58c5661f21
Currently, kdump_nmi_shootdown_cpus(), a subroutine of crash_kexec(), sends an NMI IPI to CPUs which haven't called panic() to stop them, save their register information and do some cleanups for crash dumping. However, if such a CPU is infinitely looping in NMI context, we fail to save its register information into the crash dump. For example, this can happen when unknown NMIs are broadcast to all CPUs as follows: CPU 0 CPU 1 =========================== ========================== receive an unknown NMI unknown_nmi_error() panic() receive an unknown NMI spin_trylock(&panic_lock) unknown_nmi_error() crash_kexec() panic() spin_trylock(&panic_lock) panic_smp_self_stop() infinite loop kdump_nmi_shootdown_cpus() issue NMI IPI -----------> blocked until IRET infinite loop... Here, since CPU 1 is in NMI context, the second NMI from CPU 0 is blocked until CPU 1 executes IRET. However, CPU 1 never executes IRET, so the NMI is not handled and the callback function to save registers is never called. In practice, this can happen on some servers which broadcast NMIs to all CPUs when the NMI button is pushed. To save registers in this case, we need to: a) Return from NMI handler instead of looping infinitely or b) Call the callback function directly from the infinite loop Inherently, a) is risky because NMI is also used to prevent corrupted data from being propagated to devices. So, we chose b). This patch does the following: 1. Move the infinite looping of CPUs which haven't called panic() in NMI context (actually done by panic_smp_self_stop()) outside of panic() to enable us to refer pt_regs. Please note that panic_smp_self_stop() is still used for normal context. 2. Call a callback of kdump_nmi_shootdown_cpus() directly to save registers and do some cleanups after setting waiting_for_crash_ipi which is used for counting down the number of CPUs which handled the callback Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Aaron Tomlin <atomlin@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Dave Young <dyoung@redhat.com> Cc: David Hildenbrand <dahi@linux.vnet.ibm.com> Cc: Don Zickus <dzickus@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Gobinda Charan Maji <gobinda.cemk07@gmail.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Javi Merino <javi.merino@arm.com> Cc: Jiang Liu <jiang.liu@linux.intel.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: lkml <linux-kernel@vger.kernel.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Nicolas Iooss <nicolas.iooss_linux@m4x.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Seth Jennings <sjenning@redhat.com> Cc: Stefan Lippers-Hollmann <s.l-h@gmx.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Link: http://lkml.kernel.org/r/20151210014628.25437.75256.stgit@softrs [ Cleanup comments, fixup formatting. ] Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
1048 lines
29 KiB
C
1048 lines
29 KiB
C
/*
|
|
* Detect hard and soft lockups on a system
|
|
*
|
|
* started by Don Zickus, Copyright (C) 2010 Red Hat, Inc.
|
|
*
|
|
* Note: Most of this code is borrowed heavily from the original softlockup
|
|
* detector, so thanks to Ingo for the initial implementation.
|
|
* Some chunks also taken from the old x86-specific nmi watchdog code, thanks
|
|
* to those contributors as well.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "NMI watchdog: " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/smpboot.h>
|
|
#include <linux/sched/rt.h>
|
|
#include <linux/tick.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
#include <linux/kvm_para.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/kthread.h>
|
|
|
|
/*
|
|
* The run state of the lockup detectors is controlled by the content of the
|
|
* 'watchdog_enabled' variable. Each lockup detector has its dedicated bit -
|
|
* bit 0 for the hard lockup detector and bit 1 for the soft lockup detector.
|
|
*
|
|
* 'watchdog_user_enabled', 'nmi_watchdog_enabled' and 'soft_watchdog_enabled'
|
|
* are variables that are only used as an 'interface' between the parameters
|
|
* in /proc/sys/kernel and the internal state bits in 'watchdog_enabled'. The
|
|
* 'watchdog_thresh' variable is handled differently because its value is not
|
|
* boolean, and the lockup detectors are 'suspended' while 'watchdog_thresh'
|
|
* is equal zero.
|
|
*/
|
|
#define NMI_WATCHDOG_ENABLED_BIT 0
|
|
#define SOFT_WATCHDOG_ENABLED_BIT 1
|
|
#define NMI_WATCHDOG_ENABLED (1 << NMI_WATCHDOG_ENABLED_BIT)
|
|
#define SOFT_WATCHDOG_ENABLED (1 << SOFT_WATCHDOG_ENABLED_BIT)
|
|
|
|
static DEFINE_MUTEX(watchdog_proc_mutex);
|
|
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR
|
|
static unsigned long __read_mostly watchdog_enabled = SOFT_WATCHDOG_ENABLED|NMI_WATCHDOG_ENABLED;
|
|
#else
|
|
static unsigned long __read_mostly watchdog_enabled = SOFT_WATCHDOG_ENABLED;
|
|
#endif
|
|
int __read_mostly nmi_watchdog_enabled;
|
|
int __read_mostly soft_watchdog_enabled;
|
|
int __read_mostly watchdog_user_enabled;
|
|
int __read_mostly watchdog_thresh = 10;
|
|
|
|
#ifdef CONFIG_SMP
|
|
int __read_mostly sysctl_softlockup_all_cpu_backtrace;
|
|
int __read_mostly sysctl_hardlockup_all_cpu_backtrace;
|
|
#else
|
|
#define sysctl_softlockup_all_cpu_backtrace 0
|
|
#define sysctl_hardlockup_all_cpu_backtrace 0
|
|
#endif
|
|
static struct cpumask watchdog_cpumask __read_mostly;
|
|
unsigned long *watchdog_cpumask_bits = cpumask_bits(&watchdog_cpumask);
|
|
|
|
/* Helper for online, unparked cpus. */
|
|
#define for_each_watchdog_cpu(cpu) \
|
|
for_each_cpu_and((cpu), cpu_online_mask, &watchdog_cpumask)
|
|
|
|
/*
|
|
* The 'watchdog_running' variable is set to 1 when the watchdog threads
|
|
* are registered/started and is set to 0 when the watchdog threads are
|
|
* unregistered/stopped, so it is an indicator whether the threads exist.
