linux/drivers/cpufreq/cpufreq_governor.c
Viresh Kumar 581c214b21 cpufreq: governor: No need to manage state machine now
The cpufreq core now guarantees that policy->rwsem won't be dropped
while running the ->governor callback for the CPUFREQ_GOV_POLICY_EXIT
event and will be held acquired until the complete sequence of governor
state changes has finished.

This allows governor state machine checks to be dropped from multiple
functions in cpufreq_governor.c.

This also means that policy_dbs->policy can be initialized upfront, so
the entire initialization of struct policy_dbs can be carried out in
one place.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:41:01 +01:00

595 lines
16 KiB
C

/*
* drivers/cpufreq/cpufreq_governor.c
*
* CPUFREQ governors common code
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
* (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/export.h>
#include <linux/kernel_stat.h>
#include <linux/slab.h>
#include "cpufreq_governor.h"
DEFINE_MUTEX(dbs_data_mutex);
EXPORT_SYMBOL_GPL(dbs_data_mutex);
static inline struct dbs_data *to_dbs_data(struct kobject *kobj)
{
return container_of(kobj, struct dbs_data, kobj);
}
static inline struct governor_attr *to_gov_attr(struct attribute *attr)
{
return container_of(attr, struct governor_attr, attr);
}
static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct dbs_data *dbs_data = to_dbs_data(kobj);
struct governor_attr *gattr = to_gov_attr(attr);
int ret = -EIO;
if (gattr->show)
ret = gattr->show(dbs_data, buf);
return ret;
}
static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(kobj);
struct governor_attr *gattr = to_gov_attr(attr);
int ret = -EIO;
mutex_lock(&dbs_data->mutex);
if (gattr->store)
ret = gattr->store(dbs_data, buf, count);
mutex_unlock(&dbs_data->mutex);
return ret;
}
/*
* Sysfs Ops for accessing governor attributes.
*
* All show/store invocations for governor specific sysfs attributes, will first
* call the below show/store callbacks and the attribute specific callback will
* be called from within it.
*/
static const struct sysfs_ops governor_sysfs_ops = {
.show = governor_show,
.store = governor_store,
};
void dbs_check_cpu(struct cpufreq_policy *policy)
{
int cpu = policy->cpu;
struct dbs_governor *gov = dbs_governor_of(policy);
struct policy_dbs_info *policy_dbs = policy->governor_data;
struct dbs_data *dbs_data = policy_dbs->dbs_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int sampling_rate = dbs_data->sampling_rate;
unsigned int ignore_nice = dbs_data->ignore_nice_load;
unsigned int max_load = 0;
unsigned int j;
if (gov->governor == GOV_ONDEMAND) {
struct od_cpu_dbs_info_s *od_dbs_info =
gov->get_cpu_dbs_info_s(cpu);
/*
* Sometimes, the ondemand governor uses an additional
* multiplier to give long delays. So apply this multiplier to
* the 'sampling_rate', so as to keep the wake-up-from-idle
* detection logic a bit conservative.
*/
sampling_rate *= od_dbs_info->rate_mult;
}
/* Get Absolute Load */
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info *j_cdbs;
u64 cur_wall_time, cur_idle_time;
unsigned int idle_time, wall_time;
unsigned int load;
int io_busy = 0;
j_cdbs = gov->get_cpu_cdbs(j);
/*
* For the purpose of ondemand, waiting for disk IO is
* an indication that you're performance critical, and
* not that the system is actually idle. So do not add
* the iowait time to the cpu idle time.
