79e06c4c49
- Use common KVM implementation of MMU memory caches - SBI v0.2 support for Guest - Initial KVM selftests support - Fix to avoid spurious virtual interrupts after clearing hideleg CSR - Update email address for Anup and Atish ARM: - Simplification of the 'vcpu first run' by integrating it into KVM's 'pid change' flow - Refactoring of the FP and SVE state tracking, also leading to a simpler state and less shared data between EL1 and EL2 in the nVHE case - Tidy up the header file usage for the nvhe hyp object - New HYP unsharing mechanism, finally allowing pages to be unmapped from the Stage-1 EL2 page-tables - Various pKVM cleanups around refcounting and sharing - A couple of vgic fixes for bugs that would trigger once the vcpu xarray rework is merged, but not sooner - Add minimal support for ARMv8.7's PMU extension - Rework kvm_pgtable initialisation ahead of the NV work - New selftest for IRQ injection - Teach selftests about the lack of default IPA space and page sizes - Expand sysreg selftest to deal with Pointer Authentication - The usual bunch of cleanups and doc update s390: - fix sigp sense/start/stop/inconsistency - cleanups x86: - Clean up some function prototypes more - improved gfn_to_pfn_cache with proper invalidation, used by Xen emulation - add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery - completely remove potential TOC/TOU races in nested SVM consistency checks - update some PMCs on emulated instructions - Intel AMX support (joint work between Thomas and Intel) - large MMU cleanups - module parameter to disable PMU virtualization - cleanup register cache - first part of halt handling cleanups - Hyper-V enlightened MSR bitmap support for nested hypervisors Generic: - clean up Makefiles - introduce CONFIG_HAVE_KVM_DIRTY_RING - optimize memslot lookup using a tree - optimize vCPU array usage by converting to xarray -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHhxvsUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroPZkAf+Nz92UL/5nNGcdHtE4m7AToMmitE9 bYkesf9BMQvAe5wjkABLuoHGi6ay4jabo4fiGzbdkiK7lO5YgfsWiMB3/MT5fl4E jRPzaVQabp3YZLM8UYCBmfUVuRj524S967SfSRe0AvYjDEH8y7klPf4+7sCsFT0/ Px9Vf2KGuOlf0eM78yKg4rGaF0jS22eLgXm6FfNMY8/e29ZAo/jyUmqBY+Z2xxZG aWhceDtSheW1jwLHLj3nOlQJvHTn8LVGXBE/R8Gda3ZjrBV2rKaDi4Fh+HD+dz86 2zVXwzQ7uck2CMW73GMoXMTWoKSHMyvlBOs1BdvBm4UsnGcXR+q8IFCeuQ== =s73m -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "RISCV: - Use common KVM implementation of MMU memory caches - SBI v0.2 support for Guest - Initial KVM selftests support - Fix to avoid spurious virtual interrupts after clearing hideleg CSR - Update email address for Anup and Atish ARM: - Simplification of the 'vcpu first run' by integrating it into KVM's 'pid change' flow - Refactoring of the FP and SVE state tracking, also leading to a simpler state and less shared data between EL1 and EL2 in the nVHE case - Tidy up the header file usage for the nvhe hyp object - New HYP unsharing mechanism, finally allowing pages to be unmapped from the Stage-1 EL2 page-tables - Various pKVM cleanups around refcounting and sharing - A couple of vgic fixes for bugs that would trigger once the vcpu xarray rework is merged, but not sooner - Add minimal support for ARMv8.7's PMU extension - Rework kvm_pgtable initialisation ahead of the NV work - New selftest for IRQ injection - Teach selftests about the lack of default IPA space and page sizes - Expand sysreg selftest to deal with Pointer Authentication - The usual bunch of cleanups and doc update s390: - fix sigp sense/start/stop/inconsistency - cleanups x86: - Clean up some function prototypes more - improved gfn_to_pfn_cache with proper invalidation, used by Xen emulation - add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery - completely remove potential TOC/TOU races in nested SVM consistency checks - update some PMCs on emulated instructions - Intel AMX support (joint work between Thomas and Intel) - large MMU cleanups - module parameter to disable PMU virtualization - cleanup register cache - first part of halt handling cleanups - Hyper-V enlightened MSR bitmap support for nested hypervisors Generic: - clean up Makefiles - introduce CONFIG_HAVE_KVM_DIRTY_RING - optimize memslot lookup using a tree - optimize vCPU array usage by converting to xarray" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (268 commits) x86/fpu: Fix inline prefix warnings selftest: kvm: Add amx selftest selftest: kvm: Move struct kvm_x86_state to header selftest: kvm: Reorder vcpu_load_state steps for AMX kvm: x86: Disable interception for IA32_XFD on demand x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state() kvm: selftests: Add support for KVM_CAP_XSAVE2 kvm: x86: Add support for getting/setting expanded xstate buffer x86/fpu: Add uabi_size to guest_fpu kvm: x86: Add CPUID support for Intel AMX kvm: x86: Add XCR0 support for Intel AMX kvm: x86: Disable RDMSR interception of IA32_XFD_ERR kvm: x86: Emulate IA32_XFD_ERR for guest kvm: x86: Intercept #NM for saving IA32_XFD_ERR x86/fpu: Prepare xfd_err in struct fpu_guest kvm: x86: Add emulation for IA32_XFD x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation kvm: x86: Enable dynamic xfeatures at KVM_SET_CPUID2 x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM x86/fpu: Add guest support to xfd_enable_feature() ...
1538 lines
42 KiB
C
1538 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* FP/SIMD context switching and fault handling
|
|
*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
* Author: Catalin Marinas <catalin.marinas@arm.com>
|
|
*/
|
|
|
|
#include <linux/bitmap.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/bottom_half.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/irqflags.h>
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/swab.h>
|
|
|
|
#include <asm/esr.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/neon.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/simd.h>
|
|
#include <asm/sigcontext.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/virt.h>
|
|
|
|
#define FPEXC_IOF (1 << 0)
|
|
#define FPEXC_DZF (1 << 1)
|
|
#define FPEXC_OFF (1 << 2)
|
|
#define FPEXC_UFF (1 << 3)
|
|
#define FPEXC_IXF (1 << 4)
|
|
#define FPEXC_IDF (1 << 7)
|
|
|
|
/*
|
|
* (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
|
|
*
|
|
* In order to reduce the number of times the FPSIMD state is needlessly saved
|
|
* and restored, we need to keep track of two things:
|
|
* (a) for each task, we need to remember which CPU was the last one to have
|
|
* the task's FPSIMD state loaded into its FPSIMD registers;
|
|
* (b) for each CPU, we need to remember which task's userland FPSIMD state has
|
|
* been loaded into its FPSIMD registers most recently, or whether it has
|
|
* been used to perform kernel mode NEON in the meantime.
|
|
*
|
|
* For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
|
|
* the id of the current CPU every time the state is loaded onto a CPU. For (b),
|
|
* we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
|
|
* address of the userland FPSIMD state of the task that was loaded onto the CPU
|
|
* the most recently, or NULL if kernel mode NEON has been performed after that.