|
|
*/
|
|
static int __read_mostly watchdog_running;
|
|
/*
|
|
* If a subsystem has a need to deactivate the watchdog temporarily, it
|
|
* can use the suspend/resume interface to achieve this. The content of
|
|
* the 'watchdog_suspended' variable reflects this state. Existing threads
|
|
* are parked/unparked by the lockup_detector_{suspend|resume} functions
|
|
* (see comment blocks pertaining to those functions for further details).
|
|
*
|
|
* 'watchdog_suspended' also prevents threads from being registered/started
|
|
* or unregistered/stopped via parameters in /proc/sys/kernel, so the state
|
|
* of 'watchdog_running' cannot change while the watchdog is deactivated
|
|
* temporarily (see related code in 'proc' handlers).
|
|
*/
|
|
static int __read_mostly watchdog_suspended;
|
|
|
|
static u64 __read_mostly sample_period;
|
|
|
|
static DEFINE_PER_CPU(unsigned long, watchdog_touch_ts);
|
|
static DEFINE_PER_CPU(struct task_struct *, softlockup_watchdog);
|
|
static DEFINE_PER_CPU(struct hrtimer, watchdog_hrtimer);
|
|
static DEFINE_PER_CPU(bool, softlockup_touch_sync);
|
|
static DEFINE_PER_CPU(bool, soft_watchdog_warn);
|
|
static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts);
|
|
static DEFINE_PER_CPU(unsigned long, soft_lockup_hrtimer_cnt);
|
|
static DEFINE_PER_CPU(struct task_struct *, softlockup_task_ptr_saved);
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR
|
|
static DEFINE_PER_CPU(bool, hard_watchdog_warn);
|
|
static DEFINE_PER_CPU(bool, watchdog_nmi_touch);
|
|
static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts_saved);
|
|
static DEFINE_PER_CPU(struct perf_event *, watchdog_ev);
|
|
#endif
|
|
static unsigned long soft_lockup_nmi_warn;
|
|
|
|
/* boot commands */
|
|
/*
|
|
* Should we panic when a soft-lockup or hard-lockup occurs:
|
|
*/
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR
|
|
unsigned int __read_mostly hardlockup_panic =
|
|
CONFIG_BOOTPARAM_HARDLOCKUP_PANIC_VALUE;
|
|
static unsigned long hardlockup_allcpu_dumped;
|
|
/*
|
|
* We may not want to enable hard lockup detection by default in all cases,
|
|
* for example when running the kernel as a guest on a hypervisor. In these
|
|
* cases this function can be called to disable hard lockup detection. This
|
|
* function should only be executed once by the boot processor before the
|
|
* kernel command line parameters are parsed, because otherwise it is not
|
|
* possible to override this in hardlockup_panic_setup().
|
|
*/
|
|
void hardlockup_detector_disable(void)
|
|
{
|
|
watchdog_enabled &= ~NMI_WATCHDOG_ENABLED;
|
|
}
|
|
|
|
static int __init hardlockup_panic_setup(char *str)
|
|
{
|
|
if (!strncmp(str, "panic", 5))
|
|
hardlockup_panic = 1;
|
|
else if (!strncmp(str, "nopanic", 7))
|
|
hardlockup_panic = 0;
|
|
else if (!strncmp(str, "0", 1))
|
|
watchdog_enabled &= ~NMI_WATCHDOG_ENABLED;
|
|
else if (!strncmp(str, "1", 1))
|
|
watchdog_enabled |= NMI_WATCHDOG_ENABLED;
|
|
return 1;
|
|
}
|
|
__setup("nmi_watchdog=", hardlockup_panic_setup);
|
|
#endif
|
|
|
|
unsigned int __read_mostly softlockup_panic =
|
|
CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC_VALUE;
|
|
|
|
static int __init softlockup_panic_setup(char *str)
|
|
{
|
|
softlockup_panic = simple_strtoul(str, NULL, 0);
|
|
|
|
return 1;
|
|
}
|
|
__setup("softlockup_panic=", softlockup_panic_setup);
|
|
|
|
static int __init nowatchdog_setup(char *str)
|
|
{
|
|
watchdog_enabled = 0;
|
|
return 1;
|
|
}
|
|
__setup("nowatchdog", nowatchdog_setup);
|
|
|
|
static int __init nosoftlockup_setup(char *str)
|
|
{
|
|
watchdog_enabled &= ~SOFT_WATCHDOG_ENABLED;
|
|
return 1;
|
|
}
|
|
__setup("nosoftlockup", nosoftlockup_setup);
|
|
|
|
#ifdef CONFIG_SMP
|
|
static int __init softlockup_all_cpu_backtrace_setup(char *str)
|
|
{
|
|
sysctl_softlockup_all_cpu_backtrace =
|
|
!!simple_strtol(str, NULL, 0);
|
|
return 1;
|
|
}
|
|
__setup("softlockup_all_cpu_backtrace=", softlockup_all_cpu_backtrace_setup);
|
|
static int __init hardlockup_all_cpu_backtrace_setup(char *str)
|
|
{
|
|
sysctl_hardlockup_all_cpu_backtrace =
|
|
!!simple_strtol(str, NULL, 0);
|
|
return 1;
|
|
}
|
|
__setup("hardlockup_all_cpu_backtrace=", hardlockup_all_cpu_backtrace_setup);
|
|
#endif
|
|
|
|
/*
|
|
* Hard-lockup warnings should be triggered after just a few seconds. Soft-
|
|
* lockups can have false positives under extreme conditions. So we generally
|
|
* want a higher threshold for soft lockups than for hard lockups. So we couple
|
|
* the thresholds with a factor: we make the soft threshold twice the amount of
|
|
* time the hard threshold is.
