fb872da8e7
- Use memdup_array_user() to harden against overflow. - Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures. -----BEGIN PGP SIGNATURE----- iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW8F4SHHNlYW5qY0Bn b29nbGUuY29tAAoJEGCRIgFNDBL5urcP/Rex6Too26aHJXelUVHlFOGw3hfOnvbq Wr/P3kPqB/1Mncx3aiYTpEvUxFjVTvIkMB5dWba39Eq/G1BbOT2CAHCunlvKJrXy L83YgOl17QtZZJS1KmLTRCj1umfl4Z0c+GEIH+P1FOuOmllNXlLJ1+GWmolP6LLf u4DF2/tyVZf8JXXeJWYITHsU0YQQ0MhHgYL8/aMYJK8epNFpR3wKIqT3428ASxV3 Ru4WH7jpYkFF7PaKbvjKdepr+1wyVt4PXJDDpciCScz45/8eebgfylLJbMglpsR1 JSUTzd6KdCbekgzp51NnRdoIxP+MXgKA3dIuzXKyIDzm2Xq6tna87ve/aWDGw8JC nUMkP/vAuaKT+/QTOwskGAvK2GYDQD1UwVcFNLi12Iis50H0qPwcxsUionQuZgUC ykCmY4N31rSX4DhPg1WLiqsvC/EeDhfXprYrfSd4HQq08NgD45orRJw0Kov+shcS xijIlE1e3aVJMRrbfoSWyc4m79AcooxjYwojQC1Ayqsq0ZTTzzIpd6rqjmY+LbLL aP/wNz8hCfMhFekUV7dDk9rMdZY+bBnTiolyKAN66E6EnPYfl2EdrDEGnZOCPXF4 L/O/kMCXHE90cszzrmiR40yNHLkPelij8sK+ligE4JpqteQ7ia/knh8YAiPBxDw6 XcIfftXMm5XG =wpT4 -----END PGP SIGNATURE----- Merge tag 'kvm-x86-generic-6.8' of https://github.com/kvm-x86/linux into HEAD Common KVM changes for 6.8: - Use memdup_array_user() to harden against overflow. - Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
2663 lines
63 KiB
C
2663 lines
63 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/entry-kvm.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_irqfd.h>
|
|
#include <linux/irqbypass.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <linux/psci.h>
|
|
#include <trace/events/kvm.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace_arm.h"
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/virt.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_nested.h>
|
|
#include <asm/kvm_pkvm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/sections.h>
|
|
|
|
#include <kvm/arm_hypercalls.h>
|
|
#include <kvm/arm_pmu.h>
|
|
#include <kvm/arm_psci.h>
|
|
|
|
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
|
|
|
|
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
|
|
|
|
DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
|
|
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
|
|
|
|
DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
|
|
|
|
static bool vgic_present, kvm_arm_initialised;
|
|
|
|
static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
|
|
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
|
|
|
|
bool is_kvm_arm_initialised(void)
|
|
{
|
|
return kvm_arm_initialised;
|
|
}
|
|
|
|
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
|
|
}
|
|
|
|
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
|
|
struct kvm_enable_cap *cap)
|
|
{
|
|
int r;
|
|
u64 new_cap;
|
|
|
|
if (cap->flags)
|
|
return -EINVAL;
|
|
|
|
switch (cap->cap) {
|
|
case KVM_CAP_ARM_NISV_TO_USER:
|
|
r = 0;
|
|
set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
|
|
&kvm->arch.flags);
|
|
break;
|
|
case KVM_CAP_ARM_MTE:
|
|
mutex_lock(&kvm->lock);
|
|
if (!system_supports_mte() || kvm->created_vcpus) {
|
|
r = -EINVAL;
|
|
} else {
|
|
r = 0;
|
|
set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
|
|
}
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
case KVM_CAP_ARM_SYSTEM_SUSPEND:
|
|
r = 0;
|
|
set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
|
|
break;
|
|
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
|
|
new_cap = cap->args[0];
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
/*
|
|
* To keep things simple, allow changing the chunk
|
|
* size only when no memory slots have been created.
|
|
*/
|
|
if (!kvm_are_all_memslots_empty(kvm)) {
|
|
r = -EINVAL;
|
|
} else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
|
|
r = -EINVAL;
|
|
} else {
|
|
r = 0;
|
|
kvm->arch.mmu.split_page_chunk_size = new_cap;
|
|
}
|
|
mutex_unlock(&kvm->slots_lock);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_arm_default_max_vcpus(void)
|
|
{
|
|
return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_init_vm - initializes a VM data structure
|
|
* @kvm: pointer to the KVM struct
|
|
*/
|
|
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
|
|
{
|
|
int ret;
|
|
|
|
mutex_init(&kvm->arch.config_lock);
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
|
|
mutex_lock(&kvm->lock);
|
|
mutex_lock(&kvm->arch.config_lock);
|
|
mutex_unlock(&kvm->arch.config_lock);
|
|
mutex_unlock(&kvm->lock);
|
|
#endif
|
|
|
|
ret = kvm_share_hyp(kvm, kvm + 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pkvm_init_host_vm(kvm);
|
|
if (ret)
|
|
goto err_unshare_kvm;
|
|
|
|
if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
|
|
ret = -ENOMEM;
|
|
goto err_unshare_kvm;
|
|
}
|
|
cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
|
|
|
|
ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
|
|
if (ret)
|
|
goto err_free_cpumask;
|
|
|
|
kvm_vgic_early_init(kvm);
|
|
|
|
kvm_timer_init_vm(kvm);
|
|
|
|
/* The maximum number of VCPUs is limited by the host's GIC model */
|
|
kvm->max_vcpus = kvm_arm_default_max_vcpus();
|
|
|
|
kvm_arm_init_hypercalls(kvm);
|
|
|
|
bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
|
|
|
|
return 0;
|
|
|
|
err_free_cpumask:
|
|
free_cpumask_var(kvm->arch.supported_cpus);
|
|
err_unshare_kvm:
|
|
kvm_unshare_hyp(kvm, kvm + 1);
|
|
return ret;
|
|
}
|
|
|
|
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
|
|
{
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
|
|
/**
|
|
* kvm_arch_destroy_vm - destroy the VM data structure
|
|
* @kvm: pointer to the KVM struct
|
|
*/
|
|
void kvm_arch_destroy_vm(struct kvm *kvm)
|
|
{
|
|
bitmap_free(kvm->arch.pmu_filter);
|
|
free_cpumask_var(kvm->arch.supported_cpus);
|
|
|
|
kvm_vgic_destroy(kvm);
|
|
|
|
if (is_protected_kvm_enabled())
|
|
pkvm_destroy_hyp_vm(kvm);
|
|
|
|
kfree(kvm->arch.mpidr_data);
|
|
kvm_destroy_vcpus(kvm);
|
|
|
|
kvm_unshare_hyp(kvm, kvm + 1);
|
|
|
|
kvm_arm_teardown_hypercalls(kvm);
|
|
}
|
|
|
|
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
|
|
{
|
|
int r;
|
|
switch (ext) {
|
|
case KVM_CAP_IRQCHIP:
|
|
r = vgic_present;
|
|
break;
|
|
case KVM_CAP_IOEVENTFD:
|
|
case KVM_CAP_USER_MEMORY:
|
|
case KVM_CAP_SYNC_MMU:
|
|
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
|
|
case KVM_CAP_ONE_REG:
|
|
case KVM_CAP_ARM_PSCI:
|
|
case KVM_CAP_ARM_PSCI_0_2:
|
|
case KVM_CAP_READONLY_MEM:
|
|
case KVM_CAP_MP_STATE:
|
|
case KVM_CAP_IMMEDIATE_EXIT:
|
|
case KVM_CAP_VCPU_EVENTS:
|
|
case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
|
|
case KVM_CAP_ARM_NISV_TO_USER:
|
|
case KVM_CAP_ARM_INJECT_EXT_DABT:
|
|
case KVM_CAP_SET_GUEST_DEBUG:
|
|
case KVM_CAP_VCPU_ATTRIBUTES:
|
|
case KVM_CAP_PTP_KVM:
|
|
case KVM_CAP_ARM_SYSTEM_SUSPEND:
|
|
case KVM_CAP_IRQFD_RESAMPLE:
|
|
case KVM_CAP_COUNTER_OFFSET:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_SET_GUEST_DEBUG2:
|
|
return KVM_GUESTDBG_VALID_MASK;
|
|
case KVM_CAP_ARM_SET_DEVICE_ADDR:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_NR_VCPUS:
|
|
/*
|
|
* ARM64 treats KVM_CAP_NR_CPUS differently from all other
|
|
* architectures, as it does not always bound it to
|
|
* KVM_CAP_MAX_VCPUS. It should not matter much because
|
|
* this is just an advisory value.