|
|
*
|
|
* With this in place, we no longer have to restore the next FPSIMD state right
|
|
* when switching between tasks. Instead, we can defer this check to userland
|
|
* resume, at which time we verify whether the CPU's fpsimd_last_state and the
|
|
* task's fpsimd_cpu are still mutually in sync. If this is the case, we
|
|
* can omit the FPSIMD restore.
|
|
*
|
|
* As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
|
|
* indicate whether or not the userland FPSIMD state of the current task is
|
|
* present in the registers. The flag is set unless the FPSIMD registers of this
|
|
* CPU currently contain the most recent userland FPSIMD state of the current
|
|
* task. If the task is behaving as a VMM, then this is will be managed by
|
|
* KVM which will clear it to indicate that the vcpu FPSIMD state is currently
|
|
* loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
|
|
* softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
|
|
* flag the register state as invalid.
|
|
*
|
|
* In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
|
|
* save the task's FPSIMD context back to task_struct from softirq context.
|
|
* To prevent this from racing with the manipulation of the task's FPSIMD state
|
|
* from task context and thereby corrupting the state, it is necessary to
|
|
* protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
|
|
* flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
|
|
* run but prevent them to use FPSIMD.
|
|
*
|
|
* For a certain task, the sequence may look something like this:
|
|
* - the task gets scheduled in; if both the task's fpsimd_cpu field
|
|
* contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
|
|
* variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
|
|
* cleared, otherwise it is set;
|
|
*
|
|
* - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
|
|
* userland FPSIMD state is copied from memory to the registers, the task's
|
|
* fpsimd_cpu field is set to the id of the current CPU, the current
|
|
* CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
|
|
* TIF_FOREIGN_FPSTATE flag is cleared;
|
|
*
|
|
* - the task executes an ordinary syscall; upon return to userland, the
|
|
* TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
|
|
* restored;
|
|
*
|
|
* - the task executes a syscall which executes some NEON instructions; this is
|
|
* preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
|
|
* register contents to memory, clears the fpsimd_last_state per-cpu variable
|
|
* and sets the TIF_FOREIGN_FPSTATE flag;
|
|
*
|
|
* - the task gets preempted after kernel_neon_end() is called; as we have not
|
|
* returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
|
|
* whatever is in the FPSIMD registers is not saved to memory, but discarded.
|
|
*/
|
|
struct fpsimd_last_state_struct {
|
|
struct user_fpsimd_state *st;
|
|
void *sve_state;
|
|
unsigned int sve_vl;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
|
|
|
|
__ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
|
|
#ifdef CONFIG_ARM64_SVE
|
|
[ARM64_VEC_SVE] = {
|
|
.type = ARM64_VEC_SVE,
|
|
.name = "SVE",
|
|
.min_vl = SVE_VL_MIN,
|
|
.max_vl = SVE_VL_MIN,
|
|
.max_virtualisable_vl = SVE_VL_MIN,
|
|
},
|
|
#endif
|
|
};
|
|
|
|
static unsigned int vec_vl_inherit_flag(enum vec_type type)
|
|
{
|
|
switch (type) {
|
|
case ARM64_VEC_SVE:
|
|
return TIF_SVE_VL_INHERIT;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
struct vl_config {
|
|
int __default_vl; /* Default VL for tasks */
|
|
};
|
|
|
|
static struct vl_config vl_config[ARM64_VEC_MAX];
|
|
|
|
static inline int get_default_vl(enum vec_type type)
|
|
{
|
|
return READ_ONCE(vl_config[type].__default_vl);
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_SVE
|
|
|
|
static inline int get_sve_default_vl(void)
|
|
{
|
|
return get_default_vl(ARM64_VEC_SVE);
|
|
}
|
|
|
|
static inline void set_default_vl(enum vec_type type, int val)
|
|
{
|
|
WRITE_ONCE(vl_config[type].__default_vl, val);
|
|
}
|
|
|
|
static inline void set_sve_default_vl(int val)
|
|
{
|
|
set_default_vl(ARM64_VEC_SVE, val);
|
|
}
|
|
|
|
static void __percpu *efi_sve_state;
|
|
|
|
#else /* ! CONFIG_ARM64_SVE */
|
|
|
|
/* Dummy declaration for code that will be optimised out: */
|
|
extern void __percpu *efi_sve_state;
|
|
|
|
#endif /* ! CONFIG_ARM64_SVE */
|
|
|
|
DEFINE_PER_CPU(bool, fpsimd_context_busy);
|
|
EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
|
|
|
|
static void fpsimd_bind_task_to_cpu(void);
|
|
|
|
static void __get_cpu_fpsimd_context(void)
|
|
{
|
|
bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
|
|
|
|
WARN_ON(busy);
|
|
}
|
|
|
|
/*
|
|
* Claim ownership of the CPU FPSIMD context for use by the calling context.
|
|
*
|
|
* The caller may freely manipulate the FPSIMD context metadata until
|
|
* put_cpu_fpsimd_context() is called.
|
|
*
|
|
* The double-underscore version must only be called if you know the task
|
|
* can't be preempted.
|
|
*/
|
|
static void get_cpu_fpsimd_context(void)
|
|
{
|
|
local_bh_disable();
|
|
__get_cpu_fpsimd_context();
|
|
}
|
|
|
|
static void __put_cpu_fpsimd_context(void)
|
|
{
|
|
bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
|
|
|
|
WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
|
|
}
|
|
|
|
/*
|
|
* Release the CPU FPSIMD context.
|
|
*
|
|
* Must be called from a context in which get_cpu_fpsimd_context() was
|
|
* previously called, with no call to put_cpu_fpsimd_context() in the
|
|
* meantime.
|
|
*/
|
|
static void put_cpu_fpsimd_context(void)
|
|
{
|
|
__put_cpu_fpsimd_context();
|
|
local_bh_enable();
|
|
}
|
|
|
|
static bool have_cpu_fpsimd_context(void)
|
|
{
|
|
return !preemptible() && __this_cpu_read(fpsimd_context_busy);
|
|
}
|
|
|
|
/*
|
|
* Call __sve_free() directly only if you know task can't be scheduled
|
|
* or preempted.
|
|
*/
|
|
static void __sve_free(struct task_struct *task)
|
|
{
|
|
kfree(task->thread.sve_state);
|
|
task->thread.sve_state = NULL;
|
|
}
|
|
|
|
static void sve_free(struct task_struct *task)
|
|
{
|
|
WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
|
|
|
|
__sve_free(task);
|
|
}
|
|
|
|
unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
|
|
{
|
|
return task->thread.vl[type];
|
|
}
|
|
|
|
void task_set_vl(struct task_struct *task, enum vec_type type,
|
|
unsigned long vl)
|
|
{
|
|
task->thread.vl[type] = vl;
|
|
}
|
|
|
|
unsigned int task_get_vl_onexec(const struct task_struct *task,
|
|
enum vec_type type)
|
|
{
|
|
return task->thread.vl_onexec[type];
|
|
}
|
|
|
|
void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
|
|
unsigned long vl)
|
|
{
|
|
task->thread.vl_onexec[type] = vl;
|
|
}
|
|
|
|
/*
|
|
* TIF_SVE controls whether a task can use SVE without trapping while
|
|
* in userspace, and also the way a task's FPSIMD/SVE state is stored
|
|
* in thread_struct.