|
|
*/
|
|
static int get_softlockup_thresh(void)
|
|
{
|
|
return watchdog_thresh * 2;
|
|
}
|
|
|
|
/*
|
|
* Returns seconds, approximately. We don't need nanosecond
|
|
* resolution, and we don't need to waste time with a big divide when
|
|
* 2^30ns == 1.074s.
|
|
*/
|
|
static unsigned long get_timestamp(void)
|
|
{
|
|
return running_clock() >> 30LL; /* 2^30 ~= 10^9 */
|
|
}
|
|
|
|
static void set_sample_period(void)
|
|
{
|
|
/*
|
|
* convert watchdog_thresh from seconds to ns
|
|
* the divide by 5 is to give hrtimer several chances (two
|
|
* or three with the current relation between the soft
|
|
* and hard thresholds) to increment before the
|
|
* hardlockup detector generates a warning
|
|
*/
|
|
sample_period = get_softlockup_thresh() * ((u64)NSEC_PER_SEC / 5);
|
|
}
|
|
|
|
/* Commands for resetting the watchdog */
|
|
static void __touch_watchdog(void)
|
|
{
|
|
__this_cpu_write(watchdog_touch_ts, get_timestamp());
|
|
}
|
|
|
|
void touch_softlockup_watchdog(void)
|
|
{
|
|
/*
|
|
* Preemption can be enabled. It doesn't matter which CPU's timestamp
|
|
* gets zeroed here, so use the raw_ operation.
|
|
*/
|
|
raw_cpu_write(watchdog_touch_ts, 0);
|
|
}
|
|
EXPORT_SYMBOL(touch_softlockup_watchdog);
|
|
|
|
void touch_all_softlockup_watchdogs(void)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* this is done lockless
|
|
* do we care if a 0 races with a timestamp?
|
|
* all it means is the softlock check starts one cycle later
|
|
*/
|
|
for_each_watchdog_cpu(cpu)
|
|
per_cpu(watchdog_touch_ts, cpu) = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR
|
|
void touch_nmi_watchdog(void)
|
|
{
|
|
/*
|
|
* Using __raw here because some code paths have
|
|
* preemption enabled. If preemption is enabled
|
|
* then interrupts should be enabled too, in which
|
|
* case we shouldn't have to worry about the watchdog
|
|
* going off.
|
|
*/
|
|
raw_cpu_write(watchdog_nmi_touch, true);
|
|
touch_softlockup_watchdog();
|
|
}
|
|
EXPORT_SYMBOL(touch_nmi_watchdog);
|
|
|
|
#endif
|
|
|
|
void touch_softlockup_watchdog_sync(void)
|
|
{
|
|
__this_cpu_write(softlockup_touch_sync, true);
|
|
__this_cpu_write(watchdog_touch_ts, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR
|
|
/* watchdog detector functions */
|
|
static bool is_hardlockup(void)
|
|
{
|
|
unsigned long hrint = __this_cpu_read(hrtimer_interrupts);
|
|
|
|
if (__this_cpu_read(hrtimer_interrupts_saved) == hrint)
|
|
return true;
|
|
|
|
__this_cpu_write(hrtimer_interrupts_saved, hrint);
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
static int is_softlockup(unsigned long touch_ts)
|
|
{
|
|
unsigned long now = get_timestamp();
|
|
|
|
if ((watchdog_enabled & SOFT_WATCHDOG_ENABLED) && watchdog_thresh){
|
|
/* Warn about unreasonable delays. */
|
|
if (time_after(now, touch_ts + get_softlockup_thresh()))
|
|
return now - touch_ts;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR
|
|
|
|
static struct perf_event_attr wd_hw_attr = {
|
|
.type = PERF_TYPE_HARDWARE,
|
|
.config = PERF_COUNT_HW_CPU_CYCLES,
|
|
.size = sizeof(struct perf_event_attr),
|
|
.pinned = 1,
|
|
.disabled = 1,
|
|
};
|
|
|
|
/* Callback function for perf event subsystem */
|
|
static void watchdog_overflow_callback(struct perf_event *event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
/* Ensure the watchdog never gets throttled */
|
|
event->hw.interrupts = 0;
|
|
|
|
if (__this_cpu_read(watchdog_nmi_touch) == true) {
|
|
__this_cpu_write(watchdog_nmi_touch, false);
|
|
return;
|
|
}
|
|
|
|