|
|
*/
|
|
r = min_t(unsigned int, num_online_cpus(),
|
|
kvm_arm_default_max_vcpus());
|
|
break;
|
|
case KVM_CAP_MAX_VCPUS:
|
|
case KVM_CAP_MAX_VCPU_ID:
|
|
if (kvm)
|
|
r = kvm->max_vcpus;
|
|
else
|
|
r = kvm_arm_default_max_vcpus();
|
|
break;
|
|
case KVM_CAP_MSI_DEVID:
|
|
if (!kvm)
|
|
r = -EINVAL;
|
|
else
|
|
r = kvm->arch.vgic.msis_require_devid;
|
|
break;
|
|
case KVM_CAP_ARM_USER_IRQ:
|
|
/*
|
|
* 1: EL1_VTIMER, EL1_PTIMER, and PMU.
|
|
* (bump this number if adding more devices)
|
|
*/
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_ARM_MTE:
|
|
r = system_supports_mte();
|
|
break;
|
|
case KVM_CAP_STEAL_TIME:
|
|
r = kvm_arm_pvtime_supported();
|
|
break;
|
|
case KVM_CAP_ARM_EL1_32BIT:
|
|
r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
|
|
break;
|
|
case KVM_CAP_GUEST_DEBUG_HW_BPS:
|
|
r = get_num_brps();
|
|
break;
|
|
case KVM_CAP_GUEST_DEBUG_HW_WPS:
|
|
r = get_num_wrps();
|
|
break;
|
|
case KVM_CAP_ARM_PMU_V3:
|
|
r = kvm_arm_support_pmu_v3();
|
|
break;
|
|
case KVM_CAP_ARM_INJECT_SERROR_ESR:
|
|
r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
|
|
break;
|
|
case KVM_CAP_ARM_VM_IPA_SIZE:
|
|
r = get_kvm_ipa_limit();
|
|
break;
|
|
case KVM_CAP_ARM_SVE:
|
|
r = system_supports_sve();
|
|
break;
|
|
case KVM_CAP_ARM_PTRAUTH_ADDRESS:
|
|
case KVM_CAP_ARM_PTRAUTH_GENERIC:
|
|
r = system_has_full_ptr_auth();
|
|
break;
|
|
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
|
|
if (kvm)
|
|
r = kvm->arch.mmu.split_page_chunk_size;
|
|
else
|
|
r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
|
|
break;
|
|
case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
|
|
r = kvm_supported_block_sizes();
|
|
break;
|
|
case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
|
|
r = BIT(0);
|
|
break;
|
|
default:
|
|
r = 0;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
long kvm_arch_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct kvm *kvm_arch_alloc_vm(void)
|
|
{
|
|
size_t sz = sizeof(struct kvm);
|
|
|
|
if (!has_vhe())
|
|
return kzalloc(sz, GFP_KERNEL_ACCOUNT);
|
|
|
|
return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
|
|
}
|
|
|
|
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
|
|
{
|
|
if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
|
|
return -EBUSY;
|
|
|
|
if (id >= kvm->max_vcpus)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
|
|
{
|
|
int err;
|
|
|
|
spin_lock_init(&vcpu->arch.mp_state_lock);
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
|
|
mutex_lock(&vcpu->mutex);
|
|
mutex_lock(&vcpu->kvm->arch.config_lock);
|
|
mutex_unlock(&vcpu->kvm->arch.config_lock);
|
|
mutex_unlock(&vcpu->mutex);
|
|
#endif
|
|
|
|
/* Force users to call KVM_ARM_VCPU_INIT */
|
|
vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
|
|
|
|
vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
|
|
|
|
/*
|
|
* Default value for the FP state, will be overloaded at load
|
|
* time if we support FP (pretty likely)
|
|
*/
|
|
vcpu->arch.fp_state = FP_STATE_FREE;
|
|
|
|
/* Set up the timer */
|
|
kvm_timer_vcpu_init(vcpu);
|
|
|
|
kvm_pmu_vcpu_init(vcpu);
|
|
|
|
kvm_arm_reset_debug_ptr(vcpu);
|
|
|
|
kvm_arm_pvtime_vcpu_init(&vcpu->arch);
|
|
|
|
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
|
|
|
|
err = kvm_vgic_vcpu_init(vcpu);
|
|
if (err)
|
|
return err;
|
|
|
|
return kvm_share_hyp(vcpu, vcpu + 1);
|
|
}
|
|
|
|
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
|
|
static_branch_dec(&userspace_irqchip_in_use);
|
|
|
|
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
|
|
kvm_timer_vcpu_terminate(vcpu);
|
|
kvm_pmu_vcpu_destroy(vcpu);
|
|
kvm_vgic_vcpu_destroy(vcpu);
|
|
kvm_arm_vcpu_destroy(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
|
|
}
|
|
|
|
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
|
|
}
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct kvm_s2_mmu *mmu;
|
|
int *last_ran;
|
|
|
|
mmu = vcpu->arch.hw_mmu;
|
|
last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
|
|
|
|
/*
|
|
* We guarantee that both TLBs and I-cache are private to each
|
|
* vcpu. If detecting that a vcpu from the same VM has
|
|
* previously run on the same physical CPU, call into the
|
|
* hypervisor code to nuke the relevant contexts.
|
|
*
|
|
* We might get preempted before the vCPU actually runs, but
|
|
* over-invalidation doesn't affect correctness.
|
|
*/
|
|
if (*last_ran != vcpu->vcpu_idx) {
|
|
kvm_call_hyp(__kvm_flush_cpu_context, mmu);
|
|
*last_ran = vcpu->vcpu_idx;
|
|
}
|
|
|
|
vcpu->cpu = cpu;
|
|
|
|
kvm_vgic_load(vcpu);
|
|
kvm_timer_vcpu_load(vcpu);
|
|
if (has_vhe())
|
|
kvm_vcpu_load_vhe(vcpu);
|
|
kvm_arch_vcpu_load_fp(vcpu);
|
|
kvm_vcpu_pmu_restore_guest(vcpu);
|
|
if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
|
|
kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
|
|
|
|
if (single_task_running())
|
|
vcpu_clear_wfx_traps(vcpu);
|
|
else
|
|
vcpu_set_wfx_traps(vcpu);
|
|
|
|
if (vcpu_has_ptrauth(vcpu))
|
|
vcpu_ptrauth_disable(vcpu);
|
|
kvm_arch_vcpu_load_debug_state_flags(vcpu);
|
|
|
|
if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
|
|
vcpu_set_on_unsupported_cpu(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_arch_vcpu_put_debug_state_flags(vcpu);
|
|
kvm_arch_vcpu_put_fp(vcpu);
|
|
if (has_vhe())
|
|
kvm_vcpu_put_vhe(vcpu);
|
|
kvm_timer_vcpu_put(vcpu);
|
|
kvm_vgic_put(vcpu);
|
|
kvm_vcpu_pmu_restore_host(vcpu);
|
|
kvm_arm_vmid_clear_active();
|
|
|
|
vcpu_clear_on_unsupported_cpu(vcpu);
|
|
vcpu->cpu = -1;
|
|
}
|
|
|
|
static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
|
|
{
|
|
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
|
|
kvm_make_request(KVM_REQ_SLEEP, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
|
|
void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
|
|
{
|
|
spin_lock(&vcpu->arch.mp_state_lock);
|
|
__kvm_arm_vcpu_power_off(vcpu);
|
|
spin_unlock(&vcpu->arch.mp_state_lock);
|
|
}
|
|
|
|
bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
|
|
{
|
|
return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
|
|
}
|
|
|
|
static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
|
|
{
|
|
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
|
|
kvm_make_request(KVM_REQ_SUSPEND, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
|
|
static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
|
|
{
|
|
return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
*mp_state = READ_ONCE(vcpu->arch.mp_state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
int ret = 0;
|
|
|
|
spin_lock(&vcpu->arch.mp_state_lock);
|
|
|
|
switch (mp_state->mp_state) {
|
|
case KVM_MP_STATE_RUNNABLE:
|
|
WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
|
|
break;
|
|
case KVM_MP_STATE_STOPPED:
|
|
__kvm_arm_vcpu_power_off(vcpu);
|
|
break;
|
|
case KVM_MP_STATE_SUSPENDED:
|
|
kvm_arm_vcpu_suspend(vcpu);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
spin_unlock(&vcpu->arch.mp_state_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
|
|
* @v: The VCPU pointer
|
|
*
|
|
* If the guest CPU is not waiting for interrupts or an interrupt line is
|
|
* asserted, the CPU is by definition runnable.
|
|
*/
|
|
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
|
|
{
|
|
bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
|
|
return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
|
|
&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
|
|
}
|
|
|
|
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu_mode_priv(vcpu);
|
|
}
|
|
|
|
#ifdef CONFIG_GUEST_PERF_EVENTS
|
|
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
|
|
{
|
|
return *vcpu_pc(vcpu);
|
|
}
|
|
#endif
|
|
|
|
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
|
|
}
|
|
|
|
static void kvm_init_mpidr_data(struct kvm *kvm)
|
|
{
|
|
struct kvm_mpidr_data *data = NULL;
|
|
unsigned long c, mask, nr_entries;
|
|
u64 aff_set = 0, aff_clr = ~0UL;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
mutex_lock(&kvm->arch.config_lock);
|
|
|
|
if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1)
|
|
goto out;
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
|
|
aff_set |= aff;
|
|
aff_clr &= aff;
|
|
}
|
|
|
|
/*
|
|
* A significant bit can be either 0 or 1, and will only appear in
|
|
* aff_set. Use aff_clr to weed out the useless stuff.