|
|
*
|
|
* The kernel uses this flag to track whether a user task is actively
|
|
* using SVE, and therefore whether full SVE register state needs to
|
|
* be tracked. If not, the cheaper FPSIMD context handling code can
|
|
* be used instead of the more costly SVE equivalents.
|
|
*
|
|
* * TIF_SVE set:
|
|
*
|
|
* The task can execute SVE instructions while in userspace without
|
|
* trapping to the kernel.
|
|
*
|
|
* When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
|
|
* corresponding Zn), P0-P15 and FFR are encoded in in
|
|
* task->thread.sve_state, formatted appropriately for vector
|
|
* length task->thread.sve_vl.
|
|
*
|
|
* task->thread.sve_state must point to a valid buffer at least
|
|
* sve_state_size(task) bytes in size.
|
|
*
|
|
* During any syscall, the kernel may optionally clear TIF_SVE and
|
|
* discard the vector state except for the FPSIMD subset.
|
|
*
|
|
* * TIF_SVE clear:
|
|
*
|
|
* An attempt by the user task to execute an SVE instruction causes
|
|
* do_sve_acc() to be called, which does some preparation and then
|
|
* sets TIF_SVE.
|
|
*
|
|
* When stored, FPSIMD registers V0-V31 are encoded in
|
|
* task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
|
|
* logically zero but not stored anywhere; P0-P15 and FFR are not
|
|
* stored and have unspecified values from userspace's point of
|
|
* view. For hygiene purposes, the kernel zeroes them on next use,
|
|
* but userspace is discouraged from relying on this.
|
|
*
|
|
* task->thread.sve_state does not need to be non-NULL, valid or any
|
|
* particular size: it must not be dereferenced.
|
|
*
|
|
* * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
|
|
* irrespective of whether TIF_SVE is clear or set, since these are
|
|
* not vector length dependent.
|
|
*/
|
|
|
|
/*
|
|
* Update current's FPSIMD/SVE registers from thread_struct.
|
|
*
|
|
* This function should be called only when the FPSIMD/SVE state in
|
|
* thread_struct is known to be up to date, when preparing to enter
|
|
* userspace.
|
|
*/
|
|
static void task_fpsimd_load(void)
|
|
{
|
|
WARN_ON(!system_supports_fpsimd());
|
|
WARN_ON(!have_cpu_fpsimd_context());
|
|
|
|
if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
|
|
sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
|
|
sve_load_state(sve_pffr(¤t->thread),
|
|
¤t->thread.uw.fpsimd_state.fpsr, true);
|
|
} else {
|
|
fpsimd_load_state(¤t->thread.uw.fpsimd_state);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure FPSIMD/SVE storage in memory for the loaded context is up to
|
|
* date with respect to the CPU registers.
|
|
*/
|
|
static void fpsimd_save(void)
|
|
{
|
|
struct fpsimd_last_state_struct const *last =
|
|
this_cpu_ptr(&fpsimd_last_state);
|
|
/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
|
|
|
|
WARN_ON(!system_supports_fpsimd());
|
|
WARN_ON(!have_cpu_fpsimd_context());
|
|
|
|
if (test_thread_flag(TIF_FOREIGN_FPSTATE))
|
|
return;
|
|
|
|
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
|
|
test_thread_flag(TIF_SVE)) {
|
|
if (WARN_ON(sve_get_vl() != last->sve_vl)) {
|
|
/*
|
|
* Can't save the user regs, so current would
|
|
* re-enter user with corrupt state.
|
|
* There's no way to recover, so kill it:
|
|
*/
|
|
force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
|
|
return;
|
|
}
|
|
|
|
sve_save_state((char *)last->sve_state +
|
|
sve_ffr_offset(last->sve_vl),
|
|
&last->st->fpsr, true);
|
|
} else {
|
|
fpsimd_save_state(last->st);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* All vector length selection from userspace comes through here.
|
|
* We're on a slow path, so some sanity-checks are included.
|
|
* If things go wrong there's a bug somewhere, but try to fall back to a
|
|
* safe choice.
|
|
*/
|
|
static unsigned int find_supported_vector_length(enum vec_type type,
|
|
unsigned int vl)
|
|
{
|
|
struct vl_info *info = &vl_info[type];
|
|
int bit;
|
|
int max_vl = info->max_vl;
|
|
|
|
if (WARN_ON(!sve_vl_valid(vl)))
|
|
vl = info->min_vl;
|
|
|
|
if (WARN_ON(!sve_vl_valid(max_vl)))
|
|
max_vl = info->min_vl;
|
|
|
|
if (vl > max_vl)
|
|
vl = max_vl;
|
|
|
|
bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
|
|
__vq_to_bit(sve_vq_from_vl(vl)));
|
|
return sve_vl_from_vq(__bit_to_vq(bit));
|
|
}
|
|
|
|
#if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
|
|
|
|
static int vec_proc_do_default_vl(struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct vl_info *info = table->extra1;
|
|
enum vec_type type = info->type;
|
|
int ret;
|
|
int vl = get_default_vl(type);
|
|
struct ctl_table tmp_table = {
|
|
.data = &vl,
|
|
.maxlen = sizeof(vl),
|
|
};
|
|
|
|
ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
|
|
if (ret || !write)
|
|
return ret;
|
|
|
|
/* Writing -1 has the special meaning "set to max": */
|
|
if (vl == -1)
|
|
vl = info->max_vl;
|
|
|
|
if (!sve_vl_valid(vl))
|
|
return -EINVAL;
|
|
|
|
set_default_vl(type, find_supported_vector_length(type, vl));
|
|
return 0;
|
|
}
|
|
|
|
static struct ctl_table sve_default_vl_table[] = {
|
|
{
|
|
.procname = "sve_default_vector_length",
|
|
.mode = 0644,
|
|
.proc_handler = vec_proc_do_default_vl,
|
|
.extra1 = &vl_info[ARM64_VEC_SVE],
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static int __init sve_sysctl_init(void)
|
|
{
|
|
if (system_supports_sve())
|
|
if (!register_sysctl("abi", sve_default_vl_table))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
|
|
static int __init sve_sysctl_init(void) { return 0; }
|
|
#endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
|
|
|
|
#define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
|
|
(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
|
|
|
|
#ifdef CONFIG_CPU_BIG_ENDIAN
|
|
static __uint128_t arm64_cpu_to_le128(__uint128_t x)
|
|
{
|
|
u64 a = swab64(x);
|
|
u64 b = swab64(x >> 64);
|
|
|
|
return ((__uint128_t)a << 64) | b;
|
|
}
|
|
#else
|
|
static __uint128_t arm64_cpu_to_le128(__uint128_t x)
|
|
{
|
|
return x;
|
|
}
|
|
#endif
|
|
|
|
#define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
|
|
|
|
static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
|
|
unsigned int vq)
|
|
{
|
|
unsigned int i;
|
|
__uint128_t *p;
|
|
|
|
for (i = 0; i < SVE_NUM_ZREGS; ++i) {
|
|
p = (__uint128_t *)ZREG(sst, vq, i);
|
|
*p = arm64_cpu_to_le128(fst->vregs[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
|
|
* task->thread.sve_state.