*/
if (gov->governor == GOV_ONDEMAND)
io_busy = od_tuners->io_is_busy;
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
wall_time = (unsigned int)
(cur_wall_time - j_cdbs->prev_cpu_wall);
j_cdbs->prev_cpu_wall = cur_wall_time;
if (cur_idle_time < j_cdbs->prev_cpu_idle)
cur_idle_time = j_cdbs->prev_cpu_idle;
idle_time = (unsigned int)
(cur_idle_time - j_cdbs->prev_cpu_idle);
j_cdbs->prev_cpu_idle = cur_idle_time;
if (ignore_nice) {
struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
u64 cur_nice;
unsigned long cur_nice_jiffies;
cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
cdbs->prev_cpu_nice;
/*
* Assumption: nice time between sampling periods will
* be less than 2^32 jiffies for 32 bit sys
*/
cur_nice_jiffies = (unsigned long)
cputime64_to_jiffies64(cur_nice);
cdbs->prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
idle_time += jiffies_to_usecs(cur_nice_jiffies);
}
if (unlikely(!wall_time || wall_time < idle_time))
continue;
/*
* If the CPU had gone completely idle, and a task just woke up
* on this CPU now, it would be unfair to calculate 'load' the
* usual way for this elapsed time-window, because it will show
* near-zero load, irrespective of how CPU intensive that task
* actually is. This is undesirable for latency-sensitive bursty
* workloads.
*
* To avoid this, we reuse the 'load' from the previous
* time-window and give this task a chance to start with a
* reasonably high CPU frequency. (However, we shouldn't over-do
* this copy, lest we get stuck at a high load (high frequency)
* for too long, even when the current system load has actually
* dropped down. So we perform the copy only once, upon the
* first wake-up from idle.)
*
* Detecting this situation is easy: the governor's utilization
* update handler would not have run during CPU-idle periods.
* Hence, an unusually large 'wall_time' (as compared to the
* sampling rate) indicates this scenario.
*
* prev_load can be zero in two cases and we must recalculate it
* for both cases:
* - during long idle intervals
* - explicitly set to zero
*/
if (unlikely(wall_time > (2 * sampling_rate) &&
j_cdbs->prev_load)) {
load = j_cdbs->prev_load;
/*
* Perform a destructive copy, to ensure that we copy
* the previous load only once, upon the first wake-up
* from idle.
*/
j_cdbs->prev_load = 0;
} else {
load = 100 * (wall_time - idle_time) / wall_time;
j_cdbs->prev_load = load;
}
if (load > max_load)
max_load = load;
}
gov->gov_check_cpu(cpu, max_load);
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);
void gov_set_update_util(struct policy_dbs_info *policy_dbs,
unsigned int delay_us)
{
struct cpufreq_policy *policy = policy_dbs->policy;
struct dbs_governor *gov = dbs_governor_of(policy);
int cpu;
gov_update_sample_delay(policy_dbs, delay_us);
policy_dbs->last_sample_time = 0;
for_each_cpu(cpu, policy->cpus) {
struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
cpufreq_set_update_util_data(cpu, &cdbs->update_util);
}
}
EXPORT_SYMBOL_GPL(gov_set_update_util);
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
{
int i;
for_each_cpu(i, policy->cpus)
cpufreq_set_update_util_data(i, NULL);
synchronize_rcu();
}
static void gov_cancel_work(struct cpufreq_policy *policy)
{
struct policy_dbs_info *policy_dbs = policy->governor_data;
/* Tell dbs_update_util_handler() to skip queuing up work items. */
atomic_inc(&policy_dbs->work_count);
/*
* If dbs_update_util_handler() is already running, it may not notice
* the incremented work_count, so wait for it to complete to prevent its
* work item from being queued up after the cancel_work_sync() below.
*/
gov_clear_update_util(policy_dbs->policy);
irq_work_sync(&policy_dbs->irq_work);
cancel_work_sync(&policy_dbs->work);
atomic_set(&policy_dbs->work_count, 0);
}
static void dbs_work_handler(struct work_struct *work)
{
struct policy_dbs_info *policy_dbs;
struct cpufreq_policy *policy;
struct dbs_governor *gov;
unsigned int delay;
policy_dbs = container_of(work, struct policy_dbs_info, work);
policy = policy_dbs->policy;
gov = dbs_governor_of(policy);
/*
* Make sure cpufreq_governor_limits() isn't evaluating load or the
* ondemand governor isn't updating the sampling rate in parallel.