/* check for a hardlockup
|
|
* This is done by making sure our timer interrupt
|
|
* is incrementing. The timer interrupt should have
|
|
* fired multiple times before we overflow'd. If it hasn't
|
|
* then this is a good indication the cpu is stuck
|
|
*/
|
|
if (is_hardlockup()) {
|
|
int this_cpu = smp_processor_id();
|
|
struct pt_regs *regs = get_irq_regs();
|
|
|
|
/* only print hardlockups once */
|
|
if (__this_cpu_read(hard_watchdog_warn) == true)
|
|
return;
|
|
|
|
pr_emerg("Watchdog detected hard LOCKUP on cpu %d", this_cpu);
|
|
print_modules();
|
|
print_irqtrace_events(current);
|
|
if (regs)
|
|
show_regs(regs);
|
|
else
|
|
dump_stack();
|
|
|
|
/*
|
|
* Perform all-CPU dump only once to avoid multiple hardlockups
|
|
* generating interleaving traces
|
|
*/
|
|
if (sysctl_hardlockup_all_cpu_backtrace &&
|
|
!test_and_set_bit(0, &hardlockup_allcpu_dumped))
|
|
trigger_allbutself_cpu_backtrace();
|
|
|
|
if (hardlockup_panic)
|
|
nmi_panic(regs, "Hard LOCKUP");
|
|
|
|
__this_cpu_write(hard_watchdog_warn, true);
|
|
return;
|
|
}
|
|
|
|
__this_cpu_write(hard_watchdog_warn, false);
|
|
return;
|
|
}
|
|
#endif /* CONFIG_HARDLOCKUP_DETECTOR */
|
|
|
|
static void watchdog_interrupt_count(void)
|
|
{
|
|
__this_cpu_inc(hrtimer_interrupts);
|
|
}
|
|
|
|
static int watchdog_nmi_enable(unsigned int cpu);
|
|
static void watchdog_nmi_disable(unsigned int cpu);
|
|
|
|
static int watchdog_enable_all_cpus(void);
|
|
static void watchdog_disable_all_cpus(void);
|
|
|
|
/* watchdog kicker functions */
|
|
static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
|
|
{
|
|
unsigned long touch_ts = __this_cpu_read(watchdog_touch_ts);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
int duration;
|
|
int softlockup_all_cpu_backtrace = sysctl_softlockup_all_cpu_backtrace;
|
|
|
|
/* kick the hardlockup detector */
|
|
watchdog_interrupt_count();
|
|
|
|
/* kick the softlockup detector */
|
|
wake_up_process(__this_cpu_read(softlockup_watchdog));
|
|
|
|
/* .. and repeat */
|
|
hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period));
|
|
|
|
if (touch_ts == 0) {
|
|
if (unlikely(__this_cpu_read(softlockup_touch_sync))) {
|
|
/*
|
|
* If the time stamp was touched atomically
|
|
* make sure the scheduler tick is up to date.
|
|
*/
|
|
__this_cpu_write(softlockup_touch_sync, false);
|
|
sched_clock_tick();
|
|
}
|
|
|
|
/* Clear the guest paused flag on watchdog reset */
|
|
kvm_check_and_clear_guest_paused();
|
|
__touch_watchdog();
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
/* check for a softlockup
|
|
* This is done by making sure a high priority task is
|
|
* being scheduled. The task touches the watchdog to
|
|
* indicate it is getting cpu time. If it hasn't then
|
|
* this is a good indication some task is hogging the cpu
|
|
*/
|
|
duration = is_softlockup(touch_ts);
|
|
if (unlikely(duration)) {
|
|
/*
|
|
* If a virtual machine is stopped by the host it can look to
|
|
* the watchdog like a soft lockup, check to see if the host
|
|
* stopped the vm before we issue the warning
|
|
*/
|
|
if (kvm_check_and_clear_guest_paused())
|
|
return HRTIMER_RESTART;
|
|
|
|
/* only warn once */
|
|
if (__this_cpu_read(soft_watchdog_warn) == true) {
|
|
/*
|
|
* When multiple processes are causing softlockups the
|
|
* softlockup detector only warns on the first one
|
|
* because the code relies on a full quiet cycle to
|
|
* re-arm. The second process prevents the quiet cycle
|
|
* and never gets reported. Use task pointers to detect
|
|
* this.