|
|
*
|
|
* Task can be a non-runnable task, or current. In the latter case,
|
|
* the caller must have ownership of the cpu FPSIMD context before calling
|
|
* this function.
|
|
* task->thread.sve_state must point to at least sve_state_size(task)
|
|
* bytes of allocated kernel memory.
|
|
* task->thread.uw.fpsimd_state must be up to date before calling this
|
|
* function.
|
|
*/
|
|
static void fpsimd_to_sve(struct task_struct *task)
|
|
{
|
|
unsigned int vq;
|
|
void *sst = task->thread.sve_state;
|
|
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
|
|
|
|
if (!system_supports_sve())
|
|
return;
|
|
|
|
vq = sve_vq_from_vl(task_get_sve_vl(task));
|
|
__fpsimd_to_sve(sst, fst, vq);
|
|
}
|
|
|
|
/*
|
|
* Transfer the SVE state in task->thread.sve_state to
|
|
* task->thread.uw.fpsimd_state.
|
|
*
|
|
* Task can be a non-runnable task, or current. In the latter case,
|
|
* the caller must have ownership of the cpu FPSIMD context before calling
|
|
* this function.
|
|
* task->thread.sve_state must point to at least sve_state_size(task)
|
|
* bytes of allocated kernel memory.
|
|
* task->thread.sve_state must be up to date before calling this function.
|
|
*/
|
|
static void sve_to_fpsimd(struct task_struct *task)
|
|
{
|
|
unsigned int vq;
|
|
void const *sst = task->thread.sve_state;
|
|
struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
|
|
unsigned int i;
|
|
__uint128_t const *p;
|
|
|
|
if (!system_supports_sve())
|
|
return;
|
|
|
|
vq = sve_vq_from_vl(task_get_sve_vl(task));
|
|
for (i = 0; i < SVE_NUM_ZREGS; ++i) {
|
|
p = (__uint128_t const *)ZREG(sst, vq, i);
|
|
fst->vregs[i] = arm64_le128_to_cpu(*p);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_SVE
|
|
|
|
/*
|
|
* Return how many bytes of memory are required to store the full SVE
|
|
* state for task, given task's currently configured vector length.
|
|
*/
|
|
static size_t sve_state_size(struct task_struct const *task)
|
|
{
|
|
return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task_get_sve_vl(task)));
|
|
}
|
|
|
|
/*
|
|
* Ensure that task->thread.sve_state is allocated and sufficiently large.
|
|
*
|
|
* This function should be used only in preparation for replacing
|
|
* task->thread.sve_state with new data. The memory is always zeroed
|
|
* here to prevent stale data from showing through: this is done in
|
|
* the interest of testability and predictability: except in the
|
|
* do_sve_acc() case, there is no ABI requirement to hide stale data
|
|
* written previously be task.
|
|
*/
|
|
void sve_alloc(struct task_struct *task)
|
|
{
|
|
if (task->thread.sve_state) {
|
|
memset(task->thread.sve_state, 0, sve_state_size(task));
|
|
return;
|
|
}
|
|
|
|
/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
|
|
task->thread.sve_state =
|
|
kzalloc(sve_state_size(task), GFP_KERNEL);
|
|
}
|
|
|
|
|
|
/*
|
|
* Ensure that task->thread.sve_state is up to date with respect to
|
|
* the user task, irrespective of when SVE is in use or not.
|
|
*
|
|
* This should only be called by ptrace. task must be non-runnable.
|
|
* task->thread.sve_state must point to at least sve_state_size(task)
|
|
* bytes of allocated kernel memory.
|
|
*/
|
|
void fpsimd_sync_to_sve(struct task_struct *task)
|
|
{
|
|
if (!test_tsk_thread_flag(task, TIF_SVE))
|
|
fpsimd_to_sve(task);
|
|
}
|
|
|
|
/*
|
|
* Ensure that task->thread.uw.fpsimd_state is up to date with respect to
|
|
* the user task, irrespective of whether SVE is in use or not.
|
|
*
|
|
* This should only be called by ptrace. task must be non-runnable.
|
|
* task->thread.sve_state must point to at least sve_state_size(task)
|
|
* bytes of allocated kernel memory.
|
|
*/
|
|
void sve_sync_to_fpsimd(struct task_struct *task)
|
|
{
|
|
if (test_tsk_thread_flag(task, TIF_SVE))
|
|
sve_to_fpsimd(task);
|
|
}
|
|
|
|
/*
|
|
* Ensure that task->thread.sve_state is up to date with respect to
|
|
* the task->thread.uw.fpsimd_state.
|
|
*
|
|
* This should only be called by ptrace to merge new FPSIMD register
|
|
* values into a task for which SVE is currently active.
|
|
* task must be non-runnable.
|
|
* task->thread.sve_state must point to at least sve_state_size(task)
|
|
* bytes of allocated kernel memory.
|
|
* task->thread.uw.fpsimd_state must already have been initialised with
|
|
* the new FPSIMD register values to be merged in.
|
|
*/
|
|
void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
|
|
{
|
|
unsigned int vq;
|
|
void *sst = task->thread.sve_state;
|
|
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
|
|
|
|
if (!test_tsk_thread_flag(task, TIF_SVE))
|
|
return;
|
|
|
|
vq = sve_vq_from_vl(task_get_sve_vl(task));
|
|
|
|
memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
|
|
__fpsimd_to_sve(sst, fst, vq);
|
|
}
|
|
|
|
int vec_set_vector_length(struct task_struct *task, enum vec_type type,
|
|
unsigned long vl, unsigned long flags)
|
|
{
|
|
if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
|
|
PR_SVE_SET_VL_ONEXEC))
|
|
return -EINVAL;
|
|
|
|
if (!sve_vl_valid(vl))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Clamp to the maximum vector length that VL-agnostic code
|
|
* can work with. A flag may be assigned in the future to
|
|
* allow setting of larger vector lengths without confusing
|
|
* older software.
|
|
*/
|
|
if (vl > VL_ARCH_MAX)
|
|
vl = VL_ARCH_MAX;
|
|
|
|
vl = find_supported_vector_length(type, vl);
|
|
|
|
if (flags & (PR_SVE_VL_INHERIT |
|
|
PR_SVE_SET_VL_ONEXEC))
|
|
task_set_vl_onexec(task, type, vl);
|
|
else
|
|
/* Reset VL to system default on next exec: */
|
|
task_set_vl_onexec(task, type, 0);
|
|
|
|
/* Only actually set the VL if not deferred: */
|
|
if (flags & PR_SVE_SET_VL_ONEXEC)
|
|
goto out;
|
|
|
|
if (vl == task_get_vl(task, type))
|
|
goto out;
|
|
|
|
/*
|
|
* To ensure the FPSIMD bits of the SVE vector registers are preserved,
|
|
* write any live register state back to task_struct, and convert to a
|
|
* regular FPSIMD thread. Since the vector length can only be changed
|
|
* with a syscall we can't be in streaming mode while reconfiguring.
