d11974dc5f
It is a pretty well known fact that KVM does not support MMIO emulation without valid instruction syndrome information (ESR_EL2.ISV == 0). The current kvm_pr_unimpl() is pretty useless, as it contains zero context to relate the event to a vCPU. Replace it with a precise tracepoint that dumps the relevant context so the user can make sense of what the guest is doing. Acked-by: Zenghui Yu <yuzenghui@huawei.com> Acked-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20231026205306.3045075-1-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
199 lines
4.2 KiB
C
199 lines
4.2 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <trace/events/kvm.h>
|
|
|
|
#include "trace.h"
|
|
|
|
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data)
|
|
{
|
|
void *datap = NULL;
|
|
union {
|
|
u8 byte;
|
|
u16 hword;
|
|
u32 word;
|
|
u64 dword;
|
|
} tmp;
|
|
|
|
switch (len) {
|
|
case 1:
|
|
tmp.byte = data;
|
|
datap = &tmp.byte;
|
|
break;
|
|
case 2:
|
|
tmp.hword = data;
|
|
datap = &tmp.hword;
|
|
break;
|
|
case 4:
|
|
tmp.word = data;
|
|
datap = &tmp.word;
|
|
break;
|
|
case 8:
|
|
tmp.dword = data;
|
|
datap = &tmp.dword;
|
|
break;
|
|
}
|
|
|
|
memcpy(buf, datap, len);
|
|
}
|
|
|
|
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len)
|
|
{
|
|
unsigned long data = 0;
|
|
union {
|
|
u16 hword;
|
|
u32 word;
|
|
u64 dword;
|
|
} tmp;
|
|
|
|
switch (len) {
|
|
case 1:
|
|
data = *(u8 *)buf;
|
|
break;
|
|
case 2:
|
|
memcpy(&tmp.hword, buf, len);
|
|
data = tmp.hword;
|
|
break;
|
|
case 4:
|
|
memcpy(&tmp.word, buf, len);
|
|
data = tmp.word;
|
|
break;
|
|
case 8:
|
|
memcpy(&tmp.dword, buf, len);
|
|
data = tmp.dword;
|
|
break;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_mmio_return -- Handle MMIO loads after user space emulation
|
|
* or in-kernel IO emulation
|
|
*
|
|
* @vcpu: The VCPU pointer
|
|
*/
|
|
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long data;
|
|
unsigned int len;
|
|
int mask;
|
|
|
|
/* Detect an already handled MMIO return */
|
|
if (unlikely(!vcpu->mmio_needed))
|
|
return 0;
|
|
|
|
vcpu->mmio_needed = 0;
|
|
|
|
if (!kvm_vcpu_dabt_iswrite(vcpu)) {
|
|
struct kvm_run *run = vcpu->run;
|
|
|
|
len = kvm_vcpu_dabt_get_as(vcpu);
|
|
data = kvm_mmio_read_buf(run->mmio.data, len);
|
|
|
|
if (kvm_vcpu_dabt_issext(vcpu) &&
|
|
len < sizeof(unsigned long)) {
|
|
mask = 1U << ((len * 8) - 1);
|
|
data = (data ^ mask) - mask;
|
|
}
|
|
|
|
if (!kvm_vcpu_dabt_issf(vcpu))
|
|
data = data & 0xffffffff;
|
|
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr,
|
|
&data);
|
|
data = vcpu_data_host_to_guest(vcpu, data, len);
|
|
vcpu_set_reg(vcpu, kvm_vcpu_dabt_get_rd(vcpu), data);
|
|
}
|
|
|
|
/*
|
|
* The MMIO instruction is emulated and should not be re-executed
|
|
* in the guest.
|
|
*/
|
|
kvm_incr_pc(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
unsigned long data;
|
|
unsigned long rt;
|
|
int ret;
|
|
bool is_write;
|
|
int len;
|
|
u8 data_buf[8];
|
|
|
|
/*
|
|
* No valid syndrome? Ask userspace for help if it has
|
|
* volunteered to do so, and bail out otherwise.
|
|
*/
|
|
if (!kvm_vcpu_dabt_isvalid(vcpu)) {
|
|
trace_kvm_mmio_nisv(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
|
|
kvm_vcpu_get_hfar(vcpu), fault_ipa);
|
|
|
|
if (test_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
|
|
&vcpu->kvm->arch.flags)) {
|
|
run->exit_reason = KVM_EXIT_ARM_NISV;
|
|
run->arm_nisv.esr_iss = kvm_vcpu_dabt_iss_nisv_sanitized(vcpu);
|
|
run->arm_nisv.fault_ipa = fault_ipa;
|
|
return 0;
|
|
}
|
|
|
|
return -ENOSYS;
|
|
}
|
|
|
|
/*
|
|
* Prepare MMIO operation. First decode the syndrome data we get
|
|
* from the CPU. Then try if some in-kernel emulation feels
|
|
* responsible, otherwise let user space do its magic.
|
|
*/
|
|
is_write = kvm_vcpu_dabt_iswrite(vcpu);
|
|
len = kvm_vcpu_dabt_get_as(vcpu);
|
|
rt = kvm_vcpu_dabt_get_rd(vcpu);
|
|
|
|
if (is_write) {
|
|
data = vcpu_data_guest_to_host(vcpu, vcpu_get_reg(vcpu, rt),
|
|
len);
|
|
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, &data);
|
|
kvm_mmio_write_buf(data_buf, len, data);
|
|
|
|
ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len,
|
|
data_buf);
|
|
} else {
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len,
|
|
fault_ipa, NULL);
|
|
|
|
ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len,
|
|
data_buf);
|
|
}
|
|
|
|
/* Now prepare kvm_run for the potential return to userland. */
|
|
run->mmio.is_write = is_write;
|
|
run->mmio.phys_addr = fault_ipa;
|
|
run->mmio.len = len;
|
|
vcpu->mmio_needed = 1;
|
|
|
|
if (!ret) {
|
|
/* We handled the access successfully in the kernel. */
|
|
if (!is_write)
|
|
memcpy(run->mmio.data, data_buf, len);
|
|
vcpu->stat.mmio_exit_kernel++;
|
|
kvm_handle_mmio_return(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
if (is_write)
|
|
memcpy(run->mmio.data, data_buf, len);
|
|
vcpu->stat.mmio_exit_user++;
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
return 0;
|
|
}
|