initial_state->performance_levels[0].vddc,
&table->initialState.levels[0].vddc);
if (!ret) {
u16 std_vddc;
ret = ni_get_std_voltage_value(rdev,
&table->initialState.levels[0].vddc,
&std_vddc);
if (!ret)
ni_populate_std_voltage_value(rdev, std_vddc,
table->initialState.levels[0].vddc.index,
&table->initialState.levels[0].std_vddc);
}
if (eg_pi->vddci_control)
ni_populate_voltage_value(rdev,
&eg_pi->vddci_voltage_table,
initial_state->performance_levels[0].vddci,
&table->initialState.levels[0].vddci);
ni_populate_initial_mvdd_value(rdev, &table->initialState.levels[0].mvdd);
reg = CG_R(0xffff) | CG_L(0);
table->initialState.levels[0].aT = cpu_to_be32(reg);
table->initialState.levels[0].bSP = cpu_to_be32(pi->dsp);
if (pi->boot_in_gen2)
table->initialState.levels[0].gen2PCIE = 1;
else
table->initialState.levels[0].gen2PCIE = 0;
if (pi->mem_gddr5) {
table->initialState.levels[0].strobeMode =
cypress_get_strobe_mode_settings(rdev,
initial_state->performance_levels[0].mclk);
if (initial_state->performance_levels[0].mclk > pi->mclk_edc_enable_threshold)
table->initialState.levels[0].mcFlags = NISLANDS_SMC_MC_EDC_RD_FLAG | NISLANDS_SMC_MC_EDC_WR_FLAG;
else
table->initialState.levels[0].mcFlags = 0;
}
table->initialState.levelCount = 1;
table->initialState.flags |= PPSMC_SWSTATE_FLAG_DC;
table->initialState.levels[0].dpm2.MaxPS = 0;
table->initialState.levels[0].dpm2.NearTDPDec = 0;
table->initialState.levels[0].dpm2.AboveSafeInc = 0;
table->initialState.levels[0].dpm2.BelowSafeInc = 0;
reg = MIN_POWER_MASK | MAX_POWER_MASK;
table->initialState.levels[0].SQPowerThrottle = cpu_to_be32(reg);
reg = MAX_POWER_DELTA_MASK | STI_SIZE_MASK | LTI_RATIO_MASK;
table->initialState.levels[0].SQPowerThrottle_2 = cpu_to_be32(reg);
return 0;
}
static int ni_populate_smc_acpi_state(struct radeon_device *rdev,
NISLANDS_SMC_STATETABLE *table)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
u32 mpll_ad_func_cntl = ni_pi->clock_registers.mpll_ad_func_cntl;
u32 mpll_ad_func_cntl_2 = ni_pi->clock_registers.mpll_ad_func_cntl_2;
u32 mpll_dq_func_cntl = ni_pi->clock_registers.mpll_dq_func_cntl;
u32 mpll_dq_func_cntl_2 = ni_pi->clock_registers.mpll_dq_func_cntl_2;
u32 spll_func_cntl = ni_pi->clock_registers.cg_spll_func_cntl;
u32 spll_func_cntl_2 = ni_pi->clock_registers.cg_spll_func_cntl_2;
u32 spll_func_cntl_3 = ni_pi->clock_registers.cg_spll_func_cntl_3;
u32 spll_func_cntl_4 = ni_pi->clock_registers.cg_spll_func_cntl_4;
u32 mclk_pwrmgt_cntl = ni_pi->clock_registers.mclk_pwrmgt_cntl;
u32 dll_cntl = ni_pi->clock_registers.dll_cntl;
u32 reg;
int ret;
table->ACPIState = table->initialState;
table->ACPIState.flags &= ~PPSMC_SWSTATE_FLAG_DC;
if (pi->acpi_vddc) {
ret = ni_populate_voltage_value(rdev,
&eg_pi->vddc_voltage_table,
pi->acpi_vddc, &table->ACPIState.levels[0].vddc);
if (!ret) {
u16 std_vddc;
ret = ni_get_std_voltage_value(rdev,
&table->ACPIState.levels[0].vddc, &std_vddc);
if (!ret)
ni_populate_std_voltage_value(rdev, std_vddc,
table->ACPIState.levels[0].vddc.index,
&table->ACPIState.levels[0].std_vddc);
}
if (pi->pcie_gen2) {
if (pi->acpi_pcie_gen2)
table->ACPIState.levels[0].gen2PCIE = 1;
else
table->ACPIState.levels[0].gen2PCIE = 0;
} else {
table->ACPIState.levels[0].gen2PCIE = 0;
}
} else {
ret = ni_populate_voltage_value(rdev,
&eg_pi->vddc_voltage_table,
pi->min_vddc_in_table,
&table->ACPIState.levels[0].vddc);
if (!ret) {
u16 std_vddc;
ret = ni_get_std_voltage_value(rdev,
&table->ACPIState.levels[0].vddc,
&std_vddc);
if (!ret)
ni_populate_std_voltage_value(rdev, std_vddc,
table->ACPIState.levels[0].vddc.index,
&table->ACPIState.levels[0].std_vddc);
}
table->ACPIState.levels[0].gen2PCIE = 0;
}
if (eg_pi->acpi_vddci) {
if (eg_pi->vddci_control)
ni_populate_voltage_value(rdev,
&eg_pi->vddci_voltage_table,
eg_pi->acpi_vddci,
&table->ACPIState.levels[0].vddci);
}
mpll_ad_func_cntl &= ~PDNB;
mpll_ad_func_cntl_2 |= BIAS_GEN_PDNB | RESET_EN;
if (pi->mem_gddr5)
mpll_dq_func_cntl &= ~PDNB;
mpll_dq_func_cntl_2 |= BIAS_GEN_PDNB | RESET_EN | BYPASS;
mclk_pwrmgt_cntl |= (MRDCKA0_RESET |
MRDCKA1_RESET |
MRDCKB0_RESET |
MRDCKB1_RESET |
MRDCKC0_RESET |
MRDCKC1_RESET |
MRDCKD0_RESET |
MRDCKD1_RESET);
mclk_pwrmgt_cntl &= ~(MRDCKA0_PDNB |
MRDCKA1_PDNB |
MRDCKB0_PDNB |
MRDCKB1_PDNB |
MRDCKC0_PDNB |
MRDCKC1_PDNB |
MRDCKD0_PDNB |
MRDCKD1_PDNB);
dll_cntl |= (MRDCKA0_BYPASS |
MRDCKA1_BYPASS |
MRDCKB0_BYPASS |
MRDCKB1_BYPASS |
MRDCKC0_BYPASS |
MRDCKC1_BYPASS |
MRDCKD0_BYPASS |
MRDCKD1_BYPASS);
spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK;
spll_func_cntl_2 |= SCLK_MUX_SEL(4);
table->ACPIState.levels[0].mclk.vMPLL_AD_FUNC_CNTL = cpu_to_be32(mpll_ad_func_cntl);
table->ACPIState.levels[0].mclk.vMPLL_AD_FUNC_CNTL_2 = cpu_to_be32(mpll_ad_func_cntl_2);
table->ACPIState.levels[0].mclk.vMPLL_DQ_FUNC_CNTL = cpu_to_be32(mpll_dq_func_cntl);
table->ACPIState.levels[0].mclk.vMPLL_DQ_FUNC_CNTL_2 = cpu_to_be32(mpll_dq_func_cntl_2);
table->ACPIState.levels[0].mclk.vMCLK_PWRMGT_CNTL = cpu_to_be32(mclk_pwrmgt_cntl);
table->ACPIState.levels[0].mclk.vDLL_CNTL = cpu_to_be32(dll_cntl);
table->ACPIState.levels[0].mclk.mclk_value = 0;
table->ACPIState.levels[0].sclk.vCG_SPLL_FUNC_CNTL = cpu_to_be32(spll_func_cntl);
table->ACPIState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(spll_func_cntl_2);
table->ACPIState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(spll_func_cntl_3);
table->ACPIState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_4 = cpu_to_be32(spll_func_cntl_4);
table->ACPIState.levels[0].sclk.sclk_value = 0;
ni_populate_mvdd_value(rdev, 0, &table->ACPIState.levels[0].mvdd);
if (eg_pi->dynamic_ac_timing)
table->ACPIState.levels[0].ACIndex = 1;
table->ACPIState.levels[0].dpm2.MaxPS = 0;
table->ACPIState.levels[0].dpm2.NearTDPDec = 0;
table->ACPIState.levels[0].dpm2.AboveSafeInc = 0;
table->ACPIState.levels[0].dpm2.BelowSafeInc = 0;
reg = MIN_POWER_MASK | MAX_POWER_MASK;
table->ACPIState.levels[0].SQPowerThrottle = cpu_to_be32(reg);
reg = MAX_POWER_DELTA_MASK | STI_SIZE_MASK | LTI_RATIO_MASK;
table->ACPIState.levels[0].SQPowerThrottle_2 = cpu_to_be32(reg);
return 0;
}
static int ni_init_smc_table(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
int ret;
struct radeon_ps *radeon_boot_state = rdev->pm.dpm.boot_ps;
NISLANDS_SMC_STATETABLE *table = &ni_pi->smc_statetable;
memset(table, 0, sizeof(NISLANDS_SMC_STATETABLE));
ni_populate_smc_voltage_tables(rdev, table);
switch (rdev->pm.int_thermal_type) {
case THERMAL_TYPE_NI:
case THERMAL_TYPE_EMC2103_WITH_INTERNAL:
table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_INTERNAL;
break;
case THERMAL_TYPE_NONE:
table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_NONE;
break;
default:
table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_EXTERNAL;
break;
}
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC)
table->systemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT)
table->systemFlags |= PPSMC_SYSTEMFLAG_REGULATOR_HOT;
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC)
table->systemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (pi->mem_gddr5)
table->systemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
ret = ni_populate_smc_initial_state(rdev, radeon_boot_state, table);
if (ret)
return ret;
ret = ni_populate_smc_acpi_state(rdev, table);
if (ret)
return ret;
table->driverState = table->initialState;
table->ULVState = table->initialState;
ret = ni_do_program_memory_timing_parameters(rdev, radeon_boot_state,
NISLANDS_INITIAL_STATE_ARB_INDEX);
if (ret)
return ret;
return rv770_copy_bytes_to_smc(rdev, pi->state_table_start, (u8 *)table,
sizeof(NISLANDS_SMC_STATETABLE), pi->sram_end);
}
static int ni_calculate_sclk_params(struct radeon_device *rdev,
u32 engine_clock,
NISLANDS_SMC_SCLK_VALUE *sclk)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
struct atom_clock_dividers dividers;
u32 spll_func_cntl = ni_pi->clock_registers.cg_spll_func_cntl;
u32 spll_func_cntl_2 = ni_pi->clock_registers.cg_spll_func_cntl_2;
u32 spll_func_cntl_3 = ni_pi->clock_registers.cg_spll_func_cntl_3;
u32 spll_func_cntl_4 = ni_pi->clock_registers.cg_spll_func_cntl_4;
u32 cg_spll_spread_spectrum = ni_pi->clock_registers.cg_spll_spread_spectrum;
u32 cg_spll_spread_spectrum_2 = ni_pi->clock_registers.cg_spll_spread_spectrum_2;
u64 tmp;
u32 reference_clock = rdev->clock.spll.reference_freq;
u32 reference_divider;
u32 fbdiv;
int ret;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
engine_clock, false, &dividers);