|
|
*/
|
|
mask = aff_set ^ aff_clr;
|
|
nr_entries = BIT_ULL(hweight_long(mask));
|
|
|
|
/*
|
|
* Don't let userspace fool us. If we need more than a single page
|
|
* to describe the compressed MPIDR array, just fall back to the
|
|
* iterative method. Single vcpu VMs do not need this either.
|
|
*/
|
|
if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
|
|
data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
|
|
GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!data)
|
|
goto out;
|
|
|
|
data->mpidr_mask = mask;
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
|
|
u16 index = kvm_mpidr_index(data, aff);
|
|
|
|
data->cmpidr_to_idx[index] = c;
|
|
}
|
|
|
|
kvm->arch.mpidr_data = data;
|
|
out:
|
|
mutex_unlock(&kvm->arch.config_lock);
|
|
}
|
|
|
|
/*
|
|
* Handle both the initialisation that is being done when the vcpu is
|
|
* run for the first time, as well as the updates that must be
|
|
* performed each time we get a new thread dealing with this vcpu.
|
|
*/
|
|
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int ret;
|
|
|
|
if (!kvm_vcpu_initialized(vcpu))
|
|
return -ENOEXEC;
|
|
|
|
if (!kvm_arm_vcpu_is_finalized(vcpu))
|
|
return -EPERM;
|
|
|
|
ret = kvm_arch_vcpu_run_map_fp(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (likely(vcpu_has_run_once(vcpu)))
|
|
return 0;
|
|
|
|
kvm_init_mpidr_data(kvm);
|
|
|
|
kvm_arm_vcpu_init_debug(vcpu);
|
|
|
|
if (likely(irqchip_in_kernel(kvm))) {
|
|
/*
|
|
* Map the VGIC hardware resources before running a vcpu the
|
|
* first time on this VM.
|
|
*/
|
|
ret = kvm_vgic_map_resources(kvm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (vcpu_has_nv(vcpu)) {
|
|
ret = kvm_init_nv_sysregs(vcpu->kvm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = kvm_timer_enable(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = kvm_arm_pmu_v3_enable(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (is_protected_kvm_enabled()) {
|
|
ret = pkvm_create_hyp_vm(kvm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (!irqchip_in_kernel(kvm)) {
|
|
/*
|
|
* Tell the rest of the code that there are userspace irqchip
|
|
* VMs in the wild.
|
|
*/
|
|
static_branch_inc(&userspace_irqchip_in_use);
|
|
}
|
|
|
|
/*
|
|
* Initialize traps for protected VMs.
|
|
* NOTE: Move to run in EL2 directly, rather than via a hypercall, once
|
|
* the code is in place for first run initialization at EL2.
|
|
*/
|
|
if (kvm_vm_is_protected(kvm))
|
|
kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
|
|
|
|
mutex_lock(&kvm->arch.config_lock);
|
|
set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
|
|
mutex_unlock(&kvm->arch.config_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_arch_intc_initialized(struct kvm *kvm)
|
|
{
|
|
return vgic_initialized(kvm);
|
|
}
|
|
|
|
void kvm_arm_halt_guest(struct kvm *kvm)
|
|
{
|
|
unsigned long i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
vcpu->arch.pause = true;
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
|
|
}
|
|
|
|
void kvm_arm_resume_guest(struct kvm *kvm)
|
|
{
|
|
unsigned long i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
vcpu->arch.pause = false;
|
|
__kvm_vcpu_wake_up(vcpu);
|
|
}
|
|
}
|
|
|
|
static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
|
|
|
|
rcuwait_wait_event(wait,
|
|
(!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
|
|
TASK_INTERRUPTIBLE);
|
|
|
|
if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
|
|
/* Awaken to handle a signal, request we sleep again later. */
|
|
kvm_make_request(KVM_REQ_SLEEP, vcpu);
|
|
}
|
|
|
|
/*
|
|
* Make sure we will observe a potential reset request if we've
|
|
* observed a change to the power state. Pairs with the smp_wmb() in
|
|
* kvm_psci_vcpu_on().
|
|
*/
|
|
smp_rmb();
|
|
}
|
|
|
|
/**
|
|
* kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
|
|
* @vcpu: The VCPU pointer
|
|
*
|
|
* Suspend execution of a vCPU until a valid wake event is detected, i.e. until
|
|
* the vCPU is runnable. The vCPU may or may not be scheduled out, depending
|
|
* on when a wake event arrives, e.g. there may already be a pending wake event.
|
|
*/
|
|
void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Sync back the state of the GIC CPU interface so that we have
|
|
* the latest PMR and group enables. This ensures that
|
|
* kvm_arch_vcpu_runnable has up-to-date data to decide whether
|
|
* we have pending interrupts, e.g. when determining if the
|
|
* vCPU should block.
|
|
*
|
|
* For the same reason, we want to tell GICv4 that we need
|
|
* doorbells to be signalled, should an interrupt become pending.
|
|
*/
|
|
preempt_disable();
|
|
kvm_vgic_vmcr_sync(vcpu);
|
|
vcpu_set_flag(vcpu, IN_WFI);
|
|
vgic_v4_put(vcpu);
|
|
preempt_enable();
|
|
|
|
kvm_vcpu_halt(vcpu);
|
|
vcpu_clear_flag(vcpu, IN_WFIT);
|
|
|
|
preempt_disable();
|
|
vcpu_clear_flag(vcpu, IN_WFI);
|
|
vgic_v4_load(vcpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_arm_vcpu_suspended(vcpu))
|
|
return 1;
|
|
|
|
kvm_vcpu_wfi(vcpu);
|
|
|
|
/*
|
|
* The suspend state is sticky; we do not leave it until userspace
|
|
* explicitly marks the vCPU as runnable. Request that we suspend again
|
|
* later.
|
|
*/
|
|
kvm_make_request(KVM_REQ_SUSPEND, vcpu);
|
|
|
|
/*
|
|
* Check to make sure the vCPU is actually runnable. If so, exit to
|
|
* userspace informing it of the wakeup condition.
|
|
*/
|
|
if (kvm_arch_vcpu_runnable(vcpu)) {
|
|
memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
|
|
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
|
|
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we were unblocked to process a different event, such as a
|
|
* pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
|
|
* process the event.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* check_vcpu_requests - check and handle pending vCPU requests
|
|
* @vcpu: the VCPU pointer
|
|
*
|
|
* Return: 1 if we should enter the guest
|
|
* 0 if we should exit to userspace
|
|
* < 0 if we should exit to userspace, where the return value indicates
|
|
* an error
|
|
*/
|
|
static int check_vcpu_requests(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_request_pending(vcpu)) {
|
|
if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
|
|
kvm_vcpu_sleep(vcpu);
|
|
|
|
if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
|
|
kvm_reset_vcpu(vcpu);
|
|
|
|
/*
|
|
* Clear IRQ_PENDING requests that were made to guarantee
|
|
* that a VCPU sees new virtual interrupts.
|
|
*/
|
|
kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
|
|
|
|
if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
|
|
kvm_update_stolen_time(vcpu);
|
|
|
|
if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
|
|
/* The distributor enable bits were changed */
|
|
preempt_disable();
|
|
vgic_v4_put(vcpu);
|
|
vgic_v4_load(vcpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
|
|
kvm_vcpu_reload_pmu(vcpu);
|
|
|
|
if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
|
|
kvm_vcpu_pmu_restore_guest(vcpu);
|
|
|
|
if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
|
|
return kvm_vcpu_suspend(vcpu);
|
|
|
|
if (kvm_dirty_ring_check_request(vcpu))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (likely(!vcpu_mode_is_32bit(vcpu)))
|
|
return false;
|
|
|
|
if (vcpu_has_nv(vcpu))
|
|
return true;
|
|
|
|
return !kvm_supports_32bit_el0();
|
|
}
|
|
|
|
/**
|
|
* kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
|
|
* @vcpu: The VCPU pointer
|
|
* @ret: Pointer to write optional return code
|
|
*
|
|
* Returns: true if the VCPU needs to return to a preemptible + interruptible
|
|
* and skip guest entry.
|
|
*
|
|
* This function disambiguates between two different types of exits: exits to a
|
|
* preemptible + interruptible kernel context and exits to userspace. For an
|
|
* exit to userspace, this function will write the return code to ret and return
|
|
* true. For an exit to preemptible + interruptible kernel context (i.e. check
|
|
* for pending work and re-enter), return true without writing to ret.
|
|
*/
|
|
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
|
|
/*
|
|
* If we're using a userspace irqchip, then check if we need
|
|
* to tell a userspace irqchip about timer or PMU level
|
|
* changes and if so, exit to userspace (the actual level
|
|
* state gets updated in kvm_timer_update_run and
|
|
* kvm_pmu_update_run below).
|
|
*/
|
|
if (static_branch_unlikely(&userspace_irqchip_in_use)) {
|
|
if (kvm_timer_should_notify_user(vcpu) ||
|
|
kvm_pmu_should_notify_user(vcpu)) {
|
|
*ret = -EINTR;
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
|
|
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
|
|
run->fail_entry.cpu = smp_processor_id();
|
|
*ret = 0;
|
|
return true;
|
|
}
|
|
|
|
return kvm_request_pending(vcpu) ||
|
|
xfer_to_guest_mode_work_pending();
|
|
}
|
|
|
|
/*
|
|
* Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
|
|
* the vCPU is running.
