583c1f4201
We want to support a ringbuf map type where samples are published from user-space, to be consumed by BPF programs. BPF currently supports a kernel -> user-space circular ring buffer via the BPF_MAP_TYPE_RINGBUF map type. We'll need to define a new map type for user-space -> kernel, as none of the helpers exported for BPF_MAP_TYPE_RINGBUF will apply to a user-space producer ring buffer, and we'll want to add one or more helper functions that would not apply for a kernel-producer ring buffer. This patch therefore adds a new BPF_MAP_TYPE_USER_RINGBUF map type definition. The map type is useless in its current form, as there is no way to access or use it for anything until we one or more BPF helpers. A follow-on patch will therefore add a new helper function that allows BPF programs to run callbacks on samples that are published to the ring buffer. Signed-off-by: David Vernet <void@manifault.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20220920000100.477320-2-void@manifault.com
606 lines
16 KiB
C
606 lines
16 KiB
C
#include <linux/bpf.h>
|
|
#include <linux/btf.h>
|
|
#include <linux/err.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <uapi/linux/btf.h>
|
|
#include <linux/btf_ids.h>
|
|
|
|
#define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
|
|
|
|
/* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
|
|
#define RINGBUF_PGOFF \
|
|
(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
|
|
/* consumer page and producer page */
|
|
#define RINGBUF_POS_PAGES 2
|
|
|
|
#define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
|
|
|
|
/* Maximum size of ring buffer area is limited by 32-bit page offset within
|
|
* record header, counted in pages. Reserve 8 bits for extensibility, and take
|
|
* into account few extra pages for consumer/producer pages and
|
|
* non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
|
|
* ring buffer.
|
|
*/
|
|
#define RINGBUF_MAX_DATA_SZ \
|
|
(((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
|
|
|
|
struct bpf_ringbuf {
|
|
wait_queue_head_t waitq;
|
|
struct irq_work work;
|
|
u64 mask;
|
|
struct page **pages;
|
|
int nr_pages;
|
|
spinlock_t spinlock ____cacheline_aligned_in_smp;
|
|
/* Consumer and producer counters are put into separate pages to
|
|
* allow each position to be mapped with different permissions.
|
|
* This prevents a user-space application from modifying the
|
|
* position and ruining in-kernel tracking. The permissions of the
|
|
* pages depend on who is producing samples: user-space or the
|
|
* kernel.
|
|
*
|
|
* Kernel-producer
|
|
* ---------------
|
|
* The producer position and data pages are mapped as r/o in
|
|
* userspace. For this approach, bits in the header of samples are
|
|
* used to signal to user-space, and to other producers, whether a
|
|
* sample is currently being written.
|
|
*
|
|
* User-space producer
|
|
* -------------------
|
|
* Only the page containing the consumer position is mapped r/o in
|
|
* user-space. User-space producers also use bits of the header to
|
|
* communicate to the kernel, but the kernel must carefully check and
|
|
* validate each sample to ensure that they're correctly formatted, and
|
|
* fully contained within the ring buffer.
|
|
*/
|
|
unsigned long consumer_pos __aligned(PAGE_SIZE);
|
|
unsigned long producer_pos __aligned(PAGE_SIZE);
|
|
char data[] __aligned(PAGE_SIZE);
|
|
};
|
|
|
|
struct bpf_ringbuf_map {
|
|
struct bpf_map map;
|
|
struct bpf_ringbuf *rb;
|
|
};
|
|
|
|
/* 8-byte ring buffer record header structure */
|
|
struct bpf_ringbuf_hdr {
|
|
u32 len;
|
|
u32 pg_off;
|
|
};
|
|
|
|
static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
|
|
{
|
|
const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
|
|
__GFP_NOWARN | __GFP_ZERO;
|
|
int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
|
|
int nr_data_pages = data_sz >> PAGE_SHIFT;
|
|
int nr_pages = nr_meta_pages + nr_data_pages;
|
|
struct page **pages, *page;
|
|
struct bpf_ringbuf *rb;
|
|
size_t array_size;
|
|
int i;
|
|
|
|
/* Each data page is mapped twice to allow "virtual"
|
|
* continuous read of samples wrapping around the end of ring
|
|
* buffer area:
|
|
* ------------------------------------------------------
|
|
* | meta pages | real data pages | same data pages |
|
|
* ------------------------------------------------------
|
|
* | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
|
|
* ------------------------------------------------------
|
|
* | | TA DA | TA DA |
|
|
* ------------------------------------------------------
|
|
* ^^^^^^^
|
|
* |
|
|
* Here, no need to worry about special handling of wrapped-around
|
|
* data due to double-mapped data pages. This works both in kernel and
|
|
* when mmap()'ed in user-space, simplifying both kernel and
|
|
* user-space implementations significantly.