if (ret)
return ret;
reference_divider = 1 + dividers.ref_div;
tmp = (u64) engine_clock * reference_divider * dividers.post_div * 16834;
do_div(tmp, reference_clock);
fbdiv = (u32) tmp;
spll_func_cntl &= ~(SPLL_PDIV_A_MASK | SPLL_REF_DIV_MASK);
spll_func_cntl |= SPLL_REF_DIV(dividers.ref_div);
spll_func_cntl |= SPLL_PDIV_A(dividers.post_div);
spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK;
spll_func_cntl_2 |= SCLK_MUX_SEL(2);
spll_func_cntl_3 &= ~SPLL_FB_DIV_MASK;
spll_func_cntl_3 |= SPLL_FB_DIV(fbdiv);
spll_func_cntl_3 |= SPLL_DITHEN;
if (pi->sclk_ss) {
struct radeon_atom_ss ss;
u32 vco_freq = engine_clock * dividers.post_div;
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_ENGINE_SS, vco_freq)) {
u32 clk_s = reference_clock * 5 / (reference_divider * ss.rate);
u32 clk_v = 4 * ss.percentage * fbdiv / (clk_s * 10000);
cg_spll_spread_spectrum &= ~CLK_S_MASK;
cg_spll_spread_spectrum |= CLK_S(clk_s);
cg_spll_spread_spectrum |= SSEN;
cg_spll_spread_spectrum_2 &= ~CLK_V_MASK;
cg_spll_spread_spectrum_2 |= CLK_V(clk_v);
}
}
sclk->sclk_value = engine_clock;
sclk->vCG_SPLL_FUNC_CNTL = spll_func_cntl;
sclk->vCG_SPLL_FUNC_CNTL_2 = spll_func_cntl_2;
sclk->vCG_SPLL_FUNC_CNTL_3 = spll_func_cntl_3;
sclk->vCG_SPLL_FUNC_CNTL_4 = spll_func_cntl_4;
sclk->vCG_SPLL_SPREAD_SPECTRUM = cg_spll_spread_spectrum;
sclk->vCG_SPLL_SPREAD_SPECTRUM_2 = cg_spll_spread_spectrum_2;
return 0;
}
static int ni_populate_sclk_value(struct radeon_device *rdev,
u32 engine_clock,
NISLANDS_SMC_SCLK_VALUE *sclk)
{
NISLANDS_SMC_SCLK_VALUE sclk_tmp;
int ret;
ret = ni_calculate_sclk_params(rdev, engine_clock, &sclk_tmp);
if (!ret) {
sclk->sclk_value = cpu_to_be32(sclk_tmp.sclk_value);
sclk->vCG_SPLL_FUNC_CNTL = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL);
sclk->vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL_2);
sclk->vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL_3);
sclk->vCG_SPLL_FUNC_CNTL_4 = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL_4);
sclk->vCG_SPLL_SPREAD_SPECTRUM = cpu_to_be32(sclk_tmp.vCG_SPLL_SPREAD_SPECTRUM);
sclk->vCG_SPLL_SPREAD_SPECTRUM_2 = cpu_to_be32(sclk_tmp.vCG_SPLL_SPREAD_SPECTRUM_2);
}
return ret;
}
static int ni_init_smc_spll_table(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
SMC_NISLANDS_SPLL_DIV_TABLE *spll_table;
NISLANDS_SMC_SCLK_VALUE sclk_params;
u32 fb_div;
u32 p_div;
u32 clk_s;
u32 clk_v;
u32 sclk = 0;
int i, ret;
u32 tmp;
if (ni_pi->spll_table_start == 0)
return -EINVAL;
spll_table = kzalloc(sizeof(SMC_NISLANDS_SPLL_DIV_TABLE), GFP_KERNEL);
if (spll_table == NULL)
return -ENOMEM;
for (i = 0; i < 256; i++) {
ret = ni_calculate_sclk_params(rdev, sclk, &sclk_params);
if (ret)
break;
p_div = (sclk_params.vCG_SPLL_FUNC_CNTL & SPLL_PDIV_A_MASK) >> SPLL_PDIV_A_SHIFT;
fb_div = (sclk_params.vCG_SPLL_FUNC_CNTL_3 & SPLL_FB_DIV_MASK) >> SPLL_FB_DIV_SHIFT;
clk_s = (sclk_params.vCG_SPLL_SPREAD_SPECTRUM & CLK_S_MASK) >> CLK_S_SHIFT;
clk_v = (sclk_params.vCG_SPLL_SPREAD_SPECTRUM_2 & CLK_V_MASK) >> CLK_V_SHIFT;
fb_div &= ~0x00001FFF;
fb_div >>= 1;
clk_v >>= 6;
if (p_div & ~(SMC_NISLANDS_SPLL_DIV_TABLE_PDIV_MASK >> SMC_NISLANDS_SPLL_DIV_TABLE_PDIV_SHIFT))
ret = -EINVAL;
if (clk_s & ~(SMC_NISLANDS_SPLL_DIV_TABLE_CLKS_MASK >> SMC_NISLANDS_SPLL_DIV_TABLE_CLKS_SHIFT))
ret = -EINVAL;
if (fb_div & ~(SMC_NISLANDS_SPLL_DIV_TABLE_FBDIV_MASK >> SMC_NISLANDS_SPLL_DIV_TABLE_FBDIV_SHIFT))
ret = -EINVAL;
if (clk_v & ~(SMC_NISLANDS_SPLL_DIV_TABLE_CLKV_MASK >> SMC_NISLANDS_SPLL_DIV_TABLE_CLKV_SHIFT))
ret = -EINVAL;
if (ret)
break;
tmp = ((fb_div << SMC_NISLANDS_SPLL_DIV_TABLE_FBDIV_SHIFT) & SMC_NISLANDS_SPLL_DIV_TABLE_FBDIV_MASK) |
((p_div << SMC_NISLANDS_SPLL_DIV_TABLE_PDIV_SHIFT) & SMC_NISLANDS_SPLL_DIV_TABLE_PDIV_MASK);
spll_table->freq[i] = cpu_to_be32(tmp);
tmp = ((clk_v << SMC_NISLANDS_SPLL_DIV_TABLE_CLKV_SHIFT) & SMC_NISLANDS_SPLL_DIV_TABLE_CLKV_MASK) |
((clk_s << SMC_NISLANDS_SPLL_DIV_TABLE_CLKS_SHIFT) & SMC_NISLANDS_SPLL_DIV_TABLE_CLKS_MASK);
spll_table->ss[i] = cpu_to_be32(tmp);
sclk += 512;
}
if (!ret)
ret = rv770_copy_bytes_to_smc(rdev, ni_pi->spll_table_start, (u8 *)spll_table,
sizeof(SMC_NISLANDS_SPLL_DIV_TABLE), pi->sram_end);
kfree(spll_table);
return ret;
}
static int ni_populate_mclk_value(struct radeon_device *rdev,
u32 engine_clock,
u32 memory_clock,
NISLANDS_SMC_MCLK_VALUE *mclk,
bool strobe_mode,
bool dll_state_on)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
u32 mpll_ad_func_cntl = ni_pi->clock_registers.mpll_ad_func_cntl;
u32 mpll_ad_func_cntl_2 = ni_pi->clock_registers.mpll_ad_func_cntl_2;
u32 mpll_dq_func_cntl = ni_pi->clock_registers.mpll_dq_func_cntl;
u32 mpll_dq_func_cntl_2 = ni_pi->clock_registers.mpll_dq_func_cntl_2;
u32 mclk_pwrmgt_cntl = ni_pi->clock_registers.mclk_pwrmgt_cntl;
u32 dll_cntl = ni_pi->clock_registers.dll_cntl;
u32 mpll_ss1 = ni_pi->clock_registers.mpll_ss1;
u32 mpll_ss2 = ni_pi->clock_registers.mpll_ss2;
struct atom_clock_dividers dividers;
u32 ibias;
u32 dll_speed;
int ret;
u32 mc_seq_misc7;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM,
memory_clock, strobe_mode, &dividers);
if (ret)
return ret;
if (!strobe_mode) {
mc_seq_misc7 = RREG32(MC_SEQ_MISC7);
if (mc_seq_misc7 & 0x8000000)
dividers.post_div = 1;
}
ibias = cypress_map_clkf_to_ibias(rdev, dividers.whole_fb_div);
mpll_ad_func_cntl &= ~(CLKR_MASK |
YCLK_POST_DIV_MASK |
CLKF_MASK |
CLKFRAC_MASK |
IBIAS_MASK);
mpll_ad_func_cntl |= CLKR(dividers.ref_div);
mpll_ad_func_cntl |= YCLK_POST_DIV(dividers.post_div);
mpll_ad_func_cntl |= CLKF(dividers.whole_fb_div);
mpll_ad_func_cntl |= CLKFRAC(dividers.frac_fb_div);
mpll_ad_func_cntl |= IBIAS(ibias);
if (dividers.vco_mode)
mpll_ad_func_cntl_2 |= VCO_MODE;
else
mpll_ad_func_cntl_2 &= ~VCO_MODE;
if (pi->mem_gddr5) {
mpll_dq_func_cntl &= ~(CLKR_MASK |
YCLK_POST_DIV_MASK |
CLKF_MASK |
CLKFRAC_MASK |
IBIAS_MASK);
mpll_dq_func_cntl |= CLKR(dividers.ref_div);
mpll_dq_func_cntl |= YCLK_POST_DIV(dividers.post_div);
mpll_dq_func_cntl |= CLKF(dividers.whole_fb_div);
mpll_dq_func_cntl |= CLKFRAC(dividers.frac_fb_div);
mpll_dq_func_cntl |= IBIAS(ibias);
if (strobe_mode)
mpll_dq_func_cntl &= ~PDNB;
else
mpll_dq_func_cntl |= PDNB;
if (dividers.vco_mode)
mpll_dq_func_cntl_2 |= VCO_MODE;
else
mpll_dq_func_cntl_2 &= ~VCO_MODE;
}
if (pi->mclk_ss) {
struct radeon_atom_ss ss;
u32 vco_freq = memory_clock * dividers.post_div;
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_MEMORY_SS, vco_freq)) {
u32 reference_clock = rdev->clock.mpll.reference_freq;
u32 decoded_ref = rv740_get_decoded_reference_divider(dividers.ref_div);
u32 clk_s = reference_clock * 5 / (decoded_ref * ss.rate);
u32 clk_v = ss.percentage *
(0x4000 * dividers.whole_fb_div + 0x800 * dividers.frac_fb_div) / (clk_s * 625);
mpll_ss1 &= ~CLKV_MASK;
mpll_ss1 |= CLKV(clk_v);
mpll_ss2 &= ~CLKS_MASK;
mpll_ss2 |= CLKS(clk_s);
}
}
dll_speed = rv740_get_dll_speed(pi->mem_gddr5,
memory_clock);
mclk_pwrmgt_cntl &= ~DLL_SPEED_MASK;
mclk_pwrmgt_cntl |= DLL_SPEED(dll_speed);
if (dll_state_on)
mclk_pwrmgt_cntl |= (MRDCKA0_PDNB |
MRDCKA1_PDNB |
MRDCKB0_PDNB |
MRDCKB1_PDNB |
MRDCKC0_PDNB |
MRDCKC1_PDNB |
MRDCKD0_PDNB |
MRDCKD1_PDNB);
else
mclk_pwrmgt_cntl &= ~(MRDCKA0_PDNB |
MRDCKA1_PDNB |
MRDCKB0_PDNB |
MRDCKB1_PDNB |
MRDCKC0_PDNB |
MRDCKC1_PDNB |
MRDCKD0_PDNB |
MRDCKD1_PDNB);
mclk->mclk_value = cpu_to_be32(memory_clock);
mclk->vMPLL_AD_FUNC_CNTL = cpu_to_be32(mpll_ad_func_cntl);
mclk->vMPLL_AD_FUNC_CNTL_2 = cpu_to_be32(mpll_ad_func_cntl_2);
mclk->vMPLL_DQ_FUNC_CNTL = cpu_to_be32(mpll_dq_func_cntl);
mclk->vMPLL_DQ_FUNC_CNTL_2 = cpu_to_be32(mpll_dq_func_cntl_2);
mclk->vMCLK_PWRMGT_CNTL = cpu_to_be32(mclk_pwrmgt_cntl);
mclk->vDLL_CNTL = cpu_to_be32(dll_cntl);
mclk->vMPLL_SS = cpu_to_be32(mpll_ss1);
mclk->vMPLL_SS2 = cpu_to_be32(mpll_ss2);
return 0;
}
static void ni_populate_smc_sp(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
NISLANDS_SMC_SWSTATE *smc_state)
{
struct ni_ps *ps = ni_get_ps(radeon_state);
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
int i;
for (i = 0; i < ps->performance_level_count - 1; i++)
smc_state->levels[i].bSP = cpu_to_be32(pi->dsp);
smc_state->levels[ps->performance_level_count - 1].bSP =
cpu_to_be32(pi->psp);
}
static int ni_convert_power_level_to_smc(struct radeon_device *rdev,
struct rv7xx_pl *pl,
NISLANDS_SMC_HW_PERFORMANCE_LEVEL *level)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
int ret;
bool dll_state_on;
u16 std_vddc;
u32 tmp = RREG32(DC_STUTTER_CNTL);
level->gen2PCIE = pi->pcie_gen2 ?