|
|
*/
|
|
if (__this_cpu_read(softlockup_task_ptr_saved) !=
|
|
current) {
|
|
__this_cpu_write(soft_watchdog_warn, false);
|
|
__touch_watchdog();
|
|
}
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
if (softlockup_all_cpu_backtrace) {
|
|
/* Prevent multiple soft-lockup reports if one cpu is already
|
|
* engaged in dumping cpu back traces
|
|
*/
|
|
if (test_and_set_bit(0, &soft_lockup_nmi_warn)) {
|
|
/* Someone else will report us. Let's give up */
|
|
__this_cpu_write(soft_watchdog_warn, true);
|
|
return HRTIMER_RESTART;
|
|
}
|
|
}
|
|
|
|
pr_emerg("BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n",
|
|
smp_processor_id(), duration,
|
|
current->comm, task_pid_nr(current));
|
|
__this_cpu_write(softlockup_task_ptr_saved, current);
|
|
print_modules();
|
|
print_irqtrace_events(current);
|
|
if (regs)
|
|
show_regs(regs);
|
|
else
|
|
dump_stack();
|
|
|
|
if (softlockup_all_cpu_backtrace) {
|
|
/* Avoid generating two back traces for current
|
|
* given that one is already made above
|
|
*/
|
|
trigger_allbutself_cpu_backtrace();
|
|
|
|
clear_bit(0, &soft_lockup_nmi_warn);
|
|
/* Barrier to sync with other cpus */
|
|
smp_mb__after_atomic();
|
|
}
|
|
|
|
add_taint(TAINT_SOFTLOCKUP, LOCKDEP_STILL_OK);
|
|
if (softlockup_panic)
|
|
panic("softlockup: hung tasks");
|
|
__this_cpu_write(soft_watchdog_warn, true);
|
|
} else
|
|
__this_cpu_write(soft_watchdog_warn, false);
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
static void watchdog_set_prio(unsigned int policy, unsigned int prio)
|
|
{
|
|
struct sched_param param = { .sched_priority = prio };
|
|
|
|
sched_setscheduler(current, policy, ¶m);
|
|
}
|
|
|
|
static void watchdog_enable(unsigned int cpu)
|
|
{
|
|
struct hrtimer *hrtimer = raw_cpu_ptr(&watchdog_hrtimer);
|
|
|
|
/* kick off the timer for the hardlockup detector */
|
|
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
hrtimer->function = watchdog_timer_fn;
|
|
|
|
/* Enable the perf event */
|
|
watchdog_nmi_enable(cpu);
|
|
|
|
/* done here because hrtimer_start can only pin to smp_processor_id() */
|
|
hrtimer_start(hrtimer, ns_to_ktime(sample_period),
|
|
HRTIMER_MODE_REL_PINNED);
|
|
|
|
/* initialize timestamp */
|
|
watchdog_set_prio(SCHED_FIFO, MAX_RT_PRIO - 1);
|
|
__touch_watchdog();
|
|
}
|
|
|
|
static void watchdog_disable(unsigned int cpu)
|
|
{
|
|
struct hrtimer *hrtimer = raw_cpu_ptr(&watchdog_hrtimer);
|
|
|
|
watchdog_set_prio(SCHED_NORMAL, 0);
|
|
hrtimer_cancel(hrtimer);
|
|
/* disable the perf event */
|
|
watchdog_nmi_disable(cpu);
|
|
}
|
|
|
|
static void watchdog_cleanup(unsigned int cpu, bool online)
|
|
{
|
|
watchdog_disable(cpu);
|
|
}
|
|
|
|
static int watchdog_should_run(unsigned int cpu)
|
|
{
|
|
return __this_cpu_read(hrtimer_interrupts) !=
|
|
__this_cpu_read(soft_lockup_hrtimer_cnt);
|
|
}
|
|
|
|
/*
|
|
* The watchdog thread function - touches the timestamp.
|
|
*
|
|
* It only runs once every sample_period seconds (4 seconds by
|
|
* default) to reset the softlockup timestamp. If this gets delayed
|
|
* for more than 2*watchdog_thresh seconds then the debug-printout
|
|
* triggers in watchdog_timer_fn().
|
|
*/
|
|
static void watchdog(unsigned int cpu)
|
|
{
|
|
__this_cpu_write(soft_lockup_hrtimer_cnt,
|
|
__this_cpu_read(hrtimer_interrupts));
|
|
__touch_watchdog();
|
|
|
|
/*
|
|
* watchdog_nmi_enable() clears the NMI_WATCHDOG_ENABLED bit in the
|
|
* failure path. Check for failures that can occur asynchronously -
|
|
* for example, when CPUs are on-lined - and shut down the hardware
|
|
* perf event on each CPU accordingly.
|
|
*
|
|
* The only non-obvious place this bit can be cleared is through
|
|
* watchdog_nmi_enable(), so a pr_info() is placed there. Placing a
|
|
* pr_info here would be too noisy as it would result in a message
|
|
* every few seconds if the hardlockup was disabled but the softlockup
|
|
* enabled.
|
|
*/
|
|
if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
|
|
watchdog_nmi_disable(cpu);
|
|
}
|
|
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR
|
|
/*
|
|
* People like the simple clean cpu node info on boot.
|
|
* Reduce the watchdog noise by only printing messages
|
|
* that are different from what cpu0 displayed.