|
|
*/
|
|
array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
|
|
pages = bpf_map_area_alloc(array_size, numa_node);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
page = alloc_pages_node(numa_node, flags, 0);
|
|
if (!page) {
|
|
nr_pages = i;
|
|
goto err_free_pages;
|
|
}
|
|
pages[i] = page;
|
|
if (i >= nr_meta_pages)
|
|
pages[nr_data_pages + i] = page;
|
|
}
|
|
|
|
rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
|
|
VM_MAP | VM_USERMAP, PAGE_KERNEL);
|
|
if (rb) {
|
|
kmemleak_not_leak(pages);
|
|
rb->pages = pages;
|
|
rb->nr_pages = nr_pages;
|
|
return rb;
|
|
}
|
|
|
|
err_free_pages:
|
|
for (i = 0; i < nr_pages; i++)
|
|
__free_page(pages[i]);
|
|
bpf_map_area_free(pages);
|
|
return NULL;
|
|
}
|
|
|
|
static void bpf_ringbuf_notify(struct irq_work *work)
|
|
{
|
|
struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
|
|
|
|
wake_up_all(&rb->waitq);
|
|
}
|
|
|
|
static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
|
|
{
|
|
struct bpf_ringbuf *rb;
|
|
|
|
rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
|
|
if (!rb)
|
|
return NULL;
|
|
|
|
spin_lock_init(&rb->spinlock);
|
|
init_waitqueue_head(&rb->waitq);
|
|
init_irq_work(&rb->work, bpf_ringbuf_notify);
|
|
|
|
rb->mask = data_sz - 1;
|
|
rb->consumer_pos = 0;
|
|
rb->producer_pos = 0;
|
|
|
|
return rb;
|
|
}
|
|
|
|
static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (attr->key_size || attr->value_size ||
|
|
!is_power_of_2(attr->max_entries) ||
|
|
!PAGE_ALIGNED(attr->max_entries))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
|
|
if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
|
|
return ERR_PTR(-E2BIG);
|
|
#endif
|
|
|
|
rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
|
|
if (!rb_map)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
bpf_map_init_from_attr(&rb_map->map, attr);
|
|
|
|
rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
|
|
if (!rb_map->rb) {
|
|
bpf_map_area_free(rb_map);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return &rb_map->map;
|
|
}
|
|
|
|
static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
|
|
{
|
|
/* copy pages pointer and nr_pages to local variable, as we are going
|
|
* to unmap rb itself with vunmap() below
|
|
*/
|
|
struct page **pages = rb->pages;
|
|
int i, nr_pages = rb->nr_pages;
|
|
|
|
vunmap(rb);
|
|
for (i = 0; i < nr_pages; i++)
|
|
__free_page(pages[i]);
|
|
bpf_map_area_free(pages);
|
|
}
|
|
|
|
static void ringbuf_map_free(struct bpf_map *map)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
bpf_ringbuf_free(rb_map->rb);
|
|
bpf_map_area_free(rb_map);
|
|
}
|
|
|
|
static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
|
|
{
|
|
return ERR_PTR(-ENOTSUPP);
|
|
}
|
|
|
|
static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
|
|
u64 flags)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
|
|
void *next_key)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
|
|
if (vma->vm_flags & VM_WRITE) {
|
|
/* allow writable mapping for the consumer_pos only */
|
|
if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
|
|
return -EPERM;
|
|
} else {
|
|
vma->vm_flags &= ~VM_MAYWRITE;
|
|
}
|
|
/* remap_vmalloc_range() checks size and offset constraints */
|
|
return remap_vmalloc_range(vma, rb_map->rb,
|
|
vma->vm_pgoff + RINGBUF_PGOFF);
|
|
}
|
|
|
|
static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
|
|
if (vma->vm_flags & VM_WRITE) {
|
|
if (vma->vm_pgoff == 0)
|
|
/* Disallow writable mappings to the consumer pointer,
|
|
* and allow writable mappings to both the producer
|
|
* position, and the ring buffer data itself.