|
|
*/
|
|
if (task == current) {
|
|
get_cpu_fpsimd_context();
|
|
|
|
fpsimd_save();
|
|
}
|
|
|
|
fpsimd_flush_task_state(task);
|
|
if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
|
|
sve_to_fpsimd(task);
|
|
|
|
if (task == current)
|
|
put_cpu_fpsimd_context();
|
|
|
|
/*
|
|
* Force reallocation of task SVE state to the correct size
|
|
* on next use:
|
|
*/
|
|
sve_free(task);
|
|
|
|
task_set_vl(task, type, vl);
|
|
|
|
out:
|
|
update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
|
|
flags & PR_SVE_VL_INHERIT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Encode the current vector length and flags for return.
|
|
* This is only required for prctl(): ptrace has separate fields.
|
|
* SVE and SME use the same bits for _ONEXEC and _INHERIT.
|
|
*
|
|
* flags are as for vec_set_vector_length().
|
|
*/
|
|
static int vec_prctl_status(enum vec_type type, unsigned long flags)
|
|
{
|
|
int ret;
|
|
|
|
if (flags & PR_SVE_SET_VL_ONEXEC)
|
|
ret = task_get_vl_onexec(current, type);
|
|
else
|
|
ret = task_get_vl(current, type);
|
|
|
|
if (test_thread_flag(vec_vl_inherit_flag(type)))
|
|
ret |= PR_SVE_VL_INHERIT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* PR_SVE_SET_VL */
|
|
int sve_set_current_vl(unsigned long arg)
|
|
{
|
|
unsigned long vl, flags;
|
|
int ret;
|
|
|
|
vl = arg & PR_SVE_VL_LEN_MASK;
|
|
flags = arg & ~vl;
|
|
|
|
if (!system_supports_sve() || is_compat_task())
|
|
return -EINVAL;
|
|
|
|
ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return vec_prctl_status(ARM64_VEC_SVE, flags);
|
|
}
|
|
|
|
/* PR_SVE_GET_VL */
|
|
int sve_get_current_vl(void)
|
|
{
|
|
if (!system_supports_sve() || is_compat_task())
|
|
return -EINVAL;
|
|
|
|
return vec_prctl_status(ARM64_VEC_SVE, 0);
|
|
}
|
|
|
|
static void vec_probe_vqs(struct vl_info *info,
|
|
DECLARE_BITMAP(map, SVE_VQ_MAX))
|
|
{
|
|
unsigned int vq, vl;
|
|
|
|
bitmap_zero(map, SVE_VQ_MAX);
|
|
|
|
for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
|
|
write_vl(info->type, vq - 1); /* self-syncing */
|
|
vl = sve_get_vl();
|
|
vq = sve_vq_from_vl(vl); /* skip intervening lengths */
|
|
set_bit(__vq_to_bit(vq), map);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialise the set of known supported VQs for the boot CPU.
|
|
* This is called during kernel boot, before secondary CPUs are brought up.
|
|
*/
|
|
void __init vec_init_vq_map(enum vec_type type)
|
|
{
|
|
struct vl_info *info = &vl_info[type];
|
|
vec_probe_vqs(info, info->vq_map);
|
|
bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
|
|
}
|
|
|
|
/*
|
|
* If we haven't committed to the set of supported VQs yet, filter out
|
|
* those not supported by the current CPU.
|
|
* This function is called during the bring-up of early secondary CPUs only.
|
|
*/
|
|
void vec_update_vq_map(enum vec_type type)
|
|
{
|
|
struct vl_info *info = &vl_info[type];
|
|
DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
|
|
|
|
vec_probe_vqs(info, tmp_map);
|
|
bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
|
|
bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
|
|
SVE_VQ_MAX);
|
|
}
|
|
|
|
/*
|
|
* Check whether the current CPU supports all VQs in the committed set.
|
|
* This function is called during the bring-up of late secondary CPUs only.
|
|
*/
|
|
int vec_verify_vq_map(enum vec_type type)
|
|
{
|
|
struct vl_info *info = &vl_info[type];
|
|
DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
|
|
unsigned long b;
|
|
|
|
vec_probe_vqs(info, tmp_map);
|
|
|
|
bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
|
|
if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
|
|
pr_warn("%s: cpu%d: Required vector length(s) missing\n",
|
|
info->name, smp_processor_id());
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
|
|
return 0;
|
|
|
|
/*
|
|
* For KVM, it is necessary to ensure that this CPU doesn't
|
|
* support any vector length that guests may have probed as
|
|
* unsupported.
|
|
*/
|
|
|
|
/* Recover the set of supported VQs: */
|
|
bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
|
|
/* Find VQs supported that are not globally supported: */
|
|
bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
|
|
|
|
/* Find the lowest such VQ, if any: */
|
|
b = find_last_bit(tmp_map, SVE_VQ_MAX);
|
|
if (b >= SVE_VQ_MAX)
|
|
return 0; /* no mismatches */
|
|
|
|
/*
|
|
* Mismatches above sve_max_virtualisable_vl are fine, since
|
|
* no guest is allowed to configure ZCR_EL2.LEN to exceed this:
|
|
*/
|
|
if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
|
|
pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
|
|
info->name, smp_processor_id());
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init sve_efi_setup(void)
|
|
{
|
|
struct vl_info *info = &vl_info[ARM64_VEC_SVE];
|
|
|
|
if (!IS_ENABLED(CONFIG_EFI))
|
|
return;
|
|
|
|
/*
|
|
* alloc_percpu() warns and prints a backtrace if this goes wrong.
|
|
* This is evidence of a crippled system and we are returning void,
|
|
* so no attempt is made to handle this situation here.
|
|
*/
|
|
if (!sve_vl_valid(info->max_vl))
|
|
goto fail;
|
|
|
|
efi_sve_state = __alloc_percpu(
|
|
SVE_SIG_REGS_SIZE(sve_vq_from_vl(info->max_vl)), SVE_VQ_BYTES);
|
|
if (!efi_sve_state)
|
|
goto fail;
|
|
|
|
return;
|
|
|
|
fail:
|
|
panic("Cannot allocate percpu memory for EFI SVE save/restore");
|
|
}
|
|
|
|
/*
|
|
* Enable SVE for EL1.
|
|
* Intended for use by the cpufeatures code during CPU boot.
|
|
*/
|
|
void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
|
|
{
|
|
write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
|
|
isb();
|
|
}
|
|
|
|
/*
|
|
* Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
|
|
* vector length.
|
|
*
|
|
* Use only if SVE is present.
|
|
* This function clobbers the SVE vector length.
|
|
*/
|
|
u64 read_zcr_features(void)
|
|
{
|
|
u64 zcr;
|
|
unsigned int vq_max;
|
|
|
|
/*
|
|
* Set the maximum possible VL, and write zeroes to all other
|
|
* bits to see if they stick.
|
|
*/
|
|
sve_kernel_enable(NULL);
|
|
write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
|
|
|
|
zcr = read_sysreg_s(SYS_ZCR_EL1);
|
|
zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
|
|
vq_max = sve_vq_from_vl(sve_get_vl());
|
|
zcr |= vq_max - 1; /* set LEN field to maximum effective value */
|
|
|
|
return zcr;
|
|
}
|
|
|
|
void __init sve_setup(void)
|
|
{
|
|
struct vl_info *info = &vl_info[ARM64_VEC_SVE];
|
|
u64 zcr;
|
|
DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
|
|
unsigned long b;
|
|
|
|
if (!system_supports_sve())
|
|
return;
|
|
|
|
/*
|
|
* The SVE architecture mandates support for 128-bit vectors,
|
|
* so sve_vq_map must have at least SVE_VQ_MIN set.