((pl->flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? 1 : 0) : 0;
ret = ni_populate_sclk_value(rdev, pl->sclk, &level->sclk);
if (ret)
return ret;
level->mcFlags = 0;
if (pi->mclk_stutter_mode_threshold &&
(pl->mclk <= pi->mclk_stutter_mode_threshold) &&
!eg_pi->uvd_enabled &&
(tmp & DC_STUTTER_ENABLE_A) &&
(tmp & DC_STUTTER_ENABLE_B))
level->mcFlags |= NISLANDS_SMC_MC_STUTTER_EN;
if (pi->mem_gddr5) {
if (pl->mclk > pi->mclk_edc_enable_threshold)
level->mcFlags |= NISLANDS_SMC_MC_EDC_RD_FLAG;
if (pl->mclk > eg_pi->mclk_edc_wr_enable_threshold)
level->mcFlags |= NISLANDS_SMC_MC_EDC_WR_FLAG;
level->strobeMode = cypress_get_strobe_mode_settings(rdev, pl->mclk);
if (level->strobeMode & NISLANDS_SMC_STROBE_ENABLE) {
if (cypress_get_mclk_frequency_ratio(rdev, pl->mclk, true) >=
((RREG32(MC_SEQ_MISC7) >> 16) & 0xf))
dll_state_on = ((RREG32(MC_SEQ_MISC5) >> 1) & 0x1) ? true : false;
else
dll_state_on = ((RREG32(MC_SEQ_MISC6) >> 1) & 0x1) ? true : false;
} else {
dll_state_on = false;
if (pl->mclk > ni_pi->mclk_rtt_mode_threshold)
level->mcFlags |= NISLANDS_SMC_MC_RTT_ENABLE;
}
ret = ni_populate_mclk_value(rdev, pl->sclk, pl->mclk,
&level->mclk,
(level->strobeMode & NISLANDS_SMC_STROBE_ENABLE) != 0,
dll_state_on);
} else
ret = ni_populate_mclk_value(rdev, pl->sclk, pl->mclk, &level->mclk, 1, 1);
if (ret)
return ret;
ret = ni_populate_voltage_value(rdev, &eg_pi->vddc_voltage_table,
pl->vddc, &level->vddc);
if (ret)
return ret;
ret = ni_get_std_voltage_value(rdev, &level->vddc, &std_vddc);
if (ret)
return ret;
ni_populate_std_voltage_value(rdev, std_vddc,
level->vddc.index, &level->std_vddc);
if (eg_pi->vddci_control) {
ret = ni_populate_voltage_value(rdev, &eg_pi->vddci_voltage_table,
pl->vddci, &level->vddci);
if (ret)
return ret;
}
ni_populate_mvdd_value(rdev, pl->mclk, &level->mvdd);
return ret;
}
static int ni_populate_smc_t(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
NISLANDS_SMC_SWSTATE *smc_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_ps *state = ni_get_ps(radeon_state);
u32 a_t;
u32 t_l, t_h;
u32 high_bsp;
int i, ret;
if (state->performance_level_count >= 9)
return -EINVAL;
if (state->performance_level_count < 2) {
a_t = CG_R(0xffff) | CG_L(0);
smc_state->levels[0].aT = cpu_to_be32(a_t);
return 0;
}
smc_state->levels[0].aT = cpu_to_be32(0);
for (i = 0; i <= state->performance_level_count - 2; i++) {
if (eg_pi->uvd_enabled)
ret = r600_calculate_at(
1000 * (i * (eg_pi->smu_uvd_hs ? 2 : 8) + 2),
100 * R600_AH_DFLT,
state->performance_levels[i + 1].sclk,
state->performance_levels[i].sclk,
&t_l,
&t_h);
else
ret = r600_calculate_at(
1000 * (i + 1),
100 * R600_AH_DFLT,
state->performance_levels[i + 1].sclk,
state->performance_levels[i].sclk,
&t_l,
&t_h);
if (ret) {
t_h = (i + 1) * 1000 - 50 * R600_AH_DFLT;
t_l = (i + 1) * 1000 + 50 * R600_AH_DFLT;
}
a_t = be32_to_cpu(smc_state->levels[i].aT) & ~CG_R_MASK;
a_t |= CG_R(t_l * pi->bsp / 20000);
smc_state->levels[i].aT = cpu_to_be32(a_t);
high_bsp = (i == state->performance_level_count - 2) ?
pi->pbsp : pi->bsp;
a_t = CG_R(0xffff) | CG_L(t_h * high_bsp / 20000);
smc_state->levels[i + 1].aT = cpu_to_be32(a_t);
}
return 0;
}
static int ni_populate_power_containment_values(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
NISLANDS_SMC_SWSTATE *smc_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
struct ni_ps *state = ni_get_ps(radeon_state);
u32 prev_sclk;
u32 max_sclk;
u32 min_sclk;
int i, ret;
u32 tdp_limit;
u32 near_tdp_limit;
u32 power_boost_limit;
u8 max_ps_percent;
if (ni_pi->enable_power_containment == false)
return 0;
if (state->performance_level_count == 0)
return -EINVAL;
if (smc_state->levelCount != state->performance_level_count)
return -EINVAL;
ret = ni_calculate_adjusted_tdp_limits(rdev,
false, /* ??? */
rdev->pm.dpm.tdp_adjustment,
&tdp_limit,
&near_tdp_limit);
if (ret)
return ret;
power_boost_limit = ni_calculate_power_boost_limit(rdev, radeon_state, near_tdp_limit);
ret = rv770_write_smc_sram_dword(rdev,
pi->state_table_start +
offsetof(NISLANDS_SMC_STATETABLE, dpm2Params) +
offsetof(PP_NIslands_DPM2Parameters, PowerBoostLimit),
ni_scale_power_for_smc(power_boost_limit, ni_get_smc_power_scaling_factor(rdev)),
pi->sram_end);
if (ret)
power_boost_limit = 0;
smc_state->levels[0].dpm2.MaxPS = 0;
smc_state->levels[0].dpm2.NearTDPDec = 0;
smc_state->levels[0].dpm2.AboveSafeInc = 0;
smc_state->levels[0].dpm2.BelowSafeInc = 0;
smc_state->levels[0].stateFlags |= power_boost_limit ? PPSMC_STATEFLAG_POWERBOOST : 0;
for (i = 1; i < state->performance_level_count; i++) {
prev_sclk = state->performance_levels[i-1].sclk;
max_sclk = state->performance_levels[i].sclk;
max_ps_percent = (i != (state->performance_level_count - 1)) ?
NISLANDS_DPM2_MAXPS_PERCENT_M : NISLANDS_DPM2_MAXPS_PERCENT_H;
if (max_sclk < prev_sclk)
return -EINVAL;
if ((max_ps_percent == 0) || (prev_sclk == max_sclk) || eg_pi->uvd_enabled)
min_sclk = max_sclk;
else if (1 == i)
min_sclk = prev_sclk;
else
min_sclk = (prev_sclk * (u32)max_ps_percent) / 100;
if (min_sclk < state->performance_levels[0].sclk)
min_sclk = state->performance_levels[0].sclk;
if (min_sclk == 0)
return -EINVAL;
smc_state->levels[i].dpm2.MaxPS =
(u8)((NISLANDS_DPM2_MAX_PULSE_SKIP * (max_sclk - min_sclk)) / max_sclk);
smc_state->levels[i].dpm2.NearTDPDec = NISLANDS_DPM2_NEAR_TDP_DEC;
smc_state->levels[i].dpm2.AboveSafeInc = NISLANDS_DPM2_ABOVE_SAFE_INC;
smc_state->levels[i].dpm2.BelowSafeInc = NISLANDS_DPM2_BELOW_SAFE_INC;
smc_state->levels[i].stateFlags |=
((i != (state->performance_level_count - 1)) && power_boost_limit) ?
PPSMC_STATEFLAG_POWERBOOST : 0;
}
return 0;
}
static int ni_populate_sq_ramping_values(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
NISLANDS_SMC_SWSTATE *smc_state)
{
struct ni_power_info *ni_pi = ni_get_pi(rdev);
struct ni_ps *state = ni_get_ps(radeon_state);
u32 sq_power_throttle;
u32 sq_power_throttle2;
bool enable_sq_ramping = ni_pi->enable_sq_ramping;
int i;
if (state->performance_level_count == 0)
return -EINVAL;
if (smc_state->levelCount != state->performance_level_count)
return -EINVAL;
if (rdev->pm.dpm.sq_ramping_threshold == 0)
return -EINVAL;
if (NISLANDS_DPM2_SQ_RAMP_MAX_POWER > (MAX_POWER_MASK >> MAX_POWER_SHIFT))
enable_sq_ramping = false;
if (NISLANDS_DPM2_SQ_RAMP_MIN_POWER > (MIN_POWER_MASK >> MIN_POWER_SHIFT))
enable_sq_ramping = false;
if (NISLANDS_DPM2_SQ_RAMP_MAX_POWER_DELTA > (MAX_POWER_DELTA_MASK >> MAX_POWER_DELTA_SHIFT))
enable_sq_ramping = false;
if (NISLANDS_DPM2_SQ_RAMP_STI_SIZE > (STI_SIZE_MASK >> STI_SIZE_SHIFT))
enable_sq_ramping = false;
if (NISLANDS_DPM2_SQ_RAMP_LTI_RATIO > (LTI_RATIO_MASK >> LTI_RATIO_SHIFT))
enable_sq_ramping = false;
for (i = 0; i < state->performance_level_count; i++) {
sq_power_throttle = 0;
sq_power_throttle2 = 0;
if ((state->performance_levels[i].sclk >= rdev->pm.dpm.sq_ramping_threshold) &&
enable_sq_ramping) {
sq_power_throttle |= MAX_POWER(NISLANDS_DPM2_SQ_RAMP_MAX_POWER);
sq_power_throttle |= MIN_POWER(NISLANDS_DPM2_SQ_RAMP_MIN_POWER);
sq_power_throttle2 |= MAX_POWER_DELTA(NISLANDS_DPM2_SQ_RAMP_MAX_POWER_DELTA);
sq_power_throttle2 |= STI_SIZE(NISLANDS_DPM2_SQ_RAMP_STI_SIZE);
sq_power_throttle2 |= LTI_RATIO(NISLANDS_DPM2_SQ_RAMP_LTI_RATIO);
} else {
sq_power_throttle |= MAX_POWER_MASK | MIN_POWER_MASK;
sq_power_throttle2 |= MAX_POWER_DELTA_MASK | STI_SIZE_MASK | LTI_RATIO_MASK;
}
smc_state->levels[i].SQPowerThrottle = cpu_to_be32(sq_power_throttle);
smc_state->levels[i].SQPowerThrottle_2 = cpu_to_be32(sq_power_throttle2);
}
return 0;
}
static int ni_enable_power_containment(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
bool enable)
{
struct ni_power_info *ni_pi = ni_get_pi(rdev);
PPSMC_Result smc_result;
int ret = 0;
if (ni_pi->enable_power_containment) {
if (enable) {
if (!r600_is_uvd_state(radeon_new_state->class, radeon_new_state->class2)) {
smc_result = rv770_send_msg_to_smc(rdev, PPSMC_TDPClampingActive);
if (smc_result != PPSMC_Result_OK) {
ret = -EINVAL;
ni_pi->pc_enabled = false;
} else {
ni_pi->pc_enabled = true;
}
}
} else {
smc_result = rv770_send_msg_to_smc(rdev, PPSMC_TDPClampingInactive);
if (smc_result != PPSMC_Result_OK)
ret = -EINVAL;
ni_pi->pc_enabled = false;
}
}
return ret;
}
static int ni_convert_power_state_to_smc(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
NISLANDS_SMC_SWSTATE *smc_state)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
struct ni_ps *state = ni_get_ps(radeon_state);
int i, ret;
u32 threshold = state->performance_levels[state->performance_level_count - 1].sclk * 100 / 100;
if (!(radeon_state->caps & ATOM_PPLIB_DISALLOW_ON_DC))
smc_state->flags |= PPSMC_SWSTATE_FLAG_DC;
smc_state->levelCount = 0;
if (state->performance_level_count > NISLANDS_MAX_SMC_PERFORMANCE_LEVELS_PER_SWSTATE)
return -EINVAL;
for (i = 0; i < state->performance_level_count; i++) {
ret = ni_convert_power_level_to_smc(rdev, &state->performance_levels[i],
&smc_state->levels[i]);
smc_state->levels[i].arbRefreshState =
(u8)(NISLANDS_DRIVER_STATE_ARB_INDEX + i);
if (ret)
return ret;
if (ni_pi->enable_power_containment)
smc_state->levels[i].displayWatermark =
(state->performance_levels[i].sclk < threshold) ?
