linux/arch/arm/kernel/kprobes.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

468 lines
13 KiB
C

/*
* arch/arm/kernel/kprobes.c
*
* Kprobes on ARM
*
* Abhishek Sagar <sagar.abhishek@gmail.com>
* Copyright (C) 2006, 2007 Motorola Inc.
*
* Nicolas Pitre <nico@marvell.com>
* Copyright (C) 2007 Marvell Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/stop_machine.h>
#include <linux/stringify.h>
#include <asm/traps.h>
#include <asm/cacheflush.h>
#define MIN_STACK_SIZE(addr) \
min((unsigned long)MAX_STACK_SIZE, \
(unsigned long)current_thread_info() + THREAD_START_SP - (addr))
#define flush_insns(addr, cnt) \
flush_icache_range((unsigned long)(addr), \
(unsigned long)(addr) + \
sizeof(kprobe_opcode_t) * (cnt))
/* Used as a marker in ARM_pc to note when we're in a jprobe. */
#define JPROBE_MAGIC_ADDR 0xffffffff
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
kprobe_opcode_t insn;
kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
unsigned long addr = (unsigned long)p->addr;
int is;
if (addr & 0x3 || in_exception_text(addr))
return -EINVAL;
insn = *p->addr;
p->opcode = insn;
p->ainsn.insn = tmp_insn;
switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
case INSN_REJECTED: /* not supported */
return -EINVAL;
case INSN_GOOD: /* instruction uses slot */
p->ainsn.insn = get_insn_slot();
if (!p->ainsn.insn)
return -ENOMEM;
for (is = 0; is < MAX_INSN_SIZE; ++is)
p->ainsn.insn[is] = tmp_insn[is];
flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
break;
case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
p->ainsn.insn = NULL;
break;
}
return 0;
}
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
*p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
flush_insns(p->addr, 1);
}
/*
* The actual disarming is done here on each CPU and synchronized using
* stop_machine. This synchronization is necessary on SMP to avoid removing
* a probe between the moment the 'Undefined Instruction' exception is raised
* and the moment the exception handler reads the faulting instruction from
* memory.
*/
int __kprobes __arch_disarm_kprobe(void *p)
{
struct kprobe *kp = p;
*kp->addr = kp->opcode;
flush_insns(kp->addr, 1);
return 0;
}
void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
}
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
if (p->ainsn.insn) {
free_insn_slot(p->ainsn.insn, 0);
p->ainsn.insn = NULL;
}
}
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
}
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
kcb->kprobe_status = kcb->prev_kprobe.status;
}
static void __kprobes set_current_kprobe(struct kprobe *p)
{
__get_cpu_var(current_kprobe) = p;
}
static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
regs->ARM_pc += 4;
p->ainsn.insn_handler(p, regs);
}
/*
* Called with IRQs disabled. IRQs must remain disabled from that point
* all the way until processing this kprobe is complete. The current
* kprobes implementation cannot process more than one nested level of
* kprobe, and that level is reserved for user kprobe handlers, so we can't
* risk encountering a new kprobe in an interrupt handler.
*/
void __kprobes kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p, *cur;
struct kprobe_ctlblk *kcb;
kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
kcb = get_kprobe_ctlblk();
cur = kprobe_running();
p = get_kprobe(addr);
if (p) {
if (cur) {
/* Kprobe is pending, so we're recursing. */
switch (kcb->kprobe_status) {
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/* A pre- or post-handler probe got us here. */
kprobes_inc_nmissed_count(p);
save_previous_kprobe(kcb);
set_current_kprobe(p);
kcb->kprobe_status = KPROBE_REENTER;
singlestep(p, regs, kcb);
restore_previous_kprobe(kcb);
break;
default:
/* impossible cases */
BUG();
}
} else {
set_current_kprobe(p);
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
/*
* If we have no pre-handler or it returned 0, we
* continue with normal processing. If we have a
* pre-handler and it returned non-zero, it prepped
* for calling the break_handler below on re-entry,
* so get out doing nothing more here.
*/
if (!p->pre_handler || !p->pre_handler(p, regs)) {
kcb->kprobe_status = KPROBE_HIT_SS;
singlestep(p, regs, kcb);
if (p->post_handler) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
p->post_handler(p, regs, 0);
}
reset_current_kprobe();
}
}
} else if (cur) {
/* We probably hit a jprobe. Call its break handler. */
if (cur->break_handler && cur->break_handler(cur, regs)) {
kcb->kprobe_status = KPROBE_HIT_SS;
singlestep(cur, regs, kcb);
if (cur->post_handler) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
cur->post_handler(cur, regs, 0);
}
}
reset_current_kprobe();
} else {
/*
* The probe was removed and a race is in progress.
* There is nothing we can do about it. Let's restart
* the instruction. By the time we can restart, the
* real instruction will be there.