|
|
*
|
|
* This must be noinstr as instrumentation may make use of RCU, and this is not
|
|
* safe during the EQS.
|
|
*/
|
|
static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
|
|
guest_state_enter_irqoff();
|
|
ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
|
|
guest_state_exit_irqoff();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
|
|
* @vcpu: The VCPU pointer
|
|
*
|
|
* This function is called through the VCPU_RUN ioctl called from user space. It
|
|
* will execute VM code in a loop until the time slice for the process is used
|
|
* or some emulation is needed from user space in which case the function will
|
|
* return with return value 0 and with the kvm_run structure filled in with the
|
|
* required data for the requested emulation.
|
|
*/
|
|
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
int ret;
|
|
|
|
if (run->exit_reason == KVM_EXIT_MMIO) {
|
|
ret = kvm_handle_mmio_return(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
if (run->immediate_exit) {
|
|
ret = -EINTR;
|
|
goto out;
|
|
}
|
|
|
|
kvm_sigset_activate(vcpu);
|
|
|
|
ret = 1;
|
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
run->flags = 0;
|
|
while (ret > 0) {
|
|
/*
|
|
* Check conditions before entering the guest
|
|
*/
|
|
ret = xfer_to_guest_mode_handle_work(vcpu);
|
|
if (!ret)
|
|
ret = 1;
|
|
|
|
if (ret > 0)
|
|
ret = check_vcpu_requests(vcpu);
|
|
|
|
/*
|
|
* Preparing the interrupts to be injected also
|
|
* involves poking the GIC, which must be done in a
|
|
* non-preemptible context.
|
|
*/
|
|
preempt_disable();
|
|
|
|
/*
|
|
* The VMID allocator only tracks active VMIDs per
|
|
* physical CPU, and therefore the VMID allocated may not be
|
|
* preserved on VMID roll-over if the task was preempted,
|
|
* making a thread's VMID inactive. So we need to call
|
|
* kvm_arm_vmid_update() in non-premptible context.
|
|
*/
|
|
if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
|
|
has_vhe())
|
|
__load_stage2(vcpu->arch.hw_mmu,
|
|
vcpu->arch.hw_mmu->arch);
|
|
|
|
kvm_pmu_flush_hwstate(vcpu);
|
|
|
|
local_irq_disable();
|
|
|
|
kvm_vgic_flush_hwstate(vcpu);
|
|
|
|
kvm_pmu_update_vcpu_events(vcpu);
|
|
|
|
/*
|
|
* Ensure we set mode to IN_GUEST_MODE after we disable
|
|
* interrupts and before the final VCPU requests check.
|
|
* See the comment in kvm_vcpu_exiting_guest_mode() and
|
|
* Documentation/virt/kvm/vcpu-requests.rst
|
|
*/
|
|
smp_store_mb(vcpu->mode, IN_GUEST_MODE);
|
|
|
|
if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
isb(); /* Ensure work in x_flush_hwstate is committed */
|
|
kvm_pmu_sync_hwstate(vcpu);
|
|
if (static_branch_unlikely(&userspace_irqchip_in_use))
|
|
kvm_timer_sync_user(vcpu);
|
|
kvm_vgic_sync_hwstate(vcpu);
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
continue;
|
|
}
|
|
|
|
kvm_arm_setup_debug(vcpu);
|
|
kvm_arch_vcpu_ctxflush_fp(vcpu);
|
|
|
|
/**************************************************************
|
|
* Enter the guest
|
|
*/
|
|
trace_kvm_entry(*vcpu_pc(vcpu));
|
|
guest_timing_enter_irqoff();
|
|
|
|
ret = kvm_arm_vcpu_enter_exit(vcpu);
|
|
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
vcpu->stat.exits++;
|
|
/*
|
|
* Back from guest
|
|
*************************************************************/
|
|
|
|
kvm_arm_clear_debug(vcpu);
|
|
|
|
/*
|
|
* We must sync the PMU state before the vgic state so
|
|
* that the vgic can properly sample the updated state of the
|
|
* interrupt line.
|
|
*/
|
|
kvm_pmu_sync_hwstate(vcpu);
|
|
|
|
/*
|
|
* Sync the vgic state before syncing the timer state because
|
|
* the timer code needs to know if the virtual timer
|
|
* interrupts are active.
|
|
*/
|
|
kvm_vgic_sync_hwstate(vcpu);
|
|
|
|
/*
|
|
* Sync the timer hardware state before enabling interrupts as
|
|
* we don't want vtimer interrupts to race with syncing the
|
|
* timer virtual interrupt state.
|
|
*/
|
|
if (static_branch_unlikely(&userspace_irqchip_in_use))
|
|
kvm_timer_sync_user(vcpu);
|
|
|
|
kvm_arch_vcpu_ctxsync_fp(vcpu);
|
|
|
|
/*
|
|
* We must ensure that any pending interrupts are taken before
|
|
* we exit guest timing so that timer ticks are accounted as
|
|
* guest time. Transiently unmask interrupts so that any
|
|
* pending interrupts are taken.
|
|
*
|
|
* Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
|
|
* context synchronization event) is necessary to ensure that
|
|
* pending interrupts are taken.
|
|
*/
|
|
if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
|
|
local_irq_enable();
|
|
isb();
|
|
local_irq_disable();
|
|
}
|
|
|
|
guest_timing_exit_irqoff();
|
|
|
|
local_irq_enable();
|
|
|
|
trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
|
|
|
|
/* Exit types that need handling before we can be preempted */
|
|
handle_exit_early(vcpu, ret);
|
|
|
|
preempt_enable();
|
|
|
|
/*
|
|
* The ARMv8 architecture doesn't give the hypervisor
|
|
* a mechanism to prevent a guest from dropping to AArch32 EL0
|
|
* if implemented by the CPU. If we spot the guest in such
|
|
* state and that we decided it wasn't supposed to do so (like
|
|
* with the asymmetric AArch32 case), return to userspace with
|
|
* a fatal error.
|
|
*/
|
|
if (vcpu_mode_is_bad_32bit(vcpu)) {
|
|
/*
|
|
* As we have caught the guest red-handed, decide that
|
|
* it isn't fit for purpose anymore by making the vcpu
|
|
* invalid. The VMM can try and fix it by issuing a
|
|
* KVM_ARM_VCPU_INIT if it really wants to.
|
|
*/
|
|
vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
|
|
ret = ARM_EXCEPTION_IL;
|
|
}
|
|
|
|
ret = handle_exit(vcpu, ret);
|
|
}
|
|
|
|
/* Tell userspace about in-kernel device output levels */
|
|
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
|
|
kvm_timer_update_run(vcpu);
|
|
kvm_pmu_update_run(vcpu);
|
|
}
|
|
|
|
kvm_sigset_deactivate(vcpu);
|
|
|
|
out:
|
|
/*
|
|
* In the unlikely event that we are returning to userspace
|
|
* with pending exceptions or PC adjustment, commit these
|
|
* adjustments in order to give userspace a consistent view of
|
|
* the vcpu state. Note that this relies on __kvm_adjust_pc()
|
|
* being preempt-safe on VHE.
|
|
*/
|
|
if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
|
|
vcpu_get_flag(vcpu, INCREMENT_PC)))
|
|
kvm_call_hyp(__kvm_adjust_pc, vcpu);
|
|
|
|
vcpu_put(vcpu);
|
|
return ret;
|
|
}
|
|
|
|
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
|
|
{
|
|
int bit_index;
|
|
bool set;
|
|
unsigned long *hcr;
|
|
|
|
if (number == KVM_ARM_IRQ_CPU_IRQ)
|
|
bit_index = __ffs(HCR_VI);
|
|
else /* KVM_ARM_IRQ_CPU_FIQ */
|
|
bit_index = __ffs(HCR_VF);
|
|
|
|
hcr = vcpu_hcr(vcpu);
|
|
if (level)
|
|
set = test_and_set_bit(bit_index, hcr);
|
|
else
|
|
set = test_and_clear_bit(bit_index, hcr);
|
|
|
|
/*
|
|
* If we didn't change anything, no need to wake up or kick other CPUs
|
|
*/
|
|
if (set == level)
|
|
return 0;
|
|
|
|
/*
|
|
* The vcpu irq_lines field was updated, wake up sleeping VCPUs and
|
|
* trigger a world-switch round on the running physical CPU to set the
|
|
* virtual IRQ/FIQ fields in the HCR appropriately.