PPSMC_DISPLAY_WATERMARK_LOW : PPSMC_DISPLAY_WATERMARK_HIGH;
else
smc_state->levels[i].displayWatermark = (i < 2) ?
PPSMC_DISPLAY_WATERMARK_LOW : PPSMC_DISPLAY_WATERMARK_HIGH;
if (eg_pi->dynamic_ac_timing)
smc_state->levels[i].ACIndex = NISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT + i;
else
smc_state->levels[i].ACIndex = 0;
smc_state->levelCount++;
}
rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_watermark_threshold,
cpu_to_be32(threshold / 512));
ni_populate_smc_sp(rdev, radeon_state, smc_state);
ret = ni_populate_power_containment_values(rdev, radeon_state, smc_state);
if (ret)
ni_pi->enable_power_containment = false;
ret = ni_populate_sq_ramping_values(rdev, radeon_state, smc_state);
if (ret)
ni_pi->enable_sq_ramping = false;
return ni_populate_smc_t(rdev, radeon_state, smc_state);
}
static int ni_upload_sw_state(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u16 address = pi->state_table_start +
offsetof(NISLANDS_SMC_STATETABLE, driverState);
NISLANDS_SMC_SWSTATE *smc_state;
size_t state_size = struct_size(smc_state, levels,
NISLANDS_MAX_SMC_PERFORMANCE_LEVELS_PER_SWSTATE);
int ret;
smc_state = kzalloc(state_size, GFP_KERNEL);
if (smc_state == NULL)
return -ENOMEM;
ret = ni_convert_power_state_to_smc(rdev, radeon_new_state, smc_state);
if (ret)
goto done;
ret = rv770_copy_bytes_to_smc(rdev, address, (u8 *)smc_state, state_size, pi->sram_end);
done:
kfree(smc_state);
return ret;
}
static int ni_set_mc_special_registers(struct radeon_device *rdev,
struct ni_mc_reg_table *table)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u8 i, j, k;
u32 temp_reg;
for (i = 0, j = table->last; i < table->last; i++) {
switch (table->mc_reg_address[i].s1) {
case MC_SEQ_MISC1 >> 2:
if (j >= SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
temp_reg = RREG32(MC_PMG_CMD_EMRS);
table->mc_reg_address[j].s1 = MC_PMG_CMD_EMRS >> 2;
table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_EMRS_LP >> 2;
for (k = 0; k < table->num_entries; k++)
table->mc_reg_table_entry[k].mc_data[j] =
((temp_reg & 0xffff0000)) |
((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
j++;
if (j >= SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
temp_reg = RREG32(MC_PMG_CMD_MRS);
table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS >> 2;
table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS_LP >> 2;
for(k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) |
(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
if (!pi->mem_gddr5)
table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
}
j++;
if (j > SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
break;
case MC_SEQ_RESERVE_M >> 2:
temp_reg = RREG32(MC_PMG_CMD_MRS1);
table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS1 >> 2;
table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS1_LP >> 2;
for (k = 0; k < table->num_entries; k++)
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) |
(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
j++;
if (j > SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
break;
default:
break;
}
}
table->last = j;
return 0;
}
static bool ni_check_s0_mc_reg_index(u16 in_reg, u16 *out_reg)
{
bool result = true;
switch (in_reg) {
case MC_SEQ_RAS_TIMING >> 2:
*out_reg = MC_SEQ_RAS_TIMING_LP >> 2;
break;
case MC_SEQ_CAS_TIMING >> 2:
*out_reg = MC_SEQ_CAS_TIMING_LP >> 2;
break;
case MC_SEQ_MISC_TIMING >> 2:
*out_reg = MC_SEQ_MISC_TIMING_LP >> 2;
break;
case MC_SEQ_MISC_TIMING2 >> 2:
*out_reg = MC_SEQ_MISC_TIMING2_LP >> 2;
break;
case MC_SEQ_RD_CTL_D0 >> 2:
*out_reg = MC_SEQ_RD_CTL_D0_LP >> 2;
break;
case MC_SEQ_RD_CTL_D1 >> 2:
*out_reg = MC_SEQ_RD_CTL_D1_LP >> 2;
break;
case MC_SEQ_WR_CTL_D0 >> 2:
*out_reg = MC_SEQ_WR_CTL_D0_LP >> 2;
break;
case MC_SEQ_WR_CTL_D1 >> 2:
*out_reg = MC_SEQ_WR_CTL_D1_LP >> 2;
break;
case MC_PMG_CMD_EMRS >> 2:
*out_reg = MC_SEQ_PMG_CMD_EMRS_LP >> 2;
break;
case MC_PMG_CMD_MRS >> 2:
*out_reg = MC_SEQ_PMG_CMD_MRS_LP >> 2;
break;
case MC_PMG_CMD_MRS1 >> 2:
*out_reg = MC_SEQ_PMG_CMD_MRS1_LP >> 2;
break;
case MC_SEQ_PMG_TIMING >> 2:
*out_reg = MC_SEQ_PMG_TIMING_LP >> 2;
break;
case MC_PMG_CMD_MRS2 >> 2:
*out_reg = MC_SEQ_PMG_CMD_MRS2_LP >> 2;
break;
default:
result = false;
break;
}
return result;
}
static void ni_set_valid_flag(struct ni_mc_reg_table *table)
{
u8 i, j;
for (i = 0; i < table->last; i++) {
for (j = 1; j < table->num_entries; j++) {
if (table->mc_reg_table_entry[j-1].mc_data[i] != table->mc_reg_table_entry[j].mc_data[i]) {
table->valid_flag |= 1 << i;
break;
}
}
}
}
static void ni_set_s0_mc_reg_index(struct ni_mc_reg_table *table)
{
u32 i;
u16 address;
for (i = 0; i < table->last; i++)
table->mc_reg_address[i].s0 =
ni_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) ?
address : table->mc_reg_address[i].s1;
}
static int ni_copy_vbios_mc_reg_table(struct atom_mc_reg_table *table,
struct ni_mc_reg_table *ni_table)
{
u8 i, j;
if (table->last > SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
if (table->num_entries > MAX_AC_TIMING_ENTRIES)
return -EINVAL;
for (i = 0; i < table->last; i++)
ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
ni_table->last = table->last;
for (i = 0; i < table->num_entries; i++) {
ni_table->mc_reg_table_entry[i].mclk_max =
table->mc_reg_table_entry[i].mclk_max;
for (j = 0; j < table->last; j++)
ni_table->mc_reg_table_entry[i].mc_data[j] =
table->mc_reg_table_entry[i].mc_data[j];
}
ni_table->num_entries = table->num_entries;
return 0;
}
static int ni_initialize_mc_reg_table(struct radeon_device *rdev)
{
struct ni_power_info *ni_pi = ni_get_pi(rdev);
int ret;
struct atom_mc_reg_table *table;
struct ni_mc_reg_table *ni_table = &ni_pi->mc_reg_table;
u8 module_index = rv770_get_memory_module_index(rdev);
table = kzalloc(sizeof(struct atom_mc_reg_table), GFP_KERNEL);
if (!table)
return -ENOMEM;
WREG32(MC_SEQ_RAS_TIMING_LP, RREG32(MC_SEQ_RAS_TIMING));
WREG32(MC_SEQ_CAS_TIMING_LP, RREG32(MC_SEQ_CAS_TIMING));
WREG32(MC_SEQ_MISC_TIMING_LP, RREG32(MC_SEQ_MISC_TIMING));
WREG32(MC_SEQ_MISC_TIMING2_LP, RREG32(MC_SEQ_MISC_TIMING2));
WREG32(MC_SEQ_PMG_CMD_EMRS_LP, RREG32(MC_PMG_CMD_EMRS));
WREG32(MC_SEQ_PMG_CMD_MRS_LP, RREG32(MC_PMG_CMD_MRS));
WREG32(MC_SEQ_PMG_CMD_MRS1_LP, RREG32(MC_PMG_CMD_MRS1));
WREG32(MC_SEQ_WR_CTL_D0_LP, RREG32(MC_SEQ_WR_CTL_D0));
WREG32(MC_SEQ_WR_CTL_D1_LP, RREG32(MC_SEQ_WR_CTL_D1));
WREG32(MC_SEQ_RD_CTL_D0_LP, RREG32(MC_SEQ_RD_CTL_D0));
WREG32(MC_SEQ_RD_CTL_D1_LP, RREG32(MC_SEQ_RD_CTL_D1));
WREG32(MC_SEQ_PMG_TIMING_LP, RREG32(MC_SEQ_PMG_TIMING));
WREG32(MC_SEQ_PMG_CMD_MRS2_LP, RREG32(MC_PMG_CMD_MRS2));
ret = radeon_atom_init_mc_reg_table(rdev, module_index, table);
if (ret)
goto init_mc_done;
ret = ni_copy_vbios_mc_reg_table(table, ni_table);
if (ret)
goto init_mc_done;
ni_set_s0_mc_reg_index(ni_table);
ret = ni_set_mc_special_registers(rdev, ni_table);
if (ret)
goto init_mc_done;
ni_set_valid_flag(ni_table);
init_mc_done:
kfree(table);
return ret;
}
static void ni_populate_mc_reg_addresses(struct radeon_device *rdev,
SMC_NIslands_MCRegisters *mc_reg_table)
{
struct ni_power_info *ni_pi = ni_get_pi(rdev);
u32 i, j;
for (i = 0, j = 0; j < ni_pi->mc_reg_table.last; j++) {
if (ni_pi->mc_reg_table.valid_flag & (1 << j)) {
if (i >= SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE)
break;
mc_reg_table->address[i].s0 =
cpu_to_be16(ni_pi->mc_reg_table.mc_reg_address[j].s0);
mc_reg_table->address[i].s1 =
cpu_to_be16(ni_pi->mc_reg_table.mc_reg_address[j].s1);
i++;
}
}
mc_reg_table->last = (u8)i;
}
static void ni_convert_mc_registers(struct ni_mc_reg_entry *entry,
SMC_NIslands_MCRegisterSet *data,
u32 num_entries, u32 valid_flag)
{
u32 i, j;
for (i = 0, j = 0; j < num_entries; j++) {
if (valid_flag & (1 << j)) {
data->value[i] = cpu_to_be32(entry->mc_data[j]);
i++;
}
}
}
static void ni_convert_mc_reg_table_entry_to_smc(struct radeon_device *rdev,
struct rv7xx_pl *pl,
SMC_NIslands_MCRegisterSet *mc_reg_table_data)
{
struct ni_power_info *ni_pi = ni_get_pi(rdev);
u32 i = 0;
for (i = 0; i < ni_pi->mc_reg_table.num_entries; i++) {
if (pl->mclk <= ni_pi->mc_reg_table.mc_reg_table_entry[i].mclk_max)
break;
}
if ((i == ni_pi->mc_reg_table.num_entries) && (i > 0))
--i;
ni_convert_mc_registers(&ni_pi->mc_reg_table.mc_reg_table_entry[i],
mc_reg_table_data,
ni_pi->mc_reg_table.last,
ni_pi->mc_reg_table.valid_flag);
}
static void ni_convert_mc_reg_table_to_smc(struct radeon_device *rdev,
struct radeon_ps *radeon_state,
SMC_NIslands_MCRegisters *mc_reg_table)
{
struct ni_ps *state = ni_get_ps(radeon_state);
int i;
for (i = 0; i < state->performance_level_count; i++) {
ni_convert_mc_reg_table_entry_to_smc(rdev,
&state->performance_levels[i],
&mc_reg_table->data[NISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT + i]);
}
}
static int ni_populate_mc_reg_table(struct radeon_device *rdev,
struct radeon_ps *radeon_boot_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
struct ni_ps *boot_state = ni_get_ps(radeon_boot_state);
SMC_NIslands_MCRegisters *mc_reg_table = &ni_pi->smc_mc_reg_table;
memset(mc_reg_table, 0, sizeof(SMC_NIslands_MCRegisters));
rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_seq_index, 1);
ni_populate_mc_reg_addresses(rdev, mc_reg_table);
ni_convert_mc_reg_table_entry_to_smc(rdev, &boot_state->performance_levels[0],
&mc_reg_table->data[0]);
ni_convert_mc_registers(&ni_pi->mc_reg_table.mc_reg_table_entry[0],