|
|
*/
|
|
static unsigned long cpu0_err;
|
|
|
|
static int watchdog_nmi_enable(unsigned int cpu)
|
|
{
|
|
struct perf_event_attr *wd_attr;
|
|
struct perf_event *event = per_cpu(watchdog_ev, cpu);
|
|
|
|
/* nothing to do if the hard lockup detector is disabled */
|
|
if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
|
|
goto out;
|
|
|
|
/* is it already setup and enabled? */
|
|
if (event && event->state > PERF_EVENT_STATE_OFF)
|
|
goto out;
|
|
|
|
/* it is setup but not enabled */
|
|
if (event != NULL)
|
|
goto out_enable;
|
|
|
|
wd_attr = &wd_hw_attr;
|
|
wd_attr->sample_period = hw_nmi_get_sample_period(watchdog_thresh);
|
|
|
|
/* Try to register using hardware perf events */
|
|
event = perf_event_create_kernel_counter(wd_attr, cpu, NULL, watchdog_overflow_callback, NULL);
|
|
|
|
/* save cpu0 error for future comparision */
|
|
if (cpu == 0 && IS_ERR(event))
|
|
cpu0_err = PTR_ERR(event);
|
|
|
|
if (!IS_ERR(event)) {
|
|
/* only print for cpu0 or different than cpu0 */
|
|
if (cpu == 0 || cpu0_err)
|
|
pr_info("enabled on all CPUs, permanently consumes one hw-PMU counter.\n");
|
|
goto out_save;
|
|
}
|
|
|
|
/*
|
|
* Disable the hard lockup detector if _any_ CPU fails to set up
|
|
* set up the hardware perf event. The watchdog() function checks
|
|
* the NMI_WATCHDOG_ENABLED bit periodically.
|
|
*
|
|
* The barriers are for syncing up watchdog_enabled across all the
|
|
* cpus, as clear_bit() does not use barriers.
|
|
*/
|
|
smp_mb__before_atomic();
|
|
clear_bit(NMI_WATCHDOG_ENABLED_BIT, &watchdog_enabled);
|
|
smp_mb__after_atomic();
|
|
|
|
/* skip displaying the same error again */
|
|
if (cpu > 0 && (PTR_ERR(event) == cpu0_err))
|
|
return PTR_ERR(event);
|
|
|
|
/* vary the KERN level based on the returned errno */
|
|
if (PTR_ERR(event) == -EOPNOTSUPP)
|
|
pr_info("disabled (cpu%i): not supported (no LAPIC?)\n", cpu);
|
|
else if (PTR_ERR(event) == -ENOENT)
|
|
pr_warn("disabled (cpu%i): hardware events not enabled\n",
|
|
cpu);
|
|
else
|
|
pr_err("disabled (cpu%i): unable to create perf event: %ld\n",
|
|
cpu, PTR_ERR(event));
|
|
|
|
pr_info("Shutting down hard lockup detector on all cpus\n");
|
|
|
|
return PTR_ERR(event);
|
|
|
|
/* success path */
|
|
out_save:
|
|
per_cpu(watchdog_ev, cpu) = event;
|
|
out_enable:
|
|
perf_event_enable(per_cpu(watchdog_ev, cpu));
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
static void watchdog_nmi_disable(unsigned int cpu)
|
|
{
|
|
struct perf_event *event = per_cpu(watchdog_ev, cpu);
|
|
|
|
if (event) {
|
|
perf_event_disable(event);
|
|
per_cpu(watchdog_ev, cpu) = NULL;
|
|
|
|
/* should be in cleanup, but blocks oprofile */
|
|
perf_event_release_kernel(event);
|
|
}
|
|
if (cpu == 0) {
|
|
/* watchdog_nmi_enable() expects this to be zero initially. */
|
|
cpu0_err = 0;
|
|
}
|
|
}
|
|
|
|
#else
|
|
static int watchdog_nmi_enable(unsigned int cpu) { return 0; }
|
|
static void watchdog_nmi_disable(unsigned int cpu) { return; }
|
|
#endif /* CONFIG_HARDLOCKUP_DETECTOR */
|
|
|
|
static struct smp_hotplug_thread watchdog_threads = {
|
|
.store = &softlockup_watchdog,
|
|
.thread_should_run = watchdog_should_run,
|
|
.thread_fn = watchdog,
|
|
.thread_comm = "watchdog/%u",
|
|
.setup = watchdog_enable,
|
|
.cleanup = watchdog_cleanup,
|
|
.park = watchdog_disable,
|
|
.unpark = watchdog_enable,
|
|
};
|
|
|
|
/*
|
|
* park all watchdog threads that are specified in 'watchdog_cpumask'
|
|
*
|
|
* This function returns an error if kthread_park() of a watchdog thread
|
|
* fails. In this situation, the watchdog threads of some CPUs can already
|
|
* be parked and the watchdog threads of other CPUs can still be runnable.
|
|
* Callers are expected to handle this special condition as appropriate in
|
|
* their context.
|
|
*
|
|
* This function may only be called in a context that is protected against
|
|
* races with CPU hotplug - for example, via get_online_cpus().
|
|
*/
|
|
static int watchdog_park_threads(void)
|
|
{
|
|
int cpu, ret = 0;
|
|
|
|
for_each_watchdog_cpu(cpu) {
|
|
ret = kthread_park(per_cpu(softlockup_watchdog, cpu));
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* unpark all watchdog threads that are specified in 'watchdog_cpumask'
|
|
*
|
|
* This function may only be called in a context that is protected against
|
|
* races with CPU hotplug - for example, via get_online_cpus().