|
|
*/
|
|
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
|
|
bool line_status)
|
|
{
|
|
u32 irq = irq_level->irq;
|
|
unsigned int irq_type, vcpu_id, irq_num;
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
bool level = irq_level->level;
|
|
|
|
irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
|
|
vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
|
|
vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
|
|
irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
|
|
|
|
trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
|
|
|
|
switch (irq_type) {
|
|
case KVM_ARM_IRQ_TYPE_CPU:
|
|
if (irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
|
|
if (!vcpu)
|
|
return -EINVAL;
|
|
|
|
if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
|
|
return -EINVAL;
|
|
|
|
return vcpu_interrupt_line(vcpu, irq_num, level);
|
|
case KVM_ARM_IRQ_TYPE_PPI:
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
|
|
if (!vcpu)
|
|
return -EINVAL;
|
|
|
|
if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
|
|
return -EINVAL;
|
|
|
|
return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
|
|
case KVM_ARM_IRQ_TYPE_SPI:
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
if (irq_num < VGIC_NR_PRIVATE_IRQS)
|
|
return -EINVAL;
|
|
|
|
return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static unsigned long system_supported_vcpu_features(void)
|
|
{
|
|
unsigned long features = KVM_VCPU_VALID_FEATURES;
|
|
|
|
if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
|
|
clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
|
|
|
|
if (!kvm_arm_support_pmu_v3())
|
|
clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
|
|
|
|
if (!system_supports_sve())
|
|
clear_bit(KVM_ARM_VCPU_SVE, &features);
|
|
|
|
if (!system_has_full_ptr_auth()) {
|
|
clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
|
|
clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
|
|
}
|
|
|
|
if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
|
|
clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
|
|
|
|
return features;
|
|
}
|
|
|
|
static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
|
|
const struct kvm_vcpu_init *init)
|
|
{
|
|
unsigned long features = init->features[0];
|
|
int i;
|
|
|
|
if (features & ~KVM_VCPU_VALID_FEATURES)
|
|
return -ENOENT;
|
|
|
|
for (i = 1; i < ARRAY_SIZE(init->features); i++) {
|
|
if (init->features[i])
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (features & ~system_supported_vcpu_features())
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* For now make sure that both address/generic pointer authentication
|
|
* features are requested by the userspace together.
|
|
*/
|
|
if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
|
|
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
|
|
return -EINVAL;
|
|
|
|
/* Disallow NV+SVE for the time being */
|
|
if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) &&
|
|
test_bit(KVM_ARM_VCPU_SVE, &features))
|
|
return -EINVAL;
|
|
|
|
if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
|
|
return 0;
|
|
|
|
/* MTE is incompatible with AArch32 */
|
|
if (kvm_has_mte(vcpu->kvm))
|
|
return -EINVAL;
|
|
|
|
/* NV is incompatible with AArch32 */
|
|
if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
|
|
const struct kvm_vcpu_init *init)
|
|
{
|
|
unsigned long features = init->features[0];
|
|
|
|
return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
|
|
KVM_VCPU_MAX_FEATURES);
|
|
}
|
|
|
|
static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* When the vCPU has a PMU, but no PMU is set for the guest
|
|
* yet, set the default one.
|
|
*/
|
|
if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
|
|
ret = kvm_arm_set_default_pmu(kvm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
|
|
const struct kvm_vcpu_init *init)
|
|
{
|
|
unsigned long features = init->features[0];
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int ret = -EINVAL;
|
|
|
|
mutex_lock(&kvm->arch.config_lock);
|
|
|
|
if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
|
|
kvm_vcpu_init_changed(vcpu, init))
|
|
goto out_unlock;
|
|
|
|
bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
|
|
|
|
ret = kvm_setup_vcpu(vcpu);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/* Now we know what it is, we can reset it. */
|
|
kvm_reset_vcpu(vcpu);
|
|
|
|
set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
|
|
vcpu_set_flag(vcpu, VCPU_INITIALIZED);
|
|
ret = 0;
|
|
out_unlock:
|
|
mutex_unlock(&kvm->arch.config_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
|
|
const struct kvm_vcpu_init *init)
|
|
{
|
|
int ret;
|
|
|
|
if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
|
|
init->target != kvm_target_cpu())
|
|
return -EINVAL;
|
|
|
|
ret = kvm_vcpu_init_check_features(vcpu, init);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!kvm_vcpu_initialized(vcpu))
|
|
return __kvm_vcpu_set_target(vcpu, init);
|
|
|
|
if (kvm_vcpu_init_changed(vcpu, init))
|
|
return -EINVAL;
|
|
|
|
kvm_reset_vcpu(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_init *init)
|
|
{
|
|
bool power_off = false;
|
|
int ret;
|
|
|
|
/*
|
|
* Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
|
|
* reflecting it in the finalized feature set, thus limiting its scope
|
|
* to a single KVM_ARM_VCPU_INIT call.
|
|
*/
|
|
if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
|
|
init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
|
|
power_off = true;
|
|
}
|
|
|
|
ret = kvm_vcpu_set_target(vcpu, init);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Ensure a rebooted VM will fault in RAM pages and detect if the
|
|
* guest MMU is turned off and flush the caches as needed.
|
|
*
|
|
* S2FWB enforces all memory accesses to RAM being cacheable,
|
|
* ensuring that the data side is always coherent. We still
|
|
* need to invalidate the I-cache though, as FWB does *not*
|
|
* imply CTR_EL0.DIC.
|
|
*/
|
|
if (vcpu_has_run_once(vcpu)) {
|
|
if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
|
|
stage2_unmap_vm(vcpu->kvm);
|
|
else
|
|
icache_inval_all_pou();
|
|
}
|
|
|
|
vcpu_reset_hcr(vcpu);
|
|
vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
|
|
|
|
/*
|
|
* Handle the "start in power-off" case.
|
|
*/
|
|
spin_lock(&vcpu->arch.mp_state_lock);
|
|
|
|
if (power_off)
|
|
__kvm_arm_vcpu_power_off(vcpu);
|
|
else
|
|
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
|
|
|
|
spin_unlock(&vcpu->arch.mp_state_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
memset(events, 0, sizeof(*events));
|
|
|
|
return __kvm_arm_vcpu_get_events(vcpu, events);
|
|
}
|
|
|
|
static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
int i;
|
|
|
|
/* check whether the reserved field is zero */
|
|
for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
|
|
if (events->reserved[i])
|
|
return -EINVAL;
|
|
|
|
/* check whether the pad field is zero */
|
|
for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
|
|
if (events->exception.pad[i])
|
|
return -EINVAL;
|
|
|
|
return __kvm_arm_vcpu_set_events(vcpu, events);
|
|
}
|
|
|
|
long kvm_arch_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
struct kvm_device_attr attr;
|
|
long r;
|
|
|
|
switch (ioctl) {
|
|
case KVM_ARM_VCPU_INIT: {
|
|
struct kvm_vcpu_init init;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&init, argp, sizeof(init)))
|
|
break;
|
|
|
|
r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
|
|
break;
|
|
}
|
|
case KVM_SET_ONE_REG:
|
|
case KVM_GET_ONE_REG: {
|
|
struct kvm_one_reg reg;
|
|
|
|
r = -ENOEXEC;
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
break;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(®, argp, sizeof(reg)))
|
|
break;
|
|
|
|
/*
|
|
* We could owe a reset due to PSCI. Handle the pending reset
|
|
* here to ensure userspace register accesses are ordered after
|
|
* the reset.