|
|
* If something went wrong, at least try to patch it up:
|
|
*/
|
|
if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
|
|
set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
|
|
|
|
zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
|
|
info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
|
|
|
|
/*
|
|
* Sanity-check that the max VL we determined through CPU features
|
|
* corresponds properly to sve_vq_map. If not, do our best:
|
|
*/
|
|
if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
|
|
info->max_vl)))
|
|
info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
|
|
info->max_vl);
|
|
|
|
/*
|
|
* For the default VL, pick the maximum supported value <= 64.
|
|
* VL == 64 is guaranteed not to grow the signal frame.
|
|
*/
|
|
set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
|
|
|
|
bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
|
|
SVE_VQ_MAX);
|
|
|
|
b = find_last_bit(tmp_map, SVE_VQ_MAX);
|
|
if (b >= SVE_VQ_MAX)
|
|
/* No non-virtualisable VLs found */
|
|
info->max_virtualisable_vl = SVE_VQ_MAX;
|
|
else if (WARN_ON(b == SVE_VQ_MAX - 1))
|
|
/* No virtualisable VLs? This is architecturally forbidden. */
|
|
info->max_virtualisable_vl = SVE_VQ_MIN;
|
|
else /* b + 1 < SVE_VQ_MAX */
|
|
info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
|
|
|
|
if (info->max_virtualisable_vl > info->max_vl)
|
|
info->max_virtualisable_vl = info->max_vl;
|
|
|
|
pr_info("%s: maximum available vector length %u bytes per vector\n",
|
|
info->name, info->max_vl);
|
|
pr_info("%s: default vector length %u bytes per vector\n",
|
|
info->name, get_sve_default_vl());
|
|
|
|
/* KVM decides whether to support mismatched systems. Just warn here: */
|
|
if (sve_max_virtualisable_vl() < sve_max_vl())
|
|
pr_warn("%s: unvirtualisable vector lengths present\n",
|
|
info->name);
|
|
|
|
sve_efi_setup();
|
|
}
|
|
|
|
/*
|
|
* Called from the put_task_struct() path, which cannot get here
|
|
* unless dead_task is really dead and not schedulable.
|
|
*/
|
|
void fpsimd_release_task(struct task_struct *dead_task)
|
|
{
|
|
__sve_free(dead_task);
|
|
}
|
|
|
|
#endif /* CONFIG_ARM64_SVE */
|
|
|
|
/*
|
|
* Trapped SVE access
|
|
*
|
|
* Storage is allocated for the full SVE state, the current FPSIMD
|
|
* register contents are migrated across, and the access trap is
|
|
* disabled.
|
|
*
|
|
* TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
|
|
* would have disabled the SVE access trap for userspace during
|
|
* ret_to_user, making an SVE access trap impossible in that case.
|
|
*/
|
|
void do_sve_acc(unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
/* Even if we chose not to use SVE, the hardware could still trap: */
|
|
if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
|
return;
|
|
}
|
|
|
|
sve_alloc(current);
|
|
if (!current->thread.sve_state) {
|
|
force_sig(SIGKILL);
|
|
return;
|
|
}
|
|
|
|
get_cpu_fpsimd_context();
|
|
|
|
if (test_and_set_thread_flag(TIF_SVE))
|
|
WARN_ON(1); /* SVE access shouldn't have trapped */
|
|
|
|
/*
|
|
* Convert the FPSIMD state to SVE, zeroing all the state that
|
|
* is not shared with FPSIMD. If (as is likely) the current
|
|
* state is live in the registers then do this there and
|
|
* update our metadata for the current task including
|
|
* disabling the trap, otherwise update our in-memory copy.
|
|
*/
|
|
if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
|
|
unsigned long vq_minus_one =
|
|
sve_vq_from_vl(task_get_sve_vl(current)) - 1;
|
|
sve_set_vq(vq_minus_one);
|
|
sve_flush_live(true, vq_minus_one);
|
|
fpsimd_bind_task_to_cpu();
|
|
} else {
|
|
fpsimd_to_sve(current);
|
|
}
|
|
|
|
put_cpu_fpsimd_context();
|
|
}
|
|
|
|
/*
|
|
* Trapped FP/ASIMD access.
|
|
*/
|
|
void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
/* TODO: implement lazy context saving/restoring */
|
|
WARN_ON(1);
|
|
}
|
|
|
|
/*
|
|
* Raise a SIGFPE for the current process.
|
|
*/
|
|
void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
unsigned int si_code = FPE_FLTUNK;
|
|
|
|
if (esr & ESR_ELx_FP_EXC_TFV) {
|
|
if (esr & FPEXC_IOF)
|
|
si_code = FPE_FLTINV;
|
|
else if (esr & FPEXC_DZF)
|
|
si_code = FPE_FLTDIV;
|
|
else if (esr & FPEXC_OFF)
|
|
si_code = FPE_FLTOVF;
|
|
else if (esr & FPEXC_UFF)
|
|
si_code = FPE_FLTUND;
|
|
else if (esr & FPEXC_IXF)
|
|
si_code = FPE_FLTRES;
|
|
}
|
|
|
|
send_sig_fault(SIGFPE, si_code,
|
|
(void __user *)instruction_pointer(regs),
|
|
current);
|
|
}
|
|
|
|
void fpsimd_thread_switch(struct task_struct *next)
|
|
{
|
|
bool wrong_task, wrong_cpu;
|
|
|
|
if (!system_supports_fpsimd())
|
|
return;
|
|
|
|
__get_cpu_fpsimd_context();
|
|
|
|
/* Save unsaved fpsimd state, if any: */
|
|
fpsimd_save();
|
|
|
|
/*
|
|
* Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
|
|
* state. For kernel threads, FPSIMD registers are never loaded
|
|
* and wrong_task and wrong_cpu will always be true.
|
|
*/
|
|
wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
|
|
&next->thread.uw.fpsimd_state;
|
|
wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
|
|
|
|
update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
|
|
wrong_task || wrong_cpu);
|
|
|
|
__put_cpu_fpsimd_context();
|
|
}
|
|
|
|
static void fpsimd_flush_thread_vl(enum vec_type type)
|
|
{
|
|
int vl, supported_vl;
|
|
|
|
/*
|
|
* Reset the task vector length as required. This is where we
|
|
* ensure that all user tasks have a valid vector length
|
|
* configured: no kernel task can become a user task without
|
|
* an exec and hence a call to this function. By the time the
|
|
* first call to this function is made, all early hardware
|
|
* probing is complete, so __sve_default_vl should be valid.
|
|
* If a bug causes this to go wrong, we make some noise and
|
|
* try to fudge thread.sve_vl to a safe value here.