|
|
*/
|
|
static void watchdog_unpark_threads(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_watchdog_cpu(cpu)
|
|
kthread_unpark(per_cpu(softlockup_watchdog, cpu));
|
|
}
|
|
|
|
/*
|
|
* Suspend the hard and soft lockup detector by parking the watchdog threads.
|
|
*/
|
|
int lockup_detector_suspend(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
get_online_cpus();
|
|
mutex_lock(&watchdog_proc_mutex);
|
|
/*
|
|
* Multiple suspend requests can be active in parallel (counted by
|
|
* the 'watchdog_suspended' variable). If the watchdog threads are
|
|
* running, the first caller takes care that they will be parked.
|
|
* The state of 'watchdog_running' cannot change while a suspend
|
|
* request is active (see related code in 'proc' handlers).
|
|
*/
|
|
if (watchdog_running && !watchdog_suspended)
|
|
ret = watchdog_park_threads();
|
|
|
|
if (ret == 0)
|
|
watchdog_suspended++;
|
|
else {
|
|
watchdog_disable_all_cpus();
|
|
pr_err("Failed to suspend lockup detectors, disabled\n");
|
|
watchdog_enabled = 0;
|
|
}
|
|
|
|
mutex_unlock(&watchdog_proc_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Resume the hard and soft lockup detector by unparking the watchdog threads.
|
|
*/
|
|
void lockup_detector_resume(void)
|
|
{
|
|
mutex_lock(&watchdog_proc_mutex);
|
|
|
|
watchdog_suspended--;
|
|
/*
|
|
* The watchdog threads are unparked if they were previously running
|
|
* and if there is no more active suspend request.
|
|
*/
|
|
if (watchdog_running && !watchdog_suspended)
|
|
watchdog_unpark_threads();
|
|
|
|
mutex_unlock(&watchdog_proc_mutex);
|
|
put_online_cpus();
|
|
}
|
|
|
|
static int update_watchdog_all_cpus(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = watchdog_park_threads();
|
|
if (ret)
|
|
return ret;
|
|
|
|
watchdog_unpark_threads();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int watchdog_enable_all_cpus(void)
|
|
{
|
|
int err = 0;
|
|
|
|
if (!watchdog_running) {
|
|
err = smpboot_register_percpu_thread_cpumask(&watchdog_threads,
|
|
&watchdog_cpumask);
|
|
if (err)
|
|
pr_err("Failed to create watchdog threads, disabled\n");
|
|
else
|
|
watchdog_running = 1;
|
|
} else {
|
|
/*
|
|
* Enable/disable the lockup detectors or
|
|
* change the sample period 'on the fly'.
|
|
*/
|
|
err = update_watchdog_all_cpus();
|
|
|
|
if (err) {
|
|
watchdog_disable_all_cpus();
|
|
pr_err("Failed to update lockup detectors, disabled\n");
|
|
}
|
|
}
|
|
|
|
if (err)
|
|
watchdog_enabled = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void watchdog_disable_all_cpus(void)
|
|
{
|
|
if (watchdog_running) {
|
|
watchdog_running = 0;
|
|
smpboot_unregister_percpu_thread(&watchdog_threads);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
|
|
/*
|
|
* Update the run state of the lockup detectors.
|
|
*/
|
|
static int proc_watchdog_update(void)
|
|
{
|
|
int err = 0;
|
|
|
|
/*
|
|
* Watchdog threads won't be started if they are already active.
|
|
* The 'watchdog_running' variable in watchdog_*_all_cpus() takes
|
|
* care of this. If those threads are already active, the sample
|
|
* period will be updated and the lockup detectors will be enabled
|
|
* or disabled 'on the fly'.
|
|
*/
|
|
if (watchdog_enabled && watchdog_thresh)
|
|
err = watchdog_enable_all_cpus();
|
|
else
|
|
watchdog_disable_all_cpus();
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
/*
|
|
* common function for watchdog, nmi_watchdog and soft_watchdog parameter
|
|
*
|
|
* caller | table->data points to | 'which' contains the flag(s)
|
|
* -------------------|-----------------------|-----------------------------
|
|
* proc_watchdog | watchdog_user_enabled | NMI_WATCHDOG_ENABLED or'ed
|
|
* | | with SOFT_WATCHDOG_ENABLED
|
|
* -------------------|-----------------------|-----------------------------
|
|
* proc_nmi_watchdog | nmi_watchdog_enabled | NMI_WATCHDOG_ENABLED
|
|
* -------------------|-----------------------|-----------------------------
|
|
* proc_soft_watchdog | soft_watchdog_enabled | SOFT_WATCHDOG_ENABLED
|
|
*/
|
|
static int proc_watchdog_common(int which, struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
int err, old, new;
|
|
int *watchdog_param = (int *)table->data;
|
|
|
|
get_online_cpus();
|
|
mutex_lock(&watchdog_proc_mutex);
|
|
|
|
if (watchdog_suspended) {
|
|
/* no parameter changes allowed while watchdog is suspended */
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the parameter is being read return the state of the corresponding
|
|
* bit(s) in 'watchdog_enabled', else update 'watchdog_enabled' and the
|
|
* run state of the lockup detectors.