|
|
*/
|
|
if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
|
|
kvm_reset_vcpu(vcpu);
|
|
|
|
if (ioctl == KVM_SET_ONE_REG)
|
|
r = kvm_arm_set_reg(vcpu, ®);
|
|
else
|
|
r = kvm_arm_get_reg(vcpu, ®);
|
|
break;
|
|
}
|
|
case KVM_GET_REG_LIST: {
|
|
struct kvm_reg_list __user *user_list = argp;
|
|
struct kvm_reg_list reg_list;
|
|
unsigned n;
|
|
|
|
r = -ENOEXEC;
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
break;
|
|
|
|
r = -EPERM;
|
|
if (!kvm_arm_vcpu_is_finalized(vcpu))
|
|
break;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(®_list, user_list, sizeof(reg_list)))
|
|
break;
|
|
n = reg_list.n;
|
|
reg_list.n = kvm_arm_num_regs(vcpu);
|
|
if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
|
|
break;
|
|
r = -E2BIG;
|
|
if (n < reg_list.n)
|
|
break;
|
|
r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
|
|
break;
|
|
}
|
|
case KVM_SET_DEVICE_ATTR: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
break;
|
|
r = kvm_arm_vcpu_set_attr(vcpu, &attr);
|
|
break;
|
|
}
|
|
case KVM_GET_DEVICE_ATTR: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
break;
|
|
r = kvm_arm_vcpu_get_attr(vcpu, &attr);
|
|
break;
|
|
}
|
|
case KVM_HAS_DEVICE_ATTR: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
break;
|
|
r = kvm_arm_vcpu_has_attr(vcpu, &attr);
|
|
break;
|
|
}
|
|
case KVM_GET_VCPU_EVENTS: {
|
|
struct kvm_vcpu_events events;
|
|
|
|
if (kvm_arm_vcpu_get_events(vcpu, &events))
|
|
return -EINVAL;
|
|
|
|
if (copy_to_user(argp, &events, sizeof(events)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
case KVM_SET_VCPU_EVENTS: {
|
|
struct kvm_vcpu_events events;
|
|
|
|
if (copy_from_user(&events, argp, sizeof(events)))
|
|
return -EFAULT;
|
|
|
|
return kvm_arm_vcpu_set_events(vcpu, &events);
|
|
}
|
|
case KVM_ARM_VCPU_FINALIZE: {
|
|
int what;
|
|
|
|
if (!kvm_vcpu_initialized(vcpu))
|
|
return -ENOEXEC;
|
|
|
|
if (get_user(what, (const int __user *)argp))
|
|
return -EFAULT;
|
|
|
|
return kvm_arm_vcpu_finalize(vcpu, what);
|
|
}
|
|
default:
|
|
r = -EINVAL;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
|
|
{
|
|
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
|
|
struct kvm_arm_device_addr *dev_addr)
|
|
{
|
|
switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
|
|
case KVM_ARM_DEVICE_VGIC_V2:
|
|
if (!vgic_present)
|
|
return -ENXIO;
|
|
return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
|
|
default:
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->group) {
|
|
case KVM_ARM_VM_SMCCC_CTRL:
|
|
return kvm_vm_smccc_has_attr(kvm, attr);
|
|
default:
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
|
|
static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->group) {
|
|
case KVM_ARM_VM_SMCCC_CTRL:
|
|
return kvm_vm_smccc_set_attr(kvm, attr);
|
|
default:
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
|
|
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
struct kvm_device_attr attr;
|
|
|
|
switch (ioctl) {
|
|
case KVM_CREATE_IRQCHIP: {
|
|
int ret;
|
|
if (!vgic_present)
|
|
return -ENXIO;
|
|
mutex_lock(&kvm->lock);
|
|
ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
case KVM_ARM_SET_DEVICE_ADDR: {
|
|
struct kvm_arm_device_addr dev_addr;
|
|
|
|
if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
|
|
return -EFAULT;
|
|
return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
|
|
}
|
|
case KVM_ARM_PREFERRED_TARGET: {
|
|
struct kvm_vcpu_init init = {
|
|
.target = KVM_ARM_TARGET_GENERIC_V8,
|
|
};
|
|
|
|
if (copy_to_user(argp, &init, sizeof(init)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
case KVM_ARM_MTE_COPY_TAGS: {
|
|
struct kvm_arm_copy_mte_tags copy_tags;
|
|
|
|
if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
|
|
return -EFAULT;
|
|
return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
|
|
}
|
|
case KVM_ARM_SET_COUNTER_OFFSET: {
|
|
struct kvm_arm_counter_offset offset;
|
|
|
|
if (copy_from_user(&offset, argp, sizeof(offset)))
|
|
return -EFAULT;
|
|
return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
|
|
}
|
|
case KVM_HAS_DEVICE_ATTR: {
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
return -EFAULT;
|
|
|
|
return kvm_vm_has_attr(kvm, &attr);
|
|
}
|
|
case KVM_SET_DEVICE_ATTR: {
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
return -EFAULT;
|
|
|
|
return kvm_vm_set_attr(kvm, &attr);
|
|
}
|
|
case KVM_ARM_GET_REG_WRITABLE_MASKS: {
|
|
struct reg_mask_range range;
|
|
|
|
if (copy_from_user(&range, argp, sizeof(range)))
|
|
return -EFAULT;
|
|
return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* unlocks vcpus from @vcpu_lock_idx and smaller */
|
|
static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
|
|
{
|
|
struct kvm_vcpu *tmp_vcpu;
|
|
|
|
for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
|
|
tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
|
|
mutex_unlock(&tmp_vcpu->mutex);
|
|
}
|
|
}
|
|
|
|
void unlock_all_vcpus(struct kvm *kvm)
|
|
{
|
|
lockdep_assert_held(&kvm->lock);
|
|
|
|
unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
|
|
}
|
|
|
|
/* Returns true if all vcpus were locked, false otherwise */
|
|
bool lock_all_vcpus(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *tmp_vcpu;
|
|
unsigned long c;
|
|
|
|
lockdep_assert_held(&kvm->lock);
|
|
|
|
/*
|
|
* Any time a vcpu is in an ioctl (including running), the
|
|
* core KVM code tries to grab the vcpu->mutex.
|
|
*
|
|
* By grabbing the vcpu->mutex of all VCPUs we ensure that no
|
|
* other VCPUs can fiddle with the state while we access it.
|
|
*/
|
|
kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
|
|
if (!mutex_trylock(&tmp_vcpu->mutex)) {
|
|
unlock_vcpus(kvm, c - 1);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static unsigned long nvhe_percpu_size(void)
|
|
{
|
|
return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
|
|
(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
|
|
}
|
|
|
|
static unsigned long nvhe_percpu_order(void)
|
|
{
|
|
unsigned long size = nvhe_percpu_size();
|
|
|
|
return size ? get_order(size) : 0;
|
|
}
|
|
|
|
/* A lookup table holding the hypervisor VA for each vector slot */
|
|
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
|
|
|
|
static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
|
|
{
|
|
hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
|
|
}
|
|
|
|
static int kvm_init_vector_slots(void)
|
|
{
|
|
int err;
|
|
void *base;
|
|
|
|
base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
|
|
kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
|
|
|
|
base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
|
|
kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
|
|
|
|
if (kvm_system_needs_idmapped_vectors() &&
|
|
!is_protected_kvm_enabled()) {
|
|
err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
|
|
__BP_HARDEN_HYP_VECS_SZ, &base);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
|
|
kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
|
|
return 0;
|
|
}
|
|
|
|
static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
|
|
{
|
|
struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
|
|
u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
|
|
unsigned long tcr;
|
|
|
|
/*
|
|
* Calculate the raw per-cpu offset without a translation from the
|
|
* kernel's mapping to the linear mapping, and store it in tpidr_el2
|
|
* so that we can use adr_l to access per-cpu variables in EL2.
|
|
* Also drop the KASAN tag which gets in the way...
|
|
*/
|
|
params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
|
|
(unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
|
|
|
|
params->mair_el2 = read_sysreg(mair_el1);
|
|
|
|
tcr = read_sysreg(tcr_el1);
|
|
if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
|
|
tcr |= TCR_EPD1_MASK;
|
|
} else {
|
|
tcr &= TCR_EL2_MASK;
|
|
tcr |= TCR_EL2_RES1;
|
|
}
|
|
tcr &= ~TCR_T0SZ_MASK;
|
|
tcr |= TCR_T0SZ(hyp_va_bits);
|
|
tcr &= ~TCR_EL2_PS_MASK;
|
|
tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
|
|
if (kvm_lpa2_is_enabled())
|
|
tcr |= TCR_EL2_DS;
|
|
params->tcr_el2 = tcr;
|
|
|
|
params->pgd_pa = kvm_mmu_get_httbr();
|
|
if (is_protected_kvm_enabled())
|
|
params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
|
|
else
|
|
params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
|
|
if (cpus_have_final_cap(ARM64_KVM_HVHE))
|
|
params->hcr_el2 |= HCR_E2H;
|
|
params->vttbr = params->vtcr = 0;
|
|
|
|
/*
|
|
* Flush the init params from the data cache because the struct will
|
|
* be read while the MMU is off.
|
|
*/
|
|
kvm_flush_dcache_to_poc(params, sizeof(*params));
|
|
}
|
|
|
|
static void hyp_install_host_vector(void)
|
|
{
|
|
struct kvm_nvhe_init_params *params;
|
|
struct arm_smccc_res res;
|
|
|
|
/* Switch from the HYP stub to our own HYP init vector */
|
|
__hyp_set_vectors(kvm_get_idmap_vector());
|
|
|
|
/*
|
|
* Call initialization code, and switch to the full blown HYP code.
|
|
* If the cpucaps haven't been finalized yet, something has gone very
|
|
* wrong, and hyp will crash and burn when it uses any
|
|
* cpus_have_*_cap() wrapper.
|
|
*/
|
|
BUG_ON(!system_capabilities_finalized());
|
|
params = this_cpu_ptr_nvhe_sym(kvm_init_params);
|
|
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
|
|
WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
|
|
}
|
|
|
|
static void cpu_init_hyp_mode(void)
|
|
{
|
|
hyp_install_host_vector();
|
|
|
|
/*
|
|
* Disabling SSBD on a non-VHE system requires us to enable SSBS
|
|
* at EL2.
|
|
*/
|
|
if (this_cpu_has_cap(ARM64_SSBS) &&
|
|
arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
|
|
kvm_call_hyp_nvhe(__kvm_enable_ssbs);
|
|
}
|
|
}
|
|
|
|
static void cpu_hyp_reset(void)
|
|
{
|
|
if (!is_kernel_in_hyp_mode())
|
|
__hyp_reset_vectors();
|
|
}
|
|
|
|
/*
|
|
* EL2 vectors can be mapped and rerouted in a number of ways,
|
|
* depending on the kernel configuration and CPU present:
|
|
*
|
|
* - If the CPU is affected by Spectre-v2, the hardening sequence is
|
|
* placed in one of the vector slots, which is executed before jumping
|
|
* to the real vectors.
|
|
*
|
|
* - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
|
|
* containing the hardening sequence is mapped next to the idmap page,
|
|
* and executed before jumping to the real vectors.
|
|
*
|
|
* - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
|
|
* empty slot is selected, mapped next to the idmap page, and
|
|
* executed before jumping to the real vectors.