&mc_reg_table->data[1],
ni_pi->mc_reg_table.last,
ni_pi->mc_reg_table.valid_flag);
ni_convert_mc_reg_table_to_smc(rdev, radeon_boot_state, mc_reg_table);
return rv770_copy_bytes_to_smc(rdev, eg_pi->mc_reg_table_start,
(u8 *)mc_reg_table,
sizeof(SMC_NIslands_MCRegisters),
pi->sram_end);
}
static int ni_upload_mc_reg_table(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
struct ni_ps *ni_new_state = ni_get_ps(radeon_new_state);
SMC_NIslands_MCRegisters *mc_reg_table = &ni_pi->smc_mc_reg_table;
u16 address;
memset(mc_reg_table, 0, sizeof(SMC_NIslands_MCRegisters));
ni_convert_mc_reg_table_to_smc(rdev, radeon_new_state, mc_reg_table);
address = eg_pi->mc_reg_table_start +
(u16)offsetof(SMC_NIslands_MCRegisters, data[NISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT]);
return rv770_copy_bytes_to_smc(rdev, address,
(u8 *)&mc_reg_table->data[NISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT],
sizeof(SMC_NIslands_MCRegisterSet) * ni_new_state->performance_level_count,
pi->sram_end);
}
static int ni_init_driver_calculated_leakage_table(struct radeon_device *rdev,
PP_NIslands_CACTABLES *cac_tables)
{
struct ni_power_info *ni_pi = ni_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
u32 leakage = 0;
unsigned int i, j, table_size;
s32 t;
u32 smc_leakage, max_leakage = 0;
u32 scaling_factor;
table_size = eg_pi->vddc_voltage_table.count;
if (SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES < table_size)
table_size = SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES;
scaling_factor = ni_get_smc_power_scaling_factor(rdev);
for (i = 0; i < SMC_NISLANDS_LKGE_LUT_NUM_OF_TEMP_ENTRIES; i++) {
for (j = 0; j < table_size; j++) {
t = (1000 * ((i + 1) * 8));
if (t < ni_pi->cac_data.leakage_minimum_temperature)
t = ni_pi->cac_data.leakage_minimum_temperature;
ni_calculate_leakage_for_v_and_t(rdev,
&ni_pi->cac_data.leakage_coefficients,
eg_pi->vddc_voltage_table.entries[j].value,
t,
ni_pi->cac_data.i_leakage,
&leakage);
smc_leakage = ni_scale_power_for_smc(leakage, scaling_factor) / 1000;
if (smc_leakage > max_leakage)
max_leakage = smc_leakage;
cac_tables->cac_lkge_lut[i][j] = cpu_to_be32(smc_leakage);
}
}
for (j = table_size; j < SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES; j++) {
for (i = 0; i < SMC_NISLANDS_LKGE_LUT_NUM_OF_TEMP_ENTRIES; i++)
cac_tables->cac_lkge_lut[i][j] = cpu_to_be32(max_leakage);
}
return 0;
}
static int ni_init_simplified_leakage_table(struct radeon_device *rdev,
PP_NIslands_CACTABLES *cac_tables)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct radeon_cac_leakage_table *leakage_table =
&rdev->pm.dpm.dyn_state.cac_leakage_table;
u32 i, j, table_size;
u32 smc_leakage, max_leakage = 0;
u32 scaling_factor;
if (!leakage_table)
return -EINVAL;
table_size = leakage_table->count;
if (eg_pi->vddc_voltage_table.count != table_size)
table_size = (eg_pi->vddc_voltage_table.count < leakage_table->count) ?
eg_pi->vddc_voltage_table.count : leakage_table->count;
if (SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES < table_size)
table_size = SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES;
if (table_size == 0)
return -EINVAL;
scaling_factor = ni_get_smc_power_scaling_factor(rdev);
for (j = 0; j < table_size; j++) {
smc_leakage = leakage_table->entries[j].leakage;
if (smc_leakage > max_leakage)
max_leakage = smc_leakage;
for (i = 0; i < SMC_NISLANDS_LKGE_LUT_NUM_OF_TEMP_ENTRIES; i++)
cac_tables->cac_lkge_lut[i][j] =
cpu_to_be32(ni_scale_power_for_smc(smc_leakage, scaling_factor));
}
for (j = table_size; j < SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES; j++) {
for (i = 0; i < SMC_NISLANDS_LKGE_LUT_NUM_OF_TEMP_ENTRIES; i++)
cac_tables->cac_lkge_lut[i][j] =
cpu_to_be32(ni_scale_power_for_smc(max_leakage, scaling_factor));
}
return 0;
}
static int ni_initialize_smc_cac_tables(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
PP_NIslands_CACTABLES *cac_tables = NULL;
int i, ret;
u32 reg;
if (ni_pi->enable_cac == false)
return 0;
cac_tables = kzalloc(sizeof(PP_NIslands_CACTABLES), GFP_KERNEL);
if (!cac_tables)
return -ENOMEM;
reg = RREG32(CG_CAC_CTRL) & ~(TID_CNT_MASK | TID_UNIT_MASK);
reg |= (TID_CNT(ni_pi->cac_weights->tid_cnt) |
TID_UNIT(ni_pi->cac_weights->tid_unit));
WREG32(CG_CAC_CTRL, reg);
for (i = 0; i < NISLANDS_DCCAC_MAX_LEVELS; i++)
ni_pi->dc_cac_table[i] = ni_pi->cac_weights->dc_cac[i];
for (i = 0; i < SMC_NISLANDS_BIF_LUT_NUM_OF_ENTRIES; i++)
cac_tables->cac_bif_lut[i] = ni_pi->cac_weights->pcie_cac[i];
ni_pi->cac_data.i_leakage = rdev->pm.dpm.cac_leakage;
ni_pi->cac_data.pwr_const = 0;
ni_pi->cac_data.dc_cac_value = ni_pi->dc_cac_table[NISLANDS_DCCAC_LEVEL_0];
ni_pi->cac_data.bif_cac_value = 0;
ni_pi->cac_data.mc_wr_weight = ni_pi->cac_weights->mc_write_weight;
ni_pi->cac_data.mc_rd_weight = ni_pi->cac_weights->mc_read_weight;
ni_pi->cac_data.allow_ovrflw = 0;
ni_pi->cac_data.l2num_win_tdp = ni_pi->lta_window_size;
ni_pi->cac_data.num_win_tdp = 0;
ni_pi->cac_data.lts_truncate_n = ni_pi->lts_truncate;
if (ni_pi->driver_calculate_cac_leakage)
ret = ni_init_driver_calculated_leakage_table(rdev, cac_tables);
else
ret = ni_init_simplified_leakage_table(rdev, cac_tables);
if (ret)
goto done_free;
cac_tables->pwr_const = cpu_to_be32(ni_pi->cac_data.pwr_const);
cac_tables->dc_cacValue = cpu_to_be32(ni_pi->cac_data.dc_cac_value);
cac_tables->bif_cacValue = cpu_to_be32(ni_pi->cac_data.bif_cac_value);
cac_tables->AllowOvrflw = ni_pi->cac_data.allow_ovrflw;
cac_tables->MCWrWeight = ni_pi->cac_data.mc_wr_weight;
cac_tables->MCRdWeight = ni_pi->cac_data.mc_rd_weight;
cac_tables->numWin_TDP = ni_pi->cac_data.num_win_tdp;
cac_tables->l2numWin_TDP = ni_pi->cac_data.l2num_win_tdp;
cac_tables->lts_truncate_n = ni_pi->cac_data.lts_truncate_n;
ret = rv770_copy_bytes_to_smc(rdev, ni_pi->cac_table_start, (u8 *)cac_tables,
sizeof(PP_NIslands_CACTABLES), pi->sram_end);
done_free:
if (ret) {
ni_pi->enable_cac = false;
ni_pi->enable_power_containment = false;
}
kfree(cac_tables);
return 0;
}
static int ni_initialize_hardware_cac_manager(struct radeon_device *rdev)
{
struct ni_power_info *ni_pi = ni_get_pi(rdev);
u32 reg;
if (!ni_pi->enable_cac ||
!ni_pi->cac_configuration_required)
return 0;
if (ni_pi->cac_weights == NULL)
return -EINVAL;
reg = RREG32_CG(CG_CAC_REGION_1_WEIGHT_0) & ~(WEIGHT_TCP_SIG0_MASK |
WEIGHT_TCP_SIG1_MASK |
WEIGHT_TA_SIG_MASK);
reg |= (WEIGHT_TCP_SIG0(ni_pi->cac_weights->weight_tcp_sig0) |
WEIGHT_TCP_SIG1(ni_pi->cac_weights->weight_tcp_sig1) |
WEIGHT_TA_SIG(ni_pi->cac_weights->weight_ta_sig));
WREG32_CG(CG_CAC_REGION_1_WEIGHT_0, reg);
reg = RREG32_CG(CG_CAC_REGION_1_WEIGHT_1) & ~(WEIGHT_TCC_EN0_MASK |
WEIGHT_TCC_EN1_MASK |
WEIGHT_TCC_EN2_MASK);
reg |= (WEIGHT_TCC_EN0(ni_pi->cac_weights->weight_tcc_en0) |
WEIGHT_TCC_EN1(ni_pi->cac_weights->weight_tcc_en1) |
WEIGHT_TCC_EN2(ni_pi->cac_weights->weight_tcc_en2));
WREG32_CG(CG_CAC_REGION_1_WEIGHT_1, reg);
reg = RREG32_CG(CG_CAC_REGION_2_WEIGHT_0) & ~(WEIGHT_CB_EN0_MASK |
WEIGHT_CB_EN1_MASK |
WEIGHT_CB_EN2_MASK |
WEIGHT_CB_EN3_MASK);
reg |= (WEIGHT_CB_EN0(ni_pi->cac_weights->weight_cb_en0) |
WEIGHT_CB_EN1(ni_pi->cac_weights->weight_cb_en1) |
WEIGHT_CB_EN2(ni_pi->cac_weights->weight_cb_en2) |
WEIGHT_CB_EN3(ni_pi->cac_weights->weight_cb_en3));
WREG32_CG(CG_CAC_REGION_2_WEIGHT_0, reg);
reg = RREG32_CG(CG_CAC_REGION_2_WEIGHT_1) & ~(WEIGHT_DB_SIG0_MASK |
WEIGHT_DB_SIG1_MASK |
WEIGHT_DB_SIG2_MASK |
WEIGHT_DB_SIG3_MASK);
reg |= (WEIGHT_DB_SIG0(ni_pi->cac_weights->weight_db_sig0) |
WEIGHT_DB_SIG1(ni_pi->cac_weights->weight_db_sig1) |
WEIGHT_DB_SIG2(ni_pi->cac_weights->weight_db_sig2) |
WEIGHT_DB_SIG3(ni_pi->cac_weights->weight_db_sig3));
WREG32_CG(CG_CAC_REGION_2_WEIGHT_1, reg);
reg = RREG32_CG(CG_CAC_REGION_2_WEIGHT_2) & ~(WEIGHT_SXM_SIG0_MASK |
WEIGHT_SXM_SIG1_MASK |
WEIGHT_SXM_SIG2_MASK |
WEIGHT_SXS_SIG0_MASK |
WEIGHT_SXS_SIG1_MASK);
reg |= (WEIGHT_SXM_SIG0(ni_pi->cac_weights->weight_sxm_sig0) |
WEIGHT_SXM_SIG1(ni_pi->cac_weights->weight_sxm_sig1) |
WEIGHT_SXM_SIG2(ni_pi->cac_weights->weight_sxm_sig2) |
WEIGHT_SXS_SIG0(ni_pi->cac_weights->weight_sxs_sig0) |
WEIGHT_SXS_SIG1(ni_pi->cac_weights->weight_sxs_sig1));
WREG32_CG(CG_CAC_REGION_2_WEIGHT_2, reg);
reg = RREG32_CG(CG_CAC_REGION_3_WEIGHT_0) & ~(WEIGHT_XBR_0_MASK |
WEIGHT_XBR_1_MASK |
WEIGHT_XBR_2_MASK |
WEIGHT_SPI_SIG0_MASK);
reg |= (WEIGHT_XBR_0(ni_pi->cac_weights->weight_xbr_0) |
WEIGHT_XBR_1(ni_pi->cac_weights->weight_xbr_1) |
WEIGHT_XBR_2(ni_pi->cac_weights->weight_xbr_2) |
WEIGHT_SPI_SIG0(ni_pi->cac_weights->weight_spi_sig0));
WREG32_CG(CG_CAC_REGION_3_WEIGHT_0, reg);
reg = RREG32_CG(CG_CAC_REGION_3_WEIGHT_1) & ~(WEIGHT_SPI_SIG1_MASK |
WEIGHT_SPI_SIG2_MASK |
WEIGHT_SPI_SIG3_MASK |
WEIGHT_SPI_SIG4_MASK |
WEIGHT_SPI_SIG5_MASK);
reg |= (WEIGHT_SPI_SIG1(ni_pi->cac_weights->weight_spi_sig1) |
WEIGHT_SPI_SIG2(ni_pi->cac_weights->weight_spi_sig2) |
WEIGHT_SPI_SIG3(ni_pi->cac_weights->weight_spi_sig3) |
WEIGHT_SPI_SIG4(ni_pi->cac_weights->weight_spi_sig4) |
WEIGHT_SPI_SIG5(ni_pi->cac_weights->weight_spi_sig5));
WREG32_CG(CG_CAC_REGION_3_WEIGHT_1, reg);
reg = RREG32_CG(CG_CAC_REGION_4_WEIGHT_0) & ~(WEIGHT_LDS_SIG0_MASK |
WEIGHT_LDS_SIG1_MASK |
WEIGHT_SC_MASK);
reg |= (WEIGHT_LDS_SIG0(ni_pi->cac_weights->weight_lds_sig0) |
WEIGHT_LDS_SIG1(ni_pi->cac_weights->weight_lds_sig1) |
WEIGHT_SC(ni_pi->cac_weights->weight_sc));