|
|
*/
|
|
vl = task_get_vl_onexec(current, type);
|
|
if (!vl)
|
|
vl = get_default_vl(type);
|
|
|
|
if (WARN_ON(!sve_vl_valid(vl)))
|
|
vl = vl_info[type].min_vl;
|
|
|
|
supported_vl = find_supported_vector_length(type, vl);
|
|
if (WARN_ON(supported_vl != vl))
|
|
vl = supported_vl;
|
|
|
|
task_set_vl(current, type, vl);
|
|
|
|
/*
|
|
* If the task is not set to inherit, ensure that the vector
|
|
* length will be reset by a subsequent exec:
|
|
*/
|
|
if (!test_thread_flag(vec_vl_inherit_flag(type)))
|
|
task_set_vl_onexec(current, type, 0);
|
|
}
|
|
|
|
void fpsimd_flush_thread(void)
|
|
{
|
|
if (!system_supports_fpsimd())
|
|
return;
|
|
|
|
get_cpu_fpsimd_context();
|
|
|
|
fpsimd_flush_task_state(current);
|
|
memset(¤t->thread.uw.fpsimd_state, 0,
|
|
sizeof(current->thread.uw.fpsimd_state));
|
|
|
|
if (system_supports_sve()) {
|
|
clear_thread_flag(TIF_SVE);
|
|
sve_free(current);
|
|
fpsimd_flush_thread_vl(ARM64_VEC_SVE);
|
|
}
|
|
|
|
put_cpu_fpsimd_context();
|
|
}
|
|
|
|
/*
|
|
* Save the userland FPSIMD state of 'current' to memory, but only if the state
|
|
* currently held in the registers does in fact belong to 'current'
|
|
*/
|
|
void fpsimd_preserve_current_state(void)
|
|
{
|
|
if (!system_supports_fpsimd())
|
|
return;
|
|
|
|
get_cpu_fpsimd_context();
|
|
fpsimd_save();
|
|
put_cpu_fpsimd_context();
|
|
}
|
|
|
|
/*
|
|
* Like fpsimd_preserve_current_state(), but ensure that
|
|
* current->thread.uw.fpsimd_state is updated so that it can be copied to
|
|
* the signal frame.
|
|
*/
|
|
void fpsimd_signal_preserve_current_state(void)
|
|
{
|
|
fpsimd_preserve_current_state();
|
|
if (test_thread_flag(TIF_SVE))
|
|
sve_to_fpsimd(current);
|
|
}
|
|
|
|
/*
|
|
* Associate current's FPSIMD context with this cpu
|
|
* The caller must have ownership of the cpu FPSIMD context before calling
|
|
* this function.
|
|
*/
|
|
static void fpsimd_bind_task_to_cpu(void)
|
|
{
|
|
struct fpsimd_last_state_struct *last =
|
|
this_cpu_ptr(&fpsimd_last_state);
|
|
|
|
WARN_ON(!system_supports_fpsimd());
|
|
last->st = ¤t->thread.uw.fpsimd_state;
|
|
last->sve_state = current->thread.sve_state;
|
|
last->sve_vl = task_get_sve_vl(current);
|
|
current->thread.fpsimd_cpu = smp_processor_id();
|
|
|
|
if (system_supports_sve()) {
|
|
/* Toggle SVE trapping for userspace if needed */
|
|
if (test_thread_flag(TIF_SVE))
|
|
sve_user_enable();
|
|
else
|
|
sve_user_disable();
|
|
|
|
/* Serialised by exception return to user */
|
|
}
|
|
}
|
|
|
|
void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
|
|
unsigned int sve_vl)
|
|
{
|
|
struct fpsimd_last_state_struct *last =
|
|
this_cpu_ptr(&fpsimd_last_state);
|
|
|
|
WARN_ON(!system_supports_fpsimd());
|
|
WARN_ON(!in_softirq() && !irqs_disabled());
|
|
|
|
last->st = st;
|
|
last->sve_state = sve_state;
|
|
last->sve_vl = sve_vl;
|
|
}
|
|
|
|
/*
|
|
* Load the userland FPSIMD state of 'current' from memory, but only if the
|
|
* FPSIMD state already held in the registers is /not/ the most recent FPSIMD
|
|
* state of 'current'. This is called when we are preparing to return to
|
|
* userspace to ensure that userspace sees a good register state.
|
|
*/
|
|
void fpsimd_restore_current_state(void)
|
|
{
|
|
/*
|
|
* For the tasks that were created before we detected the absence of
|
|
* FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
|
|
* e.g, init. This could be then inherited by the children processes.
|
|
* If we later detect that the system doesn't support FP/SIMD,
|
|
* we must clear the flag for all the tasks to indicate that the
|
|
* FPSTATE is clean (as we can't have one) to avoid looping for ever in
|
|
* do_notify_resume().
|
|
*/
|
|
if (!system_supports_fpsimd()) {
|
|
clear_thread_flag(TIF_FOREIGN_FPSTATE);
|
|
return;
|
|
}
|
|
|
|
get_cpu_fpsimd_context();
|
|
|
|
if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
|
|
task_fpsimd_load();
|
|
fpsimd_bind_task_to_cpu();
|
|
}
|
|
|
|
put_cpu_fpsimd_context();
|
|
}
|
|
|
|
/*
|
|
* Load an updated userland FPSIMD state for 'current' from memory and set the
|
|
* flag that indicates that the FPSIMD register contents are the most recent
|
|
* FPSIMD state of 'current'. This is used by the signal code to restore the
|
|
* register state when returning from a signal handler in FPSIMD only cases,
|
|
* any SVE context will be discarded.
|
|
*/
|
|
void fpsimd_update_current_state(struct user_fpsimd_state const *state)
|
|
{
|
|
if (WARN_ON(!system_supports_fpsimd()))
|
|
return;
|
|
|
|
get_cpu_fpsimd_context();
|
|
|
|
current->thread.uw.fpsimd_state = *state;
|
|
if (test_thread_flag(TIF_SVE))
|
|
fpsimd_to_sve(current);
|
|
|
|
task_fpsimd_load();
|
|
fpsimd_bind_task_to_cpu();
|
|
|
|
clear_thread_flag(TIF_FOREIGN_FPSTATE);
|
|
|
|
put_cpu_fpsimd_context();
|
|
}
|
|
|
|
/*
|
|
* Invalidate live CPU copies of task t's FPSIMD state
|
|
*
|
|
* This function may be called with preemption enabled. The barrier()
|
|
* ensures that the assignment to fpsimd_cpu is visible to any
|
|
* preemption/softirq that could race with set_tsk_thread_flag(), so
|
|
* that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
|
|
*
|
|
* The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
|
|
* subsequent code.
|
|
*/
|
|
void fpsimd_flush_task_state(struct task_struct *t)
|
|
{
|
|
t->thread.fpsimd_cpu = NR_CPUS;
|
|
/*
|
|
* If we don't support fpsimd, bail out after we have
|
|
* reset the fpsimd_cpu for this task and clear the
|
|
* FPSTATE.
|
|
*/
|
|
if (!system_supports_fpsimd())
|
|
return;
|
|
barrier();
|
|
set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
|
|
|
|
barrier();
|
|
}
|
|
|
|
/*
|
|
* Invalidate any task's FPSIMD state that is present on this cpu.
|
|
* The FPSIMD context should be acquired with get_cpu_fpsimd_context()
|
|
* before calling this function.