|
|
*
|
|
* Note that ARM64_SPECTRE_V3A is somewhat incompatible with
|
|
* VHE, as we don't have hypervisor-specific mappings. If the system
|
|
* is VHE and yet selects this capability, it will be ignored.
|
|
*/
|
|
static void cpu_set_hyp_vector(void)
|
|
{
|
|
struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
|
|
void *vector = hyp_spectre_vector_selector[data->slot];
|
|
|
|
if (!is_protected_kvm_enabled())
|
|
*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
|
|
else
|
|
kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
|
|
}
|
|
|
|
static void cpu_hyp_init_context(void)
|
|
{
|
|
kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
|
|
|
|
if (!is_kernel_in_hyp_mode())
|
|
cpu_init_hyp_mode();
|
|
}
|
|
|
|
static void cpu_hyp_init_features(void)
|
|
{
|
|
cpu_set_hyp_vector();
|
|
kvm_arm_init_debug();
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
kvm_timer_init_vhe();
|
|
|
|
if (vgic_present)
|
|
kvm_vgic_init_cpu_hardware();
|
|
}
|
|
|
|
static void cpu_hyp_reinit(void)
|
|
{
|
|
cpu_hyp_reset();
|
|
cpu_hyp_init_context();
|
|
cpu_hyp_init_features();
|
|
}
|
|
|
|
static void cpu_hyp_init(void *discard)
|
|
{
|
|
if (!__this_cpu_read(kvm_hyp_initialized)) {
|
|
cpu_hyp_reinit();
|
|
__this_cpu_write(kvm_hyp_initialized, 1);
|
|
}
|
|
}
|
|
|
|
static void cpu_hyp_uninit(void *discard)
|
|
{
|
|
if (__this_cpu_read(kvm_hyp_initialized)) {
|
|
cpu_hyp_reset();
|
|
__this_cpu_write(kvm_hyp_initialized, 0);
|
|
}
|
|
}
|
|
|
|
int kvm_arch_hardware_enable(void)
|
|
{
|
|
/*
|
|
* Most calls to this function are made with migration
|
|
* disabled, but not with preemption disabled. The former is
|
|
* enough to ensure correctness, but most of the helpers
|
|
* expect the later and will throw a tantrum otherwise.
|
|
*/
|
|
preempt_disable();
|
|
|
|
cpu_hyp_init(NULL);
|
|
|
|
kvm_vgic_cpu_up();
|
|
kvm_timer_cpu_up();
|
|
|
|
preempt_enable();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_hardware_disable(void)
|
|
{
|
|
kvm_timer_cpu_down();
|
|
kvm_vgic_cpu_down();
|
|
|
|
if (!is_protected_kvm_enabled())
|
|
cpu_hyp_uninit(NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_PM
|
|
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
|
|
unsigned long cmd,
|
|
void *v)
|
|
{
|
|
/*
|
|
* kvm_hyp_initialized is left with its old value over
|
|
* PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
|
|
* re-enable hyp.
|
|
*/
|
|
switch (cmd) {
|
|
case CPU_PM_ENTER:
|
|
if (__this_cpu_read(kvm_hyp_initialized))
|
|
/*
|
|
* don't update kvm_hyp_initialized here
|
|
* so that the hyp will be re-enabled
|
|
* when we resume. See below.
|
|
*/
|
|
cpu_hyp_reset();
|
|
|
|
return NOTIFY_OK;
|
|
case CPU_PM_ENTER_FAILED:
|
|
case CPU_PM_EXIT:
|
|
if (__this_cpu_read(kvm_hyp_initialized))
|
|
/* The hyp was enabled before suspend. */
|
|
cpu_hyp_reinit();
|
|
|
|
return NOTIFY_OK;
|
|
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
}
|
|
|
|
static struct notifier_block hyp_init_cpu_pm_nb = {
|
|
.notifier_call = hyp_init_cpu_pm_notifier,
|
|
};
|
|
|
|
static void __init hyp_cpu_pm_init(void)
|
|
{
|
|
if (!is_protected_kvm_enabled())
|
|
cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
|
|
}
|
|
static void __init hyp_cpu_pm_exit(void)
|
|
{
|
|
if (!is_protected_kvm_enabled())
|
|
cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
|
|
}
|
|
#else
|
|
static inline void __init hyp_cpu_pm_init(void)
|
|
{
|
|
}
|
|
static inline void __init hyp_cpu_pm_exit(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void __init init_cpu_logical_map(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
/*
|
|
* Copy the MPIDR <-> logical CPU ID mapping to hyp.
|
|
* Only copy the set of online CPUs whose features have been checked
|
|
* against the finalized system capabilities. The hypervisor will not
|
|
* allow any other CPUs from the `possible` set to boot.
|
|
*/
|
|
for_each_online_cpu(cpu)
|
|
hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
|
|
}
|
|
|
|
#define init_psci_0_1_impl_state(config, what) \
|
|
config.psci_0_1_ ## what ## _implemented = psci_ops.what
|
|
|
|
static bool __init init_psci_relay(void)
|
|
{
|
|
/*
|
|
* If PSCI has not been initialized, protected KVM cannot install
|
|
* itself on newly booted CPUs.
|
|
*/
|
|
if (!psci_ops.get_version) {
|
|
kvm_err("Cannot initialize protected mode without PSCI\n");
|
|
return false;
|
|
}
|
|
|
|
kvm_host_psci_config.version = psci_ops.get_version();
|
|
kvm_host_psci_config.smccc_version = arm_smccc_get_version();
|
|
|
|
if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
|
|
kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
|
|
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
|
|
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
|
|
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
|
|
init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int __init init_subsystems(void)
|
|
{
|
|
int err = 0;
|
|
|
|
/*
|
|
* Enable hardware so that subsystem initialisation can access EL2.
|
|
*/
|
|
on_each_cpu(cpu_hyp_init, NULL, 1);
|
|
|
|
/*
|
|
* Register CPU lower-power notifier
|
|
*/
|
|
hyp_cpu_pm_init();
|
|
|
|
/*
|
|
* Init HYP view of VGIC
|
|
*/
|
|
err = kvm_vgic_hyp_init();
|
|
switch (err) {
|
|
case 0:
|
|
vgic_present = true;
|
|
break;
|
|
case -ENODEV:
|
|
case -ENXIO:
|
|
vgic_present = false;
|
|
err = 0;
|
|
break;
|
|
default:
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Init HYP architected timer support
|
|
*/
|
|
err = kvm_timer_hyp_init(vgic_present);
|
|
if (err)
|
|
goto out;
|
|
|
|
kvm_register_perf_callbacks(NULL);
|
|
|
|
out:
|
|
if (err)
|
|
hyp_cpu_pm_exit();
|
|
|
|
if (err || !is_protected_kvm_enabled())
|
|
on_each_cpu(cpu_hyp_uninit, NULL, 1);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void __init teardown_subsystems(void)
|
|
{
|
|
kvm_unregister_perf_callbacks();
|
|
hyp_cpu_pm_exit();
|
|
}
|
|
|
|
static void __init teardown_hyp_mode(void)
|
|
{
|
|
int cpu;
|
|
|
|
free_hyp_pgds();
|
|
for_each_possible_cpu(cpu) {
|
|
free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
|
|
free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
|
|
}
|
|
}
|
|
|
|
static int __init do_pkvm_init(u32 hyp_va_bits)
|
|
{
|
|
void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
|
|
int ret;
|
|
|
|
preempt_disable();
|
|
cpu_hyp_init_context();
|
|
ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
|
|
num_possible_cpus(), kern_hyp_va(per_cpu_base),
|
|
hyp_va_bits);
|
|
cpu_hyp_init_features();
|
|
|
|
/*
|
|
* The stub hypercalls are now disabled, so set our local flag to
|
|
* prevent a later re-init attempt in kvm_arch_hardware_enable().
|
|
*/
|
|
__this_cpu_write(kvm_hyp_initialized, 1);
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u64 get_hyp_id_aa64pfr0_el1(void)
|
|
{
|
|
/*
|
|
* Track whether the system isn't affected by spectre/meltdown in the
|
|
* hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
|
|
* Although this is per-CPU, we make it global for simplicity, e.g., not
|
|
* to have to worry about vcpu migration.
|
|
*
|
|
* Unlike for non-protected VMs, userspace cannot override this for
|
|
* protected VMs.
|
|
*/
|
|
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
|
|
|
|
val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
|
|
ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
|
|
|
|
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
|
|
arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
|
|
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
|
|
arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
|
|
|
|
return val;
|
|
}
|
|
|
|
static void kvm_hyp_init_symbols(void)
|
|
{
|
|
kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
|
|
kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
|
|
kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
|
|
kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
|
|
kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
|
|
kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
|
|
kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
|
|
kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
|
|
kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
|
|
kvm_nvhe_sym(__icache_flags) = __icache_flags;
|
|
kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
|
|
}
|
|
|
|
static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
|
|
{
|
|
void *addr = phys_to_virt(hyp_mem_base);
|
|
int ret;
|
|
|
|
ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = do_pkvm_init(hyp_va_bits);
|
|
if (ret)
|
|
return ret;
|
|
|
|
free_hyp_pgds();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pkvm_hyp_init_ptrauth(void)
|
|
{
|
|
struct kvm_cpu_context *hyp_ctxt;
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
|
|
hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
|
|
hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
|
|
hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
|
|
hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
|
|
hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
|
|
hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
|
|
hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
|
|
hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
|
|
hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
|
|
hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
|
|
}
|
|
}
|
|
|
|
/* Inits Hyp-mode on all online CPUs */
|
|
static int __init init_hyp_mode(void)
|
|
{
|
|
u32 hyp_va_bits;
|
|
int cpu;
|
|
int err = -ENOMEM;
|
|
|
|
/*
|
|
* The protected Hyp-mode cannot be initialized if the memory pool
|
|
* allocation has failed.