*/
mutex_lock(&policy_dbs->timer_mutex);
delay = gov->gov_dbs_timer(policy);
policy_dbs->sample_delay_ns = jiffies_to_nsecs(delay);
mutex_unlock(&policy_dbs->timer_mutex);
/*
* If the atomic operation below is reordered with respect to the
* sample delay modification, the utilization update handler may end
* up using a stale sample delay value.
*/
smp_mb__before_atomic();
atomic_dec(&policy_dbs->work_count);
}
static void dbs_irq_work(struct irq_work *irq_work)
{
struct policy_dbs_info *policy_dbs;
policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
schedule_work(&policy_dbs->work);
}
static inline void gov_queue_irq_work(struct policy_dbs_info *policy_dbs)
{
#ifdef CONFIG_SMP
irq_work_queue_on(&policy_dbs->irq_work, smp_processor_id());
#else
irq_work_queue(&policy_dbs->irq_work);
#endif
}
static void dbs_update_util_handler(struct update_util_data *data, u64 time,
unsigned long util, unsigned long max)
{
struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
/*
* The work may not be allowed to be queued up right now.
* Possible reasons:
* - Work has already been queued up or is in progress.
* - The governor is being stopped.
* - It is too early (too little time from the previous sample).
*/
if (atomic_inc_return(&policy_dbs->work_count) == 1) {
u64 delta_ns;
delta_ns = time - policy_dbs->last_sample_time;
if ((s64)delta_ns >= policy_dbs->sample_delay_ns) {
policy_dbs->last_sample_time = time;
gov_queue_irq_work(policy_dbs);
return;
}
}
atomic_dec(&policy_dbs->work_count);
}
static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
struct dbs_governor *gov)
{
struct policy_dbs_info *policy_dbs;
int j;
/* Allocate memory for the common information for policy->cpus */
policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL);
if (!policy_dbs)
return NULL;
policy_dbs->policy = policy;
mutex_init(&policy_dbs->timer_mutex);
atomic_set(&policy_dbs->work_count, 0);
init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
INIT_WORK(&policy_dbs->work, dbs_work_handler);
/* Set policy_dbs for all CPUs, online+offline */
for_each_cpu(j, policy->related_cpus) {
struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
j_cdbs->policy_dbs = policy_dbs;
j_cdbs->update_util.func = dbs_update_util_handler;
}
return policy_dbs;
}
static void free_policy_dbs_info(struct cpufreq_policy *policy,
struct dbs_governor *gov)
{
struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
int j;
mutex_destroy(&policy_dbs->timer_mutex);
for_each_cpu(j, policy->related_cpus) {
struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
j_cdbs->policy_dbs = NULL;
j_cdbs->update_util.func = NULL;
}
kfree(policy_dbs);
}
static int cpufreq_governor_init(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct dbs_data *dbs_data = gov->gdbs_data;
struct policy_dbs_info *policy_dbs;
unsigned int latency;
int ret;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
policy_dbs = alloc_policy_dbs_info(policy, gov);
if (!policy_dbs)
return -ENOMEM;
if (dbs_data) {
if (WARN_ON(have_governor_per_policy())) {
ret = -EINVAL;
goto free_policy_dbs_info;
}
policy_dbs->dbs_data = dbs_data;
policy->governor_data = policy_dbs;
mutex_lock(&dbs_data->mutex);
dbs_data->usage_count++;
list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
mutex_unlock(&dbs_data->mutex);
return 0;
}
dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
if (!dbs_data) {
ret = -ENOMEM;
goto free_policy_dbs_info;
}
INIT_LIST_HEAD(&dbs_data->policy_dbs_list);
mutex_init(&dbs_data->mutex);
ret = gov->init(dbs_data, !policy->governor->initialized);
if (ret)
goto free_policy_dbs_info;
/* policy latency is in ns. Convert it to us first */
latency = policy->cpuinfo.transition_latency / 1000;
if (latency == 0)
latency = 1;
/* Bring kernel and HW constraints together */
dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
MIN_LATENCY_MULTIPLIER * latency);
dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
LATENCY_MULTIPLIER * latency);
if (!have_governor_per_policy())
gov->gdbs_data = dbs_data;
policy->governor_data = policy_dbs;
policy_dbs->dbs_data = dbs_data;
dbs_data->usage_count = 1;
list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type,
get_governor_parent_kobj(policy),
"%s", gov->gov.name);
if (!ret)
return 0;
/* Failure, so roll back. */
pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
policy->governor_data = NULL;
if (!have_governor_per_policy())
gov->gdbs_data = NULL;
gov->exit(dbs_data, !policy->governor->initialized);
kfree(dbs_data);
free_policy_dbs_info:
free_policy_dbs_info(policy, gov);
return ret;
}
static int cpufreq_governor_exit(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct policy_dbs_info *policy_dbs = policy->governor_data;
struct dbs_data *dbs_data = policy_dbs->dbs_data;
int count;
mutex_lock(&dbs_data->mutex);
list_del(&policy_dbs->list);
count = --dbs_data->usage_count;
mutex_unlock(&dbs_data->mutex);
if (!count) {
kobject_put(&dbs_data->kobj);
policy->governor_data = NULL;
if (!have_governor_per_policy())
gov->gdbs_data = NULL;
gov->exit(dbs_data, policy->governor->initialized == 1);
mutex_destroy(&dbs_data->mutex);
kfree(dbs_data);
} else {
policy->governor_data = NULL;
}
free_policy_dbs_info(policy, gov);
return 0;
}
static int cpufreq_governor_start(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct policy_dbs_info *policy_dbs = policy->governor_data;
struct dbs_data *dbs_data = policy_dbs->dbs_data;
unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
int io_busy = 0;
if (!policy->cur)
return -EINVAL;
sampling_rate = dbs_data->sampling_rate;
ignore_nice = dbs_data->ignore_nice_load;
if (gov->governor == GOV_ONDEMAND) {
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
io_busy = od_tuners->io_is_busy;
}
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
unsigned int prev_load;
j_cdbs->prev_cpu_idle =
get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
j_cdbs->prev_cpu_idle);
j_cdbs->prev_load = 100 * prev_load /
(unsigned int)j_cdbs->prev_cpu_wall;
if (ignore_nice)
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
if (gov->governor == GOV_CONSERVATIVE) {
struct cs_cpu_dbs_info_s *cs_dbs_info =
gov->get_cpu_dbs_info_s(cpu);
cs_dbs_info->down_skip = 0;
cs_dbs_info->requested_freq = policy->cur;
} else {
struct od_ops *od_ops = gov->gov_ops;
struct od_cpu_dbs_info_s *od_dbs_info = gov->get_cpu_dbs_info_s(cpu);
od_dbs_info->rate_mult = 1;
od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
od_ops->powersave_bias_init_cpu(cpu);
}
gov_set_update_util(policy_dbs, sampling_rate);
return 0;
}
static int cpufreq_governor_stop(struct cpufreq_policy *policy)
{
gov_cancel_work(policy);
return 0;
}
static int cpufreq_governor_limits(struct cpufreq_policy *policy)
{
struct policy_dbs_info *policy_dbs = policy->governor_data;
mutex_lock(&policy_dbs->timer_mutex);
if (policy->max < policy->cur)
__cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
else if (policy->min > policy->cur)
__cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
dbs_check_cpu(policy);
mutex_unlock(&policy_dbs->timer_mutex);
return 0;
}
int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
{
int ret = -EINVAL;
/* Lock governor to block concurrent initialization of governor */
mutex_lock(&dbs_data_mutex);
if (event == CPUFREQ_GOV_POLICY_INIT) {
ret = cpufreq_governor_init(policy);
} else if (policy->governor_data) {
switch (event) {
case CPUFREQ_GOV_POLICY_EXIT:
ret = cpufreq_governor_exit(policy);
break;
case CPUFREQ_GOV_START:
ret = cpufreq_governor_start(policy);
break;
case CPUFREQ_GOV_STOP:
ret = cpufreq_governor_stop(policy);
break;
case CPUFREQ_GOV_LIMITS:
ret = cpufreq_governor_limits(policy);
break;
}
}
mutex_unlock(&dbs_data_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);