|
|
*/
|
|
return -EPERM;
|
|
} else {
|
|
vma->vm_flags &= ~VM_MAYWRITE;
|
|
}
|
|
/* remap_vmalloc_range() checks size and offset constraints */
|
|
return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
|
|
}
|
|
|
|
static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
|
|
{
|
|
unsigned long cons_pos, prod_pos;
|
|
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
|
prod_pos = smp_load_acquire(&rb->producer_pos);
|
|
return prod_pos - cons_pos;
|
|
}
|
|
|
|
static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
|
|
struct poll_table_struct *pts)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
poll_wait(filp, &rb_map->rb->waitq, pts);
|
|
|
|
if (ringbuf_avail_data_sz(rb_map->rb))
|
|
return EPOLLIN | EPOLLRDNORM;
|
|
return 0;
|
|
}
|
|
|
|
BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
|
|
const struct bpf_map_ops ringbuf_map_ops = {
|
|
.map_meta_equal = bpf_map_meta_equal,
|
|
.map_alloc = ringbuf_map_alloc,
|
|
.map_free = ringbuf_map_free,
|
|
.map_mmap = ringbuf_map_mmap_kern,
|
|
.map_poll = ringbuf_map_poll,
|
|
.map_lookup_elem = ringbuf_map_lookup_elem,
|
|
.map_update_elem = ringbuf_map_update_elem,
|
|
.map_delete_elem = ringbuf_map_delete_elem,
|
|
.map_get_next_key = ringbuf_map_get_next_key,
|
|
.map_btf_id = &ringbuf_map_btf_ids[0],
|
|
};
|
|
|
|
BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
|
|
const struct bpf_map_ops user_ringbuf_map_ops = {
|
|
.map_meta_equal = bpf_map_meta_equal,
|
|
.map_alloc = ringbuf_map_alloc,
|
|
.map_free = ringbuf_map_free,
|
|
.map_mmap = ringbuf_map_mmap_user,
|
|
.map_lookup_elem = ringbuf_map_lookup_elem,
|
|
.map_update_elem = ringbuf_map_update_elem,
|
|
.map_delete_elem = ringbuf_map_delete_elem,
|
|
.map_get_next_key = ringbuf_map_get_next_key,
|
|
.map_btf_id = &user_ringbuf_map_btf_ids[0],
|
|
};
|
|
|
|
/* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
|
|
* calculate offset from record metadata to ring buffer in pages, rounded
|
|
* down. This page offset is stored as part of record metadata and allows to
|
|
* restore struct bpf_ringbuf * from record pointer. This page offset is
|
|
* stored at offset 4 of record metadata header.
|
|
*/
|
|
static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
|
|
struct bpf_ringbuf_hdr *hdr)
|
|
{
|
|
return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/* Given pointer to ring buffer record header, restore pointer to struct
|
|
* bpf_ringbuf itself by using page offset stored at offset 4
|
|
*/
|
|
static struct bpf_ringbuf *
|
|
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
|
|
{
|
|
unsigned long addr = (unsigned long)(void *)hdr;
|
|
unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
|
|
|
|
return (void*)((addr & PAGE_MASK) - off);
|
|
}
|
|
|
|
static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
|
|
{
|
|
unsigned long cons_pos, prod_pos, new_prod_pos, flags;
|
|
u32 len, pg_off;
|
|
struct bpf_ringbuf_hdr *hdr;
|
|
|
|
if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
|
|
return NULL;
|
|
|
|
len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
|
|
if (len > rb->mask + 1)
|
|
return NULL;
|
|
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
|
|
|
if (in_nmi()) {
|
|
if (!spin_trylock_irqsave(&rb->spinlock, flags))
|
|
return NULL;
|
|
} else {
|
|
spin_lock_irqsave(&rb->spinlock, flags);
|
|
}
|
|
|
|
prod_pos = rb->producer_pos;
|
|
new_prod_pos = prod_pos + len;
|
|
|
|
/* check for out of ringbuf space by ensuring producer position
|
|
* doesn't advance more than (ringbuf_size - 1) ahead
|
|
*/
|
|
if (new_prod_pos - cons_pos > rb->mask) {
|
|
spin_unlock_irqrestore(&rb->spinlock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
hdr = (void *)rb->data + (prod_pos & rb->mask);
|
|
pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
|
|
hdr->len = size | BPF_RINGBUF_BUSY_BIT;
|
|
hdr->pg_off = pg_off;
|
|
|
|
/* pairs with consumer's smp_load_acquire() */
|
|
smp_store_release(&rb->producer_pos, new_prod_pos);
|
|
|
|
spin_unlock_irqrestore(&rb->spinlock, flags);