|
|
*/
|
|
if (is_protected_kvm_enabled() && !hyp_mem_base)
|
|
goto out_err;
|
|
|
|
/*
|
|
* Allocate Hyp PGD and setup Hyp identity mapping
|
|
*/
|
|
err = kvm_mmu_init(&hyp_va_bits);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
/*
|
|
* Allocate stack pages for Hypervisor-mode
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
unsigned long stack_page;
|
|
|
|
stack_page = __get_free_page(GFP_KERNEL);
|
|
if (!stack_page) {
|
|
err = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize pages for Hypervisor-mode percpu regions.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
struct page *page;
|
|
void *page_addr;
|
|
|
|
page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
page_addr = page_address(page);
|
|
memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
|
|
kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
|
|
}
|
|
|
|
/*
|
|
* Map the Hyp-code called directly from the host
|
|
*/
|
|
err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
|
|
kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
|
|
if (err) {
|
|
kvm_err("Cannot map world-switch code\n");
|
|
goto out_err;
|
|
}
|
|
|
|
err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
|
|
kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
|
|
if (err) {
|
|
kvm_err("Cannot map .hyp.rodata section\n");
|
|
goto out_err;
|
|
}
|
|
|
|
err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
|
|
kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
|
|
if (err) {
|
|
kvm_err("Cannot map rodata section\n");
|
|
goto out_err;
|
|
}
|
|
|
|
/*
|
|
* .hyp.bss is guaranteed to be placed at the beginning of the .bss
|
|
* section thanks to an assertion in the linker script. Map it RW and
|
|
* the rest of .bss RO.
|
|
*/
|
|
err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
|
|
kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
|
|
if (err) {
|
|
kvm_err("Cannot map hyp bss section: %d\n", err);
|
|
goto out_err;
|
|
}
|
|
|
|
err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
|
|
kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
|
|
if (err) {
|
|
kvm_err("Cannot map bss section\n");
|
|
goto out_err;
|
|
}
|
|
|
|
/*
|
|
* Map the Hyp stack pages
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
|
|
char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
|
|
|
|
err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va);
|
|
if (err) {
|
|
kvm_err("Cannot map hyp stack\n");
|
|
goto out_err;
|
|
}
|
|
|
|
/*
|
|
* Save the stack PA in nvhe_init_params. This will be needed
|
|
* to recreate the stack mapping in protected nVHE mode.
|
|
* __hyp_pa() won't do the right thing there, since the stack
|
|
* has been mapped in the flexible private VA space.
|
|
*/
|
|
params->stack_pa = __pa(stack_page);
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
|
|
char *percpu_end = percpu_begin + nvhe_percpu_size();
|
|
|
|
/* Map Hyp percpu pages */
|
|
err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
|
|
if (err) {
|
|
kvm_err("Cannot map hyp percpu region\n");
|
|
goto out_err;
|
|
}
|
|
|
|
/* Prepare the CPU initialization parameters */
|
|
cpu_prepare_hyp_mode(cpu, hyp_va_bits);
|
|
}
|
|
|
|
kvm_hyp_init_symbols();
|
|
|
|
if (is_protected_kvm_enabled()) {
|
|
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
|
|
cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
|
|
pkvm_hyp_init_ptrauth();
|
|
|
|
init_cpu_logical_map();
|
|
|
|
if (!init_psci_relay()) {
|
|
err = -ENODEV;
|
|
goto out_err;
|
|
}
|
|
|
|
err = kvm_hyp_init_protection(hyp_va_bits);
|
|
if (err) {
|
|
kvm_err("Failed to init hyp memory protection\n");
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
teardown_hyp_mode();
|
|
kvm_err("error initializing Hyp mode: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long i;
|
|
|
|
mpidr &= MPIDR_HWID_BITMASK;
|
|
|
|
if (kvm->arch.mpidr_data) {
|
|
u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr);
|
|
|
|
vcpu = kvm_get_vcpu(kvm,
|
|
kvm->arch.mpidr_data->cmpidr_to_idx[idx]);
|
|
if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
|
|
vcpu = NULL;
|
|
|
|
return vcpu;
|
|
}
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
|
|
return vcpu;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
|
|
{
|
|
return irqchip_in_kernel(kvm);
|
|
}
|
|
|
|
bool kvm_arch_has_irq_bypass(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
|
|
struct irq_bypass_producer *prod)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
|
|
&irqfd->irq_entry);
|
|
}
|
|
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
|
|
struct irq_bypass_producer *prod)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
|
|
&irqfd->irq_entry);
|
|
}
|
|
|
|
void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
kvm_arm_halt_guest(irqfd->kvm);
|
|
}
|
|
|
|
void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
kvm_arm_resume_guest(irqfd->kvm);
|
|
}
|
|
|
|
/* Initialize Hyp-mode and memory mappings on all CPUs */
|
|
static __init int kvm_arm_init(void)
|
|
{
|
|
int err;
|
|
bool in_hyp_mode;
|
|
|
|
if (!is_hyp_mode_available()) {
|
|
kvm_info("HYP mode not available\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (kvm_get_mode() == KVM_MODE_NONE) {
|
|
kvm_info("KVM disabled from command line\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
err = kvm_sys_reg_table_init();
|
|
if (err) {
|
|
kvm_info("Error initializing system register tables");
|
|
return err;
|
|
}
|
|
|
|
in_hyp_mode = is_kernel_in_hyp_mode();
|
|
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
|
|
cpus_have_final_cap(ARM64_WORKAROUND_1508412))
|
|
kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
|
|
"Only trusted guests should be used on this system.\n");
|
|
|
|
err = kvm_set_ipa_limit();
|
|
if (err)
|
|
return err;
|
|
|
|
err = kvm_arm_init_sve();
|
|
if (err)
|
|
return err;
|
|
|
|
err = kvm_arm_vmid_alloc_init();
|
|
if (err) {
|
|
kvm_err("Failed to initialize VMID allocator.\n");
|
|
return err;
|
|
}
|
|
|
|
if (!in_hyp_mode) {
|
|
err = init_hyp_mode();
|
|
if (err)
|
|
goto out_err;
|
|
}
|
|
|
|
err = kvm_init_vector_slots();
|
|
if (err) {
|
|
kvm_err("Cannot initialise vector slots\n");
|
|
goto out_hyp;
|
|
}
|
|
|
|
err = init_subsystems();
|
|
if (err)
|
|
goto out_hyp;
|
|
|
|
if (is_protected_kvm_enabled()) {
|
|
kvm_info("Protected nVHE mode initialized successfully\n");
|
|
} else if (in_hyp_mode) {
|
|
kvm_info("VHE mode initialized successfully\n");
|
|
} else {
|
|
kvm_info("Hyp mode initialized successfully\n");
|
|
}
|
|
|
|
/*
|
|
* FIXME: Do something reasonable if kvm_init() fails after pKVM
|
|
* hypervisor protection is finalized.
|
|
*/
|
|
err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
|
|
if (err)
|
|
goto out_subs;
|
|
|
|
kvm_arm_initialised = true;
|
|
|
|
return 0;
|
|
|
|
out_subs:
|
|
teardown_subsystems();
|
|
out_hyp:
|
|
if (!in_hyp_mode)
|
|
teardown_hyp_mode();
|
|
out_err:
|
|
kvm_arm_vmid_alloc_free();
|
|
return err;
|
|
}
|
|
|
|
static int __init early_kvm_mode_cfg(char *arg)
|
|
{
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
if (strcmp(arg, "none") == 0) {
|
|
kvm_mode = KVM_MODE_NONE;
|
|
return 0;
|
|
}
|
|
|
|
if (!is_hyp_mode_available()) {
|
|
pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
|
|
return 0;
|
|
}
|
|
|
|
if (strcmp(arg, "protected") == 0) {
|
|
if (!is_kernel_in_hyp_mode())
|
|
kvm_mode = KVM_MODE_PROTECTED;
|
|
else
|
|
pr_warn_once("Protected KVM not available with VHE\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
|
|
kvm_mode = KVM_MODE_DEFAULT;
|
|
return 0;
|
|
}
|
|
|
|
if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
|
|
kvm_mode = KVM_MODE_NV;
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
early_param("kvm-arm.mode", early_kvm_mode_cfg);
|
|
|
|
enum kvm_mode kvm_get_mode(void)
|
|
{
|
|
return kvm_mode;
|
|
}
|
|
|
|
module_init(kvm_arm_init);
|