WREG32_CG(CG_CAC_REGION_4_WEIGHT_0, reg);
reg = RREG32_CG(CG_CAC_REGION_4_WEIGHT_1) & ~(WEIGHT_BIF_MASK |
WEIGHT_CP_MASK |
WEIGHT_PA_SIG0_MASK |
WEIGHT_PA_SIG1_MASK |
WEIGHT_VGT_SIG0_MASK);
reg |= (WEIGHT_BIF(ni_pi->cac_weights->weight_bif) |
WEIGHT_CP(ni_pi->cac_weights->weight_cp) |
WEIGHT_PA_SIG0(ni_pi->cac_weights->weight_pa_sig0) |
WEIGHT_PA_SIG1(ni_pi->cac_weights->weight_pa_sig1) |
WEIGHT_VGT_SIG0(ni_pi->cac_weights->weight_vgt_sig0));
WREG32_CG(CG_CAC_REGION_4_WEIGHT_1, reg);
reg = RREG32_CG(CG_CAC_REGION_4_WEIGHT_2) & ~(WEIGHT_VGT_SIG1_MASK |
WEIGHT_VGT_SIG2_MASK |
WEIGHT_DC_SIG0_MASK |
WEIGHT_DC_SIG1_MASK |
WEIGHT_DC_SIG2_MASK);
reg |= (WEIGHT_VGT_SIG1(ni_pi->cac_weights->weight_vgt_sig1) |
WEIGHT_VGT_SIG2(ni_pi->cac_weights->weight_vgt_sig2) |
WEIGHT_DC_SIG0(ni_pi->cac_weights->weight_dc_sig0) |
WEIGHT_DC_SIG1(ni_pi->cac_weights->weight_dc_sig1) |
WEIGHT_DC_SIG2(ni_pi->cac_weights->weight_dc_sig2));
WREG32_CG(CG_CAC_REGION_4_WEIGHT_2, reg);
reg = RREG32_CG(CG_CAC_REGION_4_WEIGHT_3) & ~(WEIGHT_DC_SIG3_MASK |
WEIGHT_UVD_SIG0_MASK |
WEIGHT_UVD_SIG1_MASK |
WEIGHT_SPARE0_MASK |
WEIGHT_SPARE1_MASK);
reg |= (WEIGHT_DC_SIG3(ni_pi->cac_weights->weight_dc_sig3) |
WEIGHT_UVD_SIG0(ni_pi->cac_weights->weight_uvd_sig0) |
WEIGHT_UVD_SIG1(ni_pi->cac_weights->weight_uvd_sig1) |
WEIGHT_SPARE0(ni_pi->cac_weights->weight_spare0) |
WEIGHT_SPARE1(ni_pi->cac_weights->weight_spare1));
WREG32_CG(CG_CAC_REGION_4_WEIGHT_3, reg);
reg = RREG32_CG(CG_CAC_REGION_5_WEIGHT_0) & ~(WEIGHT_SQ_VSP_MASK |
WEIGHT_SQ_VSP0_MASK);
reg |= (WEIGHT_SQ_VSP(ni_pi->cac_weights->weight_sq_vsp) |
WEIGHT_SQ_VSP0(ni_pi->cac_weights->weight_sq_vsp0));
WREG32_CG(CG_CAC_REGION_5_WEIGHT_0, reg);
reg = RREG32_CG(CG_CAC_REGION_5_WEIGHT_1) & ~(WEIGHT_SQ_GPR_MASK);
reg |= WEIGHT_SQ_GPR(ni_pi->cac_weights->weight_sq_gpr);
WREG32_CG(CG_CAC_REGION_5_WEIGHT_1, reg);
reg = RREG32_CG(CG_CAC_REGION_4_OVERRIDE_4) & ~(OVR_MODE_SPARE_0_MASK |
OVR_VAL_SPARE_0_MASK |
OVR_MODE_SPARE_1_MASK |
OVR_VAL_SPARE_1_MASK);
reg |= (OVR_MODE_SPARE_0(ni_pi->cac_weights->ovr_mode_spare_0) |
OVR_VAL_SPARE_0(ni_pi->cac_weights->ovr_val_spare_0) |
OVR_MODE_SPARE_1(ni_pi->cac_weights->ovr_mode_spare_1) |
OVR_VAL_SPARE_1(ni_pi->cac_weights->ovr_val_spare_1));
WREG32_CG(CG_CAC_REGION_4_OVERRIDE_4, reg);
reg = RREG32(SQ_CAC_THRESHOLD) & ~(VSP_MASK |
VSP0_MASK |
GPR_MASK);
reg |= (VSP(ni_pi->cac_weights->vsp) |
VSP0(ni_pi->cac_weights->vsp0) |
GPR(ni_pi->cac_weights->gpr));
WREG32(SQ_CAC_THRESHOLD, reg);
reg = (MCDW_WR_ENABLE |
MCDX_WR_ENABLE |
MCDY_WR_ENABLE |
MCDZ_WR_ENABLE |
INDEX(0x09D4));
WREG32(MC_CG_CONFIG, reg);
reg = (READ_WEIGHT(ni_pi->cac_weights->mc_read_weight) |
WRITE_WEIGHT(ni_pi->cac_weights->mc_write_weight) |
ALLOW_OVERFLOW);
WREG32(MC_CG_DATAPORT, reg);
return 0;
}
static int ni_enable_smc_cac(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
bool enable)
{
struct ni_power_info *ni_pi = ni_get_pi(rdev);
int ret = 0;
PPSMC_Result smc_result;
if (ni_pi->enable_cac) {
if (enable) {
if (!r600_is_uvd_state(radeon_new_state->class, radeon_new_state->class2)) {
smc_result = rv770_send_msg_to_smc(rdev, PPSMC_MSG_CollectCAC_PowerCorreln);
if (ni_pi->support_cac_long_term_average) {
smc_result = rv770_send_msg_to_smc(rdev, PPSMC_CACLongTermAvgEnable);
if (PPSMC_Result_OK != smc_result)
ni_pi->support_cac_long_term_average = false;
}
smc_result = rv770_send_msg_to_smc(rdev, PPSMC_MSG_EnableCac);
if (PPSMC_Result_OK != smc_result)
ret = -EINVAL;
ni_pi->cac_enabled = (PPSMC_Result_OK == smc_result) ? true : false;
}
} else if (ni_pi->cac_enabled) {
smc_result = rv770_send_msg_to_smc(rdev, PPSMC_MSG_DisableCac);
ni_pi->cac_enabled = false;
if (ni_pi->support_cac_long_term_average) {
smc_result = rv770_send_msg_to_smc(rdev, PPSMC_CACLongTermAvgDisable);
if (PPSMC_Result_OK != smc_result)
ni_pi->support_cac_long_term_average = false;
}
}
}
return ret;
}
static int ni_pcie_performance_request(struct radeon_device *rdev,
u8 perf_req, bool advertise)
{
#if defined(CONFIG_ACPI)
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
if ((perf_req == PCIE_PERF_REQ_PECI_GEN1) ||
(perf_req == PCIE_PERF_REQ_PECI_GEN2)) {
if (eg_pi->pcie_performance_request_registered == false)
radeon_acpi_pcie_notify_device_ready(rdev);
eg_pi->pcie_performance_request_registered = true;
return radeon_acpi_pcie_performance_request(rdev, perf_req, advertise);
} else if ((perf_req == PCIE_PERF_REQ_REMOVE_REGISTRY) &&
eg_pi->pcie_performance_request_registered) {
eg_pi->pcie_performance_request_registered = false;
return radeon_acpi_pcie_performance_request(rdev, perf_req, advertise);
}
#endif
return 0;
}
static int ni_advertise_gen2_capability(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) &&
(tmp & LC_OTHER_SIDE_SUPPORTS_GEN2))
pi->pcie_gen2 = true;
else
pi->pcie_gen2 = false;
if (!pi->pcie_gen2)
ni_pcie_performance_request(rdev, PCIE_PERF_REQ_PECI_GEN2, true);
return 0;
}
static void ni_enable_bif_dynamic_pcie_gen2(struct radeon_device *rdev,
bool enable)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
u32 tmp, bif;
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) &&
(tmp & LC_OTHER_SIDE_SUPPORTS_GEN2)) {
if (enable) {
if (!pi->boot_in_gen2) {
bif = RREG32(CG_BIF_REQ_AND_RSP) & ~CG_CLIENT_REQ_MASK;
bif |= CG_CLIENT_REQ(0xd);
WREG32(CG_BIF_REQ_AND_RSP, bif);
}
tmp &= ~LC_HW_VOLTAGE_IF_CONTROL_MASK;
tmp |= LC_HW_VOLTAGE_IF_CONTROL(1);
tmp |= LC_GEN2_EN_STRAP;
tmp |= LC_CLR_FAILED_SPD_CHANGE_CNT;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
udelay(10);
tmp &= ~LC_CLR_FAILED_SPD_CHANGE_CNT;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
} else {
if (!pi->boot_in_gen2) {
bif = RREG32(CG_BIF_REQ_AND_RSP) & ~CG_CLIENT_REQ_MASK;
bif |= CG_CLIENT_REQ(0xd);
WREG32(CG_BIF_REQ_AND_RSP, bif);
tmp &= ~LC_HW_VOLTAGE_IF_CONTROL_MASK;
tmp &= ~LC_GEN2_EN_STRAP;
}
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
}
}
}
static void ni_enable_dynamic_pcie_gen2(struct radeon_device *rdev,
bool enable)
{
ni_enable_bif_dynamic_pcie_gen2(rdev, enable);
if (enable)
WREG32_P(GENERAL_PWRMGT, ENABLE_GEN2PCIE, ~ENABLE_GEN2PCIE);
else
WREG32_P(GENERAL_PWRMGT, 0, ~ENABLE_GEN2PCIE);
}
void ni_set_uvd_clock_before_set_eng_clock(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct ni_ps *new_state = ni_get_ps(new_ps);
struct ni_ps *current_state = ni_get_ps(old_ps);
if ((new_ps->vclk == old_ps->vclk) &&
(new_ps->dclk == old_ps->dclk))
return;
if (new_state->performance_levels[new_state->performance_level_count - 1].sclk >=
current_state->performance_levels[current_state->performance_level_count - 1].sclk)
return;
radeon_set_uvd_clocks(rdev, new_ps->vclk, new_ps->dclk);
}
void ni_set_uvd_clock_after_set_eng_clock(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct ni_ps *new_state = ni_get_ps(new_ps);
struct ni_ps *current_state = ni_get_ps(old_ps);
if ((new_ps->vclk == old_ps->vclk) &&
(new_ps->dclk == old_ps->dclk))
return;
if (new_state->performance_levels[new_state->performance_level_count - 1].sclk <
current_state->performance_levels[current_state->performance_level_count - 1].sclk)
return;
radeon_set_uvd_clocks(rdev, new_ps->vclk, new_ps->dclk);
}
void ni_dpm_setup_asic(struct radeon_device *rdev)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
int r;
r = ni_mc_load_microcode(rdev);
if (r)
DRM_ERROR("Failed to load MC firmware!\n");
ni_read_clock_registers(rdev);
btc_read_arb_registers(rdev);
rv770_get_memory_type(rdev);
if (eg_pi->pcie_performance_request)
ni_advertise_gen2_capability(rdev);
rv770_get_pcie_gen2_status(rdev);
rv770_enable_acpi_pm(rdev);
}
void ni_update_current_ps(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ni_ps *new_ps = ni_get_ps(rps);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
eg_pi->current_rps = *rps;
ni_pi->current_ps = *new_ps;
eg_pi->current_rps.ps_priv = &ni_pi->current_ps;
}
void ni_update_requested_ps(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ni_ps *new_ps = ni_get_ps(rps);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_power_info *ni_pi = ni_get_pi(rdev);
eg_pi->requested_rps = *rps;
ni_pi->requested_ps = *new_ps;
eg_pi->requested_rps.ps_priv = &ni_pi->requested_ps;
}
int ni_dpm_enable(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps;
int ret;
if (pi->gfx_clock_gating)
ni_cg_clockgating_default(rdev);
if (btc_dpm_enabled(rdev))
return -EINVAL;
if (pi->mg_clock_gating)
ni_mg_clockgating_default(rdev);
if (eg_pi->ls_clock_gating)
ni_ls_clockgating_default(rdev);
if (pi->voltage_control) {
rv770_enable_voltage_control(rdev, true);
ret = cypress_construct_voltage_tables(rdev);
if (ret) {
DRM_ERROR("cypress_construct_voltage_tables failed\n");
return ret;
}
}
if (eg_pi->dynamic_ac_timing) {
ret = ni_initialize_mc_reg_table(rdev);
if (ret)
eg_pi->dynamic_ac_timing = false;
}
if (pi->dynamic_ss)
cypress_enable_spread_spectrum(rdev, true);
if (pi->thermal_protection)
rv770_enable_thermal_protection(rdev, true);
rv770_setup_bsp(rdev);
rv770_program_git(rdev);
rv770_program_tp(rdev);
rv770_program_tpp(rdev);
rv770_program_sstp(rdev);
cypress_enable_display_gap(rdev);
rv770_program_vc(rdev);
if (pi->dynamic_pcie_gen2)
ni_enable_dynamic_pcie_gen2(rdev, true);
ret = rv770_upload_firmware(rdev);
if (ret) {
DRM_ERROR("rv770_upload_firmware failed\n");
return ret;
}
ret = ni_process_firmware_header(rdev);
if (ret) {
DRM_ERROR("ni_process_firmware_header failed\n");