|
|
|
|
return (void *)hdr + BPF_RINGBUF_HDR_SZ;
|
|
}
|
|
|
|
BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
if (unlikely(flags))
|
|
return 0;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
|
|
.func = bpf_ringbuf_reserve,
|
|
.ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
|
|
{
|
|
unsigned long rec_pos, cons_pos;
|
|
struct bpf_ringbuf_hdr *hdr;
|
|
struct bpf_ringbuf *rb;
|
|
u32 new_len;
|
|
|
|
hdr = sample - BPF_RINGBUF_HDR_SZ;
|
|
rb = bpf_ringbuf_restore_from_rec(hdr);
|
|
new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
|
|
if (discard)
|
|
new_len |= BPF_RINGBUF_DISCARD_BIT;
|
|
|
|
/* update record header with correct final size prefix */
|
|
xchg(&hdr->len, new_len);
|
|
|
|
/* if consumer caught up and is waiting for our record, notify about
|
|
* new data availability
|
|
*/
|
|
rec_pos = (void *)hdr - (void *)rb->data;
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
|
|
|
|
if (flags & BPF_RB_FORCE_WAKEUP)
|
|
irq_work_queue(&rb->work);
|
|
else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
|
|
irq_work_queue(&rb->work);
|
|
}
|
|
|
|
BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
|
|
{
|
|
bpf_ringbuf_commit(sample, flags, false /* discard */);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_submit_proto = {
|
|
.func = bpf_ringbuf_submit,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_ALLOC_MEM | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
|
|
{
|
|
bpf_ringbuf_commit(sample, flags, true /* discard */);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_discard_proto = {
|
|
.func = bpf_ringbuf_discard,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_ALLOC_MEM | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
|
|
u64, flags)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
void *rec;
|
|
|
|
if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
|
|
return -EINVAL;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
rec = __bpf_ringbuf_reserve(rb_map->rb, size);
|
|
if (!rec)
|
|
return -EAGAIN;
|
|
|
|
memcpy(rec, data, size);
|
|
bpf_ringbuf_commit(rec, flags, false /* discard */);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_output_proto = {
|
|
.func = bpf_ringbuf_output,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
|
|
{
|
|
struct bpf_ringbuf *rb;
|
|
|
|
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
|
|
|
|
switch (flags) {
|
|
case BPF_RB_AVAIL_DATA:
|
|
return ringbuf_avail_data_sz(rb);
|
|
case BPF_RB_RING_SIZE:
|
|
return rb->mask + 1;
|
|
case BPF_RB_CONS_POS:
|
|
return smp_load_acquire(&rb->consumer_pos);
|
|
case BPF_RB_PROD_POS:
|
|
return smp_load_acquire(&rb->producer_pos);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_query_proto = {
|
|
.func = bpf_ringbuf_query,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
|
|
struct bpf_dynptr_kern *, ptr)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
void *sample;
|
|
int err;
|
|
|
|
if (unlikely(flags)) {
|
|
bpf_dynptr_set_null(ptr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = bpf_dynptr_check_size(size);
|
|
if (err) {
|
|
bpf_dynptr_set_null(ptr);
|
|
return err;
|
|
}
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
|
|
sample = __bpf_ringbuf_reserve(rb_map->rb, size);
|
|
if (!sample) {
|
|
bpf_dynptr_set_null(ptr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
|
|
.func = bpf_ringbuf_reserve_dynptr,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
|
|
{
|
|
if (!ptr->data)
|
|
return 0;
|
|
|
|
bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
|
|
|
|
bpf_dynptr_set_null(ptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
|
|
.func = bpf_ringbuf_submit_dynptr,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
|
|
{
|
|
if (!ptr->data)
|
|
return 0;
|
|
|
|
bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
|
|
|
|
bpf_dynptr_set_null(ptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
|
|
.func = bpf_ringbuf_discard_dynptr,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|