*/
}
}
static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
{
unsigned long flags;
local_irq_save(flags);
kprobe_handler(regs);
local_irq_restore(flags);
return 0;
}
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
switch (kcb->kprobe_status) {
case KPROBE_HIT_SS:
case KPROBE_REENTER:
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the PC to point back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
regs->ARM_pc = (long)cur->addr;
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
} else {
reset_current_kprobe();
}
break;
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/*
* We increment the nmissed count for accounting,
* we can also use npre/npostfault count for accounting
* these specific fault cases.
*/
kprobes_inc_nmissed_count(cur);
/*
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it.
*/
if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
return 1;
break;
default:
break;
}
return 0;
}
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
unsigned long val, void *data)
{
/*
* notify_die() is currently never called on ARM,
* so this callback is currently empty.
*/
return NOTIFY_DONE;
}
/*
* When a retprobed function returns, trampoline_handler() is called,
* calling the kretprobe's handler. We construct a struct pt_regs to
* give a view of registers r0-r11 to the user return-handler. This is
* not a complete pt_regs structure, but that should be plenty sufficient
* for kretprobe handlers which should normally be interested in r0 only
* anyway.
*/
void __naked __kprobes kretprobe_trampoline(void)
{
__asm__ __volatile__ (
"stmdb sp!, {r0 - r11} \n\t"
"mov r0, sp \n\t"
"bl trampoline_handler \n\t"
"mov lr, r0 \n\t"
"ldmia sp!, {r0 - r11} \n\t"
"mov pc, lr \n\t"
: : : "memory");
}
/* Called from kretprobe_trampoline */
static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head, empty_rp;
struct hlist_node *node, *tmp;
unsigned long flags, orig_ret_address = 0;
unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
INIT_HLIST_HEAD(&empty_rp);
kretprobe_hash_lock(current, &head, &flags);
/*
* It is possible to have multiple instances associated with a given
* task either because multiple functions in the call path have
* a return probe installed on them, and/or more than one return
* probe was registered for a target function.
*
* We can handle this because:
* - instances are always inserted at the head of the list
* - when multiple return probes are registered for the same
* function, the first instance's ret_addr will point to the
* real return address, and all the rest will point to
* kretprobe_trampoline
*/
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
if (ri->rp && ri->rp->handler) {
__get_cpu_var(current_kprobe) = &ri->rp->kp;
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
ri->rp->handler(ri, regs);
__get_cpu_var(current_kprobe) = NULL;
}
orig_ret_address = (unsigned long)ri->ret_addr;
recycle_rp_inst(ri, &empty_rp);
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_assert(ri, orig_ret_address, trampoline_address);
kretprobe_hash_unlock(current, &flags);
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
hlist_del(&ri->hlist);
kfree(ri);
}
return (void *)orig_ret_address;
}
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
struct pt_regs *regs)
{
ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
/* Replace the return addr with trampoline addr. */
regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
}
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
long sp_addr = regs->ARM_sp;
kcb->jprobe_saved_regs = *regs;
memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
regs->ARM_pc = (long)jp->entry;
regs->ARM_cpsr |= PSR_I_BIT;
preempt_disable();
return 1;
}
void __kprobes jprobe_return(void)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
__asm__ __volatile__ (
/*
* Setup an empty pt_regs. Fill SP and PC fields as
* they're needed by longjmp_break_handler.
*/
"sub sp, %0, %1 \n\t"
"ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
"str %0, [sp, %2] \n\t"
"str r0, [sp, %3] \n\t"
"mov r0, sp \n\t"
"bl kprobe_handler \n\t"
/*
* Return to the context saved by setjmp_pre_handler
* and restored by longjmp_break_handler.
*/
"ldr r0, [sp, %4] \n\t"
"msr cpsr_cxsf, r0 \n\t"
"ldmia sp, {r0 - pc} \n\t"
:
: "r" (kcb->jprobe_saved_regs.ARM_sp),
"I" (sizeof(struct pt_regs)),
"J" (offsetof(struct pt_regs, ARM_sp)),
"J" (offsetof(struct pt_regs, ARM_pc)),
"J" (offsetof(struct pt_regs, ARM_cpsr))
: "memory", "cc");
}
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
long orig_sp = regs->ARM_sp;
struct jprobe *jp = container_of(p, struct jprobe, kp);
if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
if (orig_sp != stack_addr) {
struct pt_regs *saved_regs =
(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
printk("current sp %lx does not match saved sp %lx\n",
orig_sp, stack_addr);
printk("Saved registers for jprobe %p\n", jp);
show_regs(saved_regs);
printk("Current registers\n");
show_regs(regs);
BUG();
}
*regs = kcb->jprobe_saved_regs;
memcpy((void *)stack_addr, kcb->jprobes_stack,
MIN_STACK_SIZE(stack_addr));
preempt_enable_no_resched();
return 1;
}
return 0;
}
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
return 0;
}
static struct undef_hook kprobes_break_hook = {
.instr_mask = 0xffffffff,
.instr_val = KPROBE_BREAKPOINT_INSTRUCTION,
.cpsr_mask = MODE_MASK,
.cpsr_val = SVC_MODE,
.fn = kprobe_trap_handler,
};
int __init arch_init_kprobes()
{
arm_kprobe_decode_init();
register_undef_hook(&kprobes_break_hook);
return 0;
}