return ret;
}
ret = ni_initial_switch_from_arb_f0_to_f1(rdev);
if (ret) {
DRM_ERROR("ni_initial_switch_from_arb_f0_to_f1 failed\n");
return ret;
}
ret = ni_init_smc_table(rdev);
if (ret) {
DRM_ERROR("ni_init_smc_table failed\n");
return ret;
}
ret = ni_init_smc_spll_table(rdev);
if (ret) {
DRM_ERROR("ni_init_smc_spll_table failed\n");
return ret;
}
ret = ni_init_arb_table_index(rdev);
if (ret) {
DRM_ERROR("ni_init_arb_table_index failed\n");
return ret;
}
if (eg_pi->dynamic_ac_timing) {
ret = ni_populate_mc_reg_table(rdev, boot_ps);
if (ret) {
DRM_ERROR("ni_populate_mc_reg_table failed\n");
return ret;
}
}
ret = ni_initialize_smc_cac_tables(rdev);
if (ret) {
DRM_ERROR("ni_initialize_smc_cac_tables failed\n");
return ret;
}
ret = ni_initialize_hardware_cac_manager(rdev);
if (ret) {
DRM_ERROR("ni_initialize_hardware_cac_manager failed\n");
return ret;
}
ret = ni_populate_smc_tdp_limits(rdev, boot_ps);
if (ret) {
DRM_ERROR("ni_populate_smc_tdp_limits failed\n");
return ret;
}
ni_program_response_times(rdev);
r7xx_start_smc(rdev);
ret = cypress_notify_smc_display_change(rdev, false);
if (ret) {
DRM_ERROR("cypress_notify_smc_display_change failed\n");
return ret;
}
cypress_enable_sclk_control(rdev, true);
if (eg_pi->memory_transition)
cypress_enable_mclk_control(rdev, true);
cypress_start_dpm(rdev);
if (pi->gfx_clock_gating)
ni_gfx_clockgating_enable(rdev, true);
if (pi->mg_clock_gating)
ni_mg_clockgating_enable(rdev, true);
if (eg_pi->ls_clock_gating)
ni_ls_clockgating_enable(rdev, true);
rv770_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, true);
ni_update_current_ps(rdev, boot_ps);
return 0;
}
void ni_dpm_disable(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps;
if (!btc_dpm_enabled(rdev))
return;
rv770_clear_vc(rdev);
if (pi->thermal_protection)
rv770_enable_thermal_protection(rdev, false);
ni_enable_power_containment(rdev, boot_ps, false);
ni_enable_smc_cac(rdev, boot_ps, false);
cypress_enable_spread_spectrum(rdev, false);
rv770_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, false);
if (pi->dynamic_pcie_gen2)
ni_enable_dynamic_pcie_gen2(rdev, false);
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
rdev->irq.dpm_thermal = false;
radeon_irq_set(rdev);
}
if (pi->gfx_clock_gating)
ni_gfx_clockgating_enable(rdev, false);
if (pi->mg_clock_gating)
ni_mg_clockgating_enable(rdev, false);
if (eg_pi->ls_clock_gating)
ni_ls_clockgating_enable(rdev, false);
ni_stop_dpm(rdev);
btc_reset_to_default(rdev);
ni_stop_smc(rdev);
ni_force_switch_to_arb_f0(rdev);
ni_update_current_ps(rdev, boot_ps);
}
static int ni_power_control_set_level(struct radeon_device *rdev)
{
struct radeon_ps *new_ps = rdev->pm.dpm.requested_ps;
int ret;
ret = ni_restrict_performance_levels_before_switch(rdev);
if (ret)
return ret;
ret = rv770_halt_smc(rdev);
if (ret)
return ret;
ret = ni_populate_smc_tdp_limits(rdev, new_ps);
if (ret)
return ret;
ret = rv770_resume_smc(rdev);
if (ret)
return ret;
ret = rv770_set_sw_state(rdev);
if (ret)
return ret;
return 0;
}
int ni_dpm_pre_set_power_state(struct radeon_device *rdev)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
struct radeon_ps *new_ps = &requested_ps;
ni_update_requested_ps(rdev, new_ps);
ni_apply_state_adjust_rules(rdev, &eg_pi->requested_rps);
return 0;
}
int ni_dpm_set_power_state(struct radeon_device *rdev)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct radeon_ps *new_ps = &eg_pi->requested_rps;
struct radeon_ps *old_ps = &eg_pi->current_rps;
int ret;
ret = ni_restrict_performance_levels_before_switch(rdev);
if (ret) {
DRM_ERROR("ni_restrict_performance_levels_before_switch failed\n");
return ret;
}
ni_set_uvd_clock_before_set_eng_clock(rdev, new_ps, old_ps);
ret = ni_enable_power_containment(rdev, new_ps, false);
if (ret) {
DRM_ERROR("ni_enable_power_containment failed\n");
return ret;
}
ret = ni_enable_smc_cac(rdev, new_ps, false);
if (ret) {
DRM_ERROR("ni_enable_smc_cac failed\n");
return ret;
}
ret = rv770_halt_smc(rdev);
if (ret) {
DRM_ERROR("rv770_halt_smc failed\n");
return ret;
}
if (eg_pi->smu_uvd_hs)
btc_notify_uvd_to_smc(rdev, new_ps);
ret = ni_upload_sw_state(rdev, new_ps);
if (ret) {
DRM_ERROR("ni_upload_sw_state failed\n");
return ret;
}
if (eg_pi->dynamic_ac_timing) {
ret = ni_upload_mc_reg_table(rdev, new_ps);
if (ret) {
DRM_ERROR("ni_upload_mc_reg_table failed\n");
return ret;
}
}
ret = ni_program_memory_timing_parameters(rdev, new_ps);
if (ret) {
DRM_ERROR("ni_program_memory_timing_parameters failed\n");
return ret;
}
ret = rv770_resume_smc(rdev);
if (ret) {
DRM_ERROR("rv770_resume_smc failed\n");
return ret;
}
ret = rv770_set_sw_state(rdev);
if (ret) {
DRM_ERROR("rv770_set_sw_state failed\n");
return ret;
}
ni_set_uvd_clock_after_set_eng_clock(rdev, new_ps, old_ps);
ret = ni_enable_smc_cac(rdev, new_ps, true);
if (ret) {
DRM_ERROR("ni_enable_smc_cac failed\n");
return ret;
}
ret = ni_enable_power_containment(rdev, new_ps, true);
if (ret) {
DRM_ERROR("ni_enable_power_containment failed\n");
return ret;
}
/* update tdp */
ret = ni_power_control_set_level(rdev);
if (ret) {
DRM_ERROR("ni_power_control_set_level failed\n");
return ret;
}
return 0;
}
void ni_dpm_post_set_power_state(struct radeon_device *rdev)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct radeon_ps *new_ps = &eg_pi->requested_rps;
ni_update_current_ps(rdev, new_ps);
}
#if 0
void ni_dpm_reset_asic(struct radeon_device *rdev)
{
ni_restrict_performance_levels_before_switch(rdev);
rv770_set_boot_state(rdev);
}
#endif
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void ni_parse_pplib_non_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
u8 table_rev)
{
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
} else if (r600_is_uvd_state(rps->class, rps->class2)) {
rps->vclk = RV770_DEFAULT_VCLK_FREQ;
rps->dclk = RV770_DEFAULT_DCLK_FREQ;
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT)
rdev->pm.dpm.boot_ps = rps;
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
rdev->pm.dpm.uvd_ps = rps;
}
static void ni_parse_pplib_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct rv7xx_power_info *pi = rv770_get_pi(rdev);
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_ps *ps = ni_get_ps(rps);
struct rv7xx_pl *pl = &ps->performance_levels[index];
ps->performance_level_count = index + 1;
pl->sclk = le16_to_cpu(clock_info->evergreen.usEngineClockLow);
pl->sclk |= clock_info->evergreen.ucEngineClockHigh << 16;
pl->mclk = le16_to_cpu(clock_info->evergreen.usMemoryClockLow);
pl->mclk |= clock_info->evergreen.ucMemoryClockHigh << 16;
pl->vddc = le16_to_cpu(clock_info->evergreen.usVDDC);
pl->vddci = le16_to_cpu(clock_info->evergreen.usVDDCI);
pl->flags = le32_to_cpu(clock_info->evergreen.ulFlags);
/* patch up vddc if necessary */
if (pl->vddc == 0xff01) {
if (pi->max_vddc)
pl->vddc = pi->max_vddc;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) {
pi->acpi_vddc = pl->vddc;
eg_pi->acpi_vddci = pl->vddci;
if (ps->performance_levels[0].flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2)
pi->acpi_pcie_gen2 = true;
else
pi->acpi_pcie_gen2 = false;
}
if (rps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) {
eg_pi->ulv.supported = true;
eg_pi->ulv.pl = pl;
}
if (pi->min_vddc_in_table > pl->vddc)
pi->min_vddc_in_table = pl->vddc;
if (pi->max_vddc_in_table < pl->vddc)
pi->max_vddc_in_table = pl->vddc;
/* patch up boot state */
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
u16 vddc, vddci, mvdd;
radeon_atombios_get_default_voltages(rdev, &vddc, &vddci, &mvdd);
pl->mclk = rdev->clock.default_mclk;
pl->sclk = rdev->clock.default_sclk;
pl->vddc = vddc;
pl->vddci = vddci;
}
if ((rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) {
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk = pl->sclk;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.mclk = pl->mclk;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddc = pl->vddc;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddci = pl->vddci;
}
}
static int ni_parse_power_table(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j;
union pplib_clock_info *clock_info;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
struct ni_ps *ps;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
rdev->pm.dpm.ps = kcalloc(power_info->pplib.ucNumStates,
sizeof(struct radeon_ps),
GFP_KERNEL);
if (!rdev->pm.dpm.ps)
return -ENOMEM;
for (i = 0; i < power_info->pplib.ucNumStates; i++) {
power_state = (union pplib_power_state *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset) +
i * power_info->pplib.ucStateEntrySize);
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset) +
(power_state->v1.ucNonClockStateIndex *
power_info->pplib.ucNonClockSize));
if (power_info->pplib.ucStateEntrySize - 1) {
u8 *idx;
ps = kzalloc(sizeof(struct ni_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(rdev->pm.dpm.ps);
return -ENOMEM;
}
rdev->pm.dpm.ps[i].ps_priv = ps;
ni_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
non_clock_info,
power_info->pplib.ucNonClockSize);
idx = (u8 *)&power_state->v1.ucClockStateIndices[0];
for (j = 0; j < (power_info->pplib.ucStateEntrySize - 1); j++) {
clock_info = (union pplib_clock_info *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset) +
(idx[j] * power_info->pplib.ucClockInfoSize));
ni_parse_pplib_clock_info(rdev,
&rdev->pm.dpm.ps[i], j,