|
|
*/
|
|
if (!write) {
|
|
*watchdog_param = (watchdog_enabled & which) != 0;
|
|
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
} else {
|
|
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* There is a race window between fetching the current value
|
|
* from 'watchdog_enabled' and storing the new value. During
|
|
* this race window, watchdog_nmi_enable() can sneak in and
|
|
* clear the NMI_WATCHDOG_ENABLED bit in 'watchdog_enabled'.
|
|
* The 'cmpxchg' detects this race and the loop retries.
|
|
*/
|
|
do {
|
|
old = watchdog_enabled;
|
|
/*
|
|
* If the parameter value is not zero set the
|
|
* corresponding bit(s), else clear it(them).
|
|
*/
|
|
if (*watchdog_param)
|
|
new = old | which;
|
|
else
|
|
new = old & ~which;
|
|
} while (cmpxchg(&watchdog_enabled, old, new) != old);
|
|
|
|
/*
|
|
* Update the run state of the lockup detectors. There is _no_
|
|
* need to check the value returned by proc_watchdog_update()
|
|
* and to restore the previous value of 'watchdog_enabled' as
|
|
* both lockup detectors are disabled if proc_watchdog_update()
|
|
* returns an error.
|
|
*/
|
|
err = proc_watchdog_update();
|
|
}
|
|
out:
|
|
mutex_unlock(&watchdog_proc_mutex);
|
|
put_online_cpus();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* /proc/sys/kernel/watchdog
|
|
*/
|
|
int proc_watchdog(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
return proc_watchdog_common(NMI_WATCHDOG_ENABLED|SOFT_WATCHDOG_ENABLED,
|
|
table, write, buffer, lenp, ppos);
|
|
}
|
|
|
|
/*
|
|
* /proc/sys/kernel/nmi_watchdog
|
|
*/
|
|
int proc_nmi_watchdog(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
return proc_watchdog_common(NMI_WATCHDOG_ENABLED,
|
|
table, write, buffer, lenp, ppos);
|
|
}
|
|
|
|
/*
|
|
* /proc/sys/kernel/soft_watchdog
|
|
*/
|
|
int proc_soft_watchdog(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
return proc_watchdog_common(SOFT_WATCHDOG_ENABLED,
|
|
table, write, buffer, lenp, ppos);
|
|
}
|
|
|
|
/*
|
|
* /proc/sys/kernel/watchdog_thresh
|
|
*/
|
|
int proc_watchdog_thresh(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
int err, old;
|
|
|
|
get_online_cpus();
|
|
mutex_lock(&watchdog_proc_mutex);
|
|
|
|
if (watchdog_suspended) {
|
|
/* no parameter changes allowed while watchdog is suspended */
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
old = ACCESS_ONCE(watchdog_thresh);
|
|
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
|
|
if (err || !write)
|
|
goto out;
|
|
|
|
/*
|
|
* Update the sample period. Restore on failure.
|
|
*/
|
|
set_sample_period();
|
|
err = proc_watchdog_update();
|
|
if (err) {
|
|
watchdog_thresh = old;
|
|
set_sample_period();
|
|
}
|
|
out:
|
|
mutex_unlock(&watchdog_proc_mutex);
|
|
put_online_cpus();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* The cpumask is the mask of possible cpus that the watchdog can run
|
|
* on, not the mask of cpus it is actually running on. This allows the
|
|
* user to specify a mask that will include cpus that have not yet
|
|
* been brought online, if desired.
|
|
*/
|
|
int proc_watchdog_cpumask(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
int err;
|
|
|
|
get_online_cpus();
|
|
mutex_lock(&watchdog_proc_mutex);
|
|
|
|
if (watchdog_suspended) {
|
|
/* no parameter changes allowed while watchdog is suspended */
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
err = proc_do_large_bitmap(table, write, buffer, lenp, ppos);
|
|
if (!err && write) {
|
|
/* Remove impossible cpus to keep sysctl output cleaner. */
|
|
cpumask_and(&watchdog_cpumask, &watchdog_cpumask,
|
|
cpu_possible_mask);
|
|
|
|
if (watchdog_running) {
|
|
/*
|
|
* Failure would be due to being unable to allocate
|
|
* a temporary cpumask, so we are likely not in a
|
|
* position to do much else to make things better.
|
|
*/
|
|
if (smpboot_update_cpumask_percpu_thread(
|
|
&watchdog_threads, &watchdog_cpumask) != 0)
|
|
pr_err("cpumask update failed\n");
|
|
}
|
|
}
|
|
out:
|
|
mutex_unlock(&watchdog_proc_mutex);
|
|
put_online_cpus();
|
|
return err;
|
|
}
|
|
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
void __init lockup_detector_init(void)
|
|
{
|
|
set_sample_period();
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
if (tick_nohz_full_enabled()) {
|
|
pr_info("Disabling watchdog on nohz_full cores by default\n");
|
|
cpumask_copy(&watchdog_cpumask, housekeeping_mask);
|
|
} else
|
|
cpumask_copy(&watchdog_cpumask, cpu_possible_mask);
|
|
#else
|
|
cpumask_copy(&watchdog_cpumask, cpu_possible_mask);
|
|
#endif
|
|
|
|
if (watchdog_enabled)
|
|
watchdog_enable_all_cpus();
|
|
}
|