|
|
*/
|
|
static void fpsimd_flush_cpu_state(void)
|
|
{
|
|
WARN_ON(!system_supports_fpsimd());
|
|
__this_cpu_write(fpsimd_last_state.st, NULL);
|
|
set_thread_flag(TIF_FOREIGN_FPSTATE);
|
|
}
|
|
|
|
/*
|
|
* Save the FPSIMD state to memory and invalidate cpu view.
|
|
* This function must be called with preemption disabled.
|
|
*/
|
|
void fpsimd_save_and_flush_cpu_state(void)
|
|
{
|
|
if (!system_supports_fpsimd())
|
|
return;
|
|
WARN_ON(preemptible());
|
|
__get_cpu_fpsimd_context();
|
|
fpsimd_save();
|
|
fpsimd_flush_cpu_state();
|
|
__put_cpu_fpsimd_context();
|
|
}
|
|
|
|
#ifdef CONFIG_KERNEL_MODE_NEON
|
|
|
|
/*
|
|
* Kernel-side NEON support functions
|
|
*/
|
|
|
|
/*
|
|
* kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
|
|
* context
|
|
*
|
|
* Must not be called unless may_use_simd() returns true.
|
|
* Task context in the FPSIMD registers is saved back to memory as necessary.
|
|
*
|
|
* A matching call to kernel_neon_end() must be made before returning from the
|
|
* calling context.
|
|
*
|
|
* The caller may freely use the FPSIMD registers until kernel_neon_end() is
|
|
* called.
|
|
*/
|
|
void kernel_neon_begin(void)
|
|
{
|
|
if (WARN_ON(!system_supports_fpsimd()))
|
|
return;
|
|
|
|
BUG_ON(!may_use_simd());
|
|
|
|
get_cpu_fpsimd_context();
|
|
|
|
/* Save unsaved fpsimd state, if any: */
|
|
fpsimd_save();
|
|
|
|
/* Invalidate any task state remaining in the fpsimd regs: */
|
|
fpsimd_flush_cpu_state();
|
|
}
|
|
EXPORT_SYMBOL(kernel_neon_begin);
|
|
|
|
/*
|
|
* kernel_neon_end(): give the CPU FPSIMD registers back to the current task
|
|
*
|
|
* Must be called from a context in which kernel_neon_begin() was previously
|
|
* called, with no call to kernel_neon_end() in the meantime.
|
|
*
|
|
* The caller must not use the FPSIMD registers after this function is called,
|
|
* unless kernel_neon_begin() is called again in the meantime.
|
|
*/
|
|
void kernel_neon_end(void)
|
|
{
|
|
if (!system_supports_fpsimd())
|
|
return;
|
|
|
|
put_cpu_fpsimd_context();
|
|
}
|
|
EXPORT_SYMBOL(kernel_neon_end);
|
|
|
|
#ifdef CONFIG_EFI
|
|
|
|
static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
|
|
static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
|
|
static DEFINE_PER_CPU(bool, efi_sve_state_used);
|
|
|
|
/*
|
|
* EFI runtime services support functions
|
|
*
|
|
* The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
|
|
* This means that for EFI (and only for EFI), we have to assume that FPSIMD
|
|
* is always used rather than being an optional accelerator.
|
|
*
|
|
* These functions provide the necessary support for ensuring FPSIMD
|
|
* save/restore in the contexts from which EFI is used.
|
|
*
|
|
* Do not use them for any other purpose -- if tempted to do so, you are
|
|
* either doing something wrong or you need to propose some refactoring.
|
|
*/
|
|
|
|
/*
|
|
* __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
|
|
*/
|
|
void __efi_fpsimd_begin(void)
|
|
{
|
|
if (!system_supports_fpsimd())
|
|
return;
|
|
|
|
WARN_ON(preemptible());
|
|
|
|
if (may_use_simd()) {
|
|
kernel_neon_begin();
|
|
} else {
|
|
/*
|
|
* If !efi_sve_state, SVE can't be in use yet and doesn't need
|
|
* preserving:
|
|
*/
|
|
if (system_supports_sve() && likely(efi_sve_state)) {
|
|
char *sve_state = this_cpu_ptr(efi_sve_state);
|
|
|
|
__this_cpu_write(efi_sve_state_used, true);
|
|
|
|
sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
|
|
&this_cpu_ptr(&efi_fpsimd_state)->fpsr,
|
|
true);
|
|
} else {
|
|
fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
|
|
}
|
|
|
|
__this_cpu_write(efi_fpsimd_state_used, true);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
|
|
*/
|
|
void __efi_fpsimd_end(void)
|
|
{
|
|
if (!system_supports_fpsimd())
|
|
return;
|
|
|
|
if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
|
|
kernel_neon_end();
|
|
} else {
|
|
if (system_supports_sve() &&
|
|
likely(__this_cpu_read(efi_sve_state_used))) {
|
|
char const *sve_state = this_cpu_ptr(efi_sve_state);
|
|
|
|
sve_set_vq(sve_vq_from_vl(sve_get_vl()) - 1);
|
|
sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
|
|
&this_cpu_ptr(&efi_fpsimd_state)->fpsr,
|
|
true);
|
|
|
|
__this_cpu_write(efi_sve_state_used, false);
|
|
} else {
|
|
fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_EFI */
|
|
|
|
#endif /* CONFIG_KERNEL_MODE_NEON */
|
|
|
|
#ifdef CONFIG_CPU_PM
|
|
static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
|
|
unsigned long cmd, void *v)
|
|
{
|
|
switch (cmd) {
|
|
case CPU_PM_ENTER:
|
|
fpsimd_save_and_flush_cpu_state();
|
|
break;
|
|
case CPU_PM_EXIT:
|
|
break;
|
|
case CPU_PM_ENTER_FAILED:
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block fpsimd_cpu_pm_notifier_block = {
|
|
.notifier_call = fpsimd_cpu_pm_notifier,
|
|
};
|
|
|
|
static void __init fpsimd_pm_init(void)
|
|
{
|
|
cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
|
|
}
|
|
|
|
#else
|
|
static inline void fpsimd_pm_init(void) { }
|
|
#endif /* CONFIG_CPU_PM */
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static int fpsimd_cpu_dead(unsigned int cpu)
|
|
{
|
|
per_cpu(fpsimd_last_state.st, cpu) = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static inline void fpsimd_hotplug_init(void)
|
|
{
|
|
cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
|
|
NULL, fpsimd_cpu_dead);
|
|
}
|
|
|
|
#else
|
|
static inline void fpsimd_hotplug_init(void) { }
|
|
#endif
|
|
|
|
/*
|
|
* FP/SIMD support code initialisation.
|
|
*/
|
|
static int __init fpsimd_init(void)
|
|
{
|
|
if (cpu_have_named_feature(FP)) {
|
|
fpsimd_pm_init();
|
|
fpsimd_hotplug_init();
|
|
} else {
|
|
pr_notice("Floating-point is not implemented\n");
|
|
}
|
|
|
|
if (!cpu_have_named_feature(ASIMD))
|
|
pr_notice("Advanced SIMD is not implemented\n");
|
|
|
|
return sve_sysctl_init();
|
|
}
|
|
core_initcall(fpsimd_init);
|