Long Li 59f6ab40fd xfs: fix sb write verify for lazysbcount
When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
	xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00  XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a  i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80  ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82  ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00  ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00  ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19  ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
	+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580).  Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

 #!/bin/bash

 device=/dev/sda
 testdir=/mnt/test
 round=0

 function fail()
 {
	 echo "$*"
	 exit 1
 }

 mkdir -p $testdir
 while [ $round -lt 10000 ]
 do
	 echo "******* round $round ********"
	 mkfs.xfs -f $device
	 mount $device $testdir || fail "mount failed!"
	 fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
	 sleep 4
	 killall -w fsstress
	 umount $testdir
	 xfs_repair -e $device > /dev/null
	 if [ $? -eq 2 ];then
		 echo "ERR CODE 2: Dirty log exception during repair."
		 exit 1
	 fi
	 round=$(($round+1))
 done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

 CPU0				 CPU1
 xfs_log_sb			 xfs_trans_unreserve_and_mod_sb
 ----------			 ------------------------------
 percpu_counter_sum(&mp->m_icount)
				 percpu_counter_add_batch(&mp->m_icount,
						idelta, XFS_ICOUNT_BATCH)
				 percpu_counter_add(&mp->m_ifree, ifreedelta);
 percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-11-16 19:20:20 -08:00
2022-11-05 09:02:28 -07:00
2022-11-06 12:23:10 -08:00
2022-11-06 13:09:52 -08:00
2022-11-04 14:46:45 -07:00
2022-09-28 09:02:20 +02:00
2022-10-12 14:46:48 -07:00
2022-10-31 12:09:42 -07:00
2022-11-06 13:09:52 -08:00
2022-09-28 09:02:20 +02:00
2022-10-20 21:27:21 -07:00
2022-09-28 09:02:20 +02:00
2022-08-03 19:52:08 -07:00
2022-10-10 12:00:45 -07:00
2022-11-04 14:13:12 -07:00
2022-11-06 15:07:11 -08:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
No description provided
Readme 5.7 GiB
Languages
C 97.6%
Assembly 1%
Shell 0.5%
Python 0.3%
Makefile 0.3%