clock_info);
}
}
}
rdev->pm.dpm.num_ps = power_info->pplib.ucNumStates;
return 0;
}
int ni_dpm_init(struct radeon_device *rdev)
{
struct rv7xx_power_info *pi;
struct evergreen_power_info *eg_pi;
struct ni_power_info *ni_pi;
struct atom_clock_dividers dividers;
int ret;
ni_pi = kzalloc(sizeof(struct ni_power_info), GFP_KERNEL);
if (ni_pi == NULL)
return -ENOMEM;
rdev->pm.dpm.priv = ni_pi;
eg_pi = &ni_pi->eg;
pi = &eg_pi->rv7xx;
rv770_get_max_vddc(rdev);
eg_pi->ulv.supported = false;
pi->acpi_vddc = 0;
eg_pi->acpi_vddci = 0;
pi->min_vddc_in_table = 0;
pi->max_vddc_in_table = 0;
ret = r600_get_platform_caps(rdev);
if (ret)
return ret;
ret = ni_parse_power_table(rdev);
if (ret)
return ret;
ret = r600_parse_extended_power_table(rdev);
if (ret)
return ret;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries =
kcalloc(4,
sizeof(struct radeon_clock_voltage_dependency_entry),
GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries) {
r600_free_extended_power_table(rdev);
return -ENOMEM;
}
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.count = 4;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].clk = 0;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].v = 0;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].clk = 36000;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].v = 720;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].clk = 54000;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].v = 810;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].clk = 72000;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].v = 900;
ni_patch_dependency_tables_based_on_leakage(rdev);
if (rdev->pm.dpm.voltage_response_time == 0)
rdev->pm.dpm.voltage_response_time = R600_VOLTAGERESPONSETIME_DFLT;
if (rdev->pm.dpm.backbias_response_time == 0)
rdev->pm.dpm.backbias_response_time = R600_BACKBIASRESPONSETIME_DFLT;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
0, false, &dividers);
if (ret)
pi->ref_div = dividers.ref_div + 1;
else
pi->ref_div = R600_REFERENCEDIVIDER_DFLT;
pi->rlp = RV770_RLP_DFLT;
pi->rmp = RV770_RMP_DFLT;
pi->lhp = RV770_LHP_DFLT;
pi->lmp = RV770_LMP_DFLT;
eg_pi->ats[0].rlp = RV770_RLP_DFLT;
eg_pi->ats[0].rmp = RV770_RMP_DFLT;
eg_pi->ats[0].lhp = RV770_LHP_DFLT;
eg_pi->ats[0].lmp = RV770_LMP_DFLT;
eg_pi->ats[1].rlp = BTC_RLP_UVD_DFLT;
eg_pi->ats[1].rmp = BTC_RMP_UVD_DFLT;
eg_pi->ats[1].lhp = BTC_LHP_UVD_DFLT;
eg_pi->ats[1].lmp = BTC_LMP_UVD_DFLT;
eg_pi->smu_uvd_hs = true;
if (rdev->pdev->device == 0x6707) {
pi->mclk_strobe_mode_threshold = 55000;
pi->mclk_edc_enable_threshold = 55000;
eg_pi->mclk_edc_wr_enable_threshold = 55000;
} else {
pi->mclk_strobe_mode_threshold = 40000;
pi->mclk_edc_enable_threshold = 40000;
eg_pi->mclk_edc_wr_enable_threshold = 40000;
}
ni_pi->mclk_rtt_mode_threshold = eg_pi->mclk_edc_wr_enable_threshold;
pi->voltage_control =
radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, 0);
pi->mvdd_control =
radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_MVDDC, 0);
eg_pi->vddci_control =
radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_VDDCI, 0);
rv770_get_engine_memory_ss(rdev);
pi->asi = RV770_ASI_DFLT;
pi->pasi = CYPRESS_HASI_DFLT;
pi->vrc = CYPRESS_VRC_DFLT;
pi->power_gating = false;
pi->gfx_clock_gating = true;
pi->mg_clock_gating = true;
pi->mgcgtssm = true;
eg_pi->ls_clock_gating = false;
eg_pi->sclk_deep_sleep = false;
pi->dynamic_pcie_gen2 = true;
if (rdev->pm.int_thermal_type != THERMAL_TYPE_NONE)
pi->thermal_protection = true;
else
pi->thermal_protection = false;
pi->display_gap = true;
pi->dcodt = true;
pi->ulps = true;
eg_pi->dynamic_ac_timing = true;
eg_pi->abm = true;
eg_pi->mcls = true;
eg_pi->light_sleep = true;
eg_pi->memory_transition = true;
#if defined(CONFIG_ACPI)
eg_pi->pcie_performance_request =
radeon_acpi_is_pcie_performance_request_supported(rdev);
#else
eg_pi->pcie_performance_request = false;
#endif
eg_pi->dll_default_on = false;
eg_pi->sclk_deep_sleep = false;
pi->mclk_stutter_mode_threshold = 0;
pi->sram_end = SMC_RAM_END;
rdev->pm.dpm.dyn_state.mclk_sclk_ratio = 3;
rdev->pm.dpm.dyn_state.vddc_vddci_delta = 200;
rdev->pm.dpm.dyn_state.min_vddc_for_pcie_gen2 = 900;
rdev->pm.dpm.dyn_state.valid_sclk_values.count = ARRAY_SIZE(btc_valid_sclk);
rdev->pm.dpm.dyn_state.valid_sclk_values.values = btc_valid_sclk;
rdev->pm.dpm.dyn_state.valid_mclk_values.count = 0;
rdev->pm.dpm.dyn_state.valid_mclk_values.values = NULL;
rdev->pm.dpm.dyn_state.sclk_mclk_delta = 12500;
ni_pi->cac_data.leakage_coefficients.at = 516;
ni_pi->cac_data.leakage_coefficients.bt = 18;
ni_pi->cac_data.leakage_coefficients.av = 51;
ni_pi->cac_data.leakage_coefficients.bv = 2957;
switch (rdev->pdev->device) {
case 0x6700:
case 0x6701:
case 0x6702:
case 0x6703:
case 0x6718:
ni_pi->cac_weights = &cac_weights_cayman_xt;
break;
case 0x6705:
case 0x6719:
case 0x671D:
case 0x671C:
default:
ni_pi->cac_weights = &cac_weights_cayman_pro;
break;
case 0x6704:
case 0x6706:
case 0x6707:
case 0x6708:
case 0x6709:
ni_pi->cac_weights = &cac_weights_cayman_le;
break;
}
if (ni_pi->cac_weights->enable_power_containment_by_default) {
ni_pi->enable_power_containment = true;
ni_pi->enable_cac = true;
ni_pi->enable_sq_ramping = true;
} else {
ni_pi->enable_power_containment = false;
ni_pi->enable_cac = false;
ni_pi->enable_sq_ramping = false;
}
ni_pi->driver_calculate_cac_leakage = false;
ni_pi->cac_configuration_required = true;
if (ni_pi->cac_configuration_required) {
ni_pi->support_cac_long_term_average = true;
ni_pi->lta_window_size = ni_pi->cac_weights->l2_lta_window_size;
ni_pi->lts_truncate = ni_pi->cac_weights->lts_truncate;
} else {
ni_pi->support_cac_long_term_average = false;
ni_pi->lta_window_size = 0;
ni_pi->lts_truncate = 0;
}
ni_pi->use_power_boost_limit = true;
/* make sure dc limits are valid */
if ((rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk == 0) ||
(rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk == 0))
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc =
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
return 0;
}
void ni_dpm_fini(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
kfree(rdev->pm.dpm.ps[i].ps_priv);
}
kfree(rdev->pm.dpm.ps);
kfree(rdev->pm.dpm.priv);
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries);
r600_free_extended_power_table(rdev);
}
void ni_dpm_print_power_state(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ni_ps *ps = ni_get_ps(rps);
struct rv7xx_pl *pl;
int i;
r600_dpm_print_class_info(rps->class, rps->class2);
r600_dpm_print_cap_info(rps->caps);
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
for (i = 0; i < ps->performance_level_count; i++) {
pl = &ps->performance_levels[i];
if (rdev->family >= CHIP_TAHITI)
printk("\t\tpower level %d sclk: %u mclk: %u vddc: %u vddci: %u pcie gen: %u\n",
i, pl->sclk, pl->mclk, pl->vddc, pl->vddci, pl->pcie_gen + 1);
else
printk("\t\tpower level %d sclk: %u mclk: %u vddc: %u vddci: %u\n",
i, pl->sclk, pl->mclk, pl->vddc, pl->vddci);
}
r600_dpm_print_ps_status(rdev, rps);
}
void ni_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
struct seq_file *m)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct radeon_ps *rps = &eg_pi->current_rps;
struct ni_ps *ps = ni_get_ps(rps);
struct rv7xx_pl *pl;
u32 current_index =
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_INDEX_MASK) >>
CURRENT_STATE_INDEX_SHIFT;
if (current_index >= ps->performance_level_count) {
seq_printf(m, "invalid dpm profile %d\n", current_index);
} else {
pl = &ps->performance_levels[current_index];
seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
seq_printf(m, "power level %d sclk: %u mclk: %u vddc: %u vddci: %u\n",
current_index, pl->sclk, pl->mclk, pl->vddc, pl->vddci);
}
}
u32 ni_dpm_get_current_sclk(struct radeon_device *rdev)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct radeon_ps *rps = &eg_pi->current_rps;
struct ni_ps *ps = ni_get_ps(rps);
struct rv7xx_pl *pl;
u32 current_index =
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_INDEX_MASK) >>
CURRENT_STATE_INDEX_SHIFT;
if (current_index >= ps->performance_level_count) {
return 0;
} else {
pl = &ps->performance_levels[current_index];
return pl->sclk;
}
}
u32 ni_dpm_get_current_mclk(struct radeon_device *rdev)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct radeon_ps *rps = &eg_pi->current_rps;
struct ni_ps *ps = ni_get_ps(rps);
struct rv7xx_pl *pl;
u32 current_index =
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_INDEX_MASK) >>
CURRENT_STATE_INDEX_SHIFT;
if (current_index >= ps->performance_level_count) {
return 0;
} else {
pl = &ps->performance_levels[current_index];
return pl->mclk;
}
}
u32 ni_dpm_get_sclk(struct radeon_device *rdev, bool low)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_ps *requested_state = ni_get_ps(&eg_pi->requested_rps);
if (low)
return requested_state->performance_levels[0].sclk;
else
return requested_state->performance_levels[requested_state->performance_level_count - 1].sclk;
}
u32 ni_dpm_get_mclk(struct radeon_device *rdev, bool low)
{
struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev);
struct ni_ps *requested_state = ni_get_ps(&eg_pi->requested_rps);
if (low)
return requested_state->performance_levels[0].mclk;
else
return requested_state->performance_levels[requested_state->performance_level_count - 1].mclk;
}