4bcc19f1b2
Check validity of interrupt timestamps by computing time between 2 interrupts. If it matches the chip frequency modulo 4%, it is used as the data timestamp and also for estimating the chip frequency measured from the system. Otherwise timestamp is computed using the estimated chip frequency. Signed-off-by: Jean-Baptiste Maneyrol <jmaneyrol@invensense.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
250 lines
6.9 KiB
C
250 lines
6.9 KiB
C
/*
|
|
* Copyright (C) 2012 Invensense, Inc.
|
|
*
|
|
* This software is licensed under the terms of the GNU General Public
|
|
* License version 2, as published by the Free Software Foundation, and
|
|
* may be copied, distributed, and modified under those terms.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/math64.h>
|
|
#include <asm/unaligned.h>
|
|
#include "inv_mpu_iio.h"
|
|
|
|
/**
|
|
* inv_mpu6050_update_period() - Update chip internal period estimation
|
|
*
|
|
* @st: driver state
|
|
* @timestamp: the interrupt timestamp
|
|
* @nb: number of data set in the fifo
|
|
*
|
|
* This function uses interrupt timestamps to estimate the chip period and
|
|
* to choose the data timestamp to come.
|
|
*/
|
|
static void inv_mpu6050_update_period(struct inv_mpu6050_state *st,
|
|
s64 timestamp, size_t nb)
|
|
{
|
|
/* Period boundaries for accepting timestamp */
|
|
const s64 period_min =
|
|
(NSEC_PER_MSEC * (100 - INV_MPU6050_TS_PERIOD_JITTER)) / 100;
|
|
const s64 period_max =
|
|
(NSEC_PER_MSEC * (100 + INV_MPU6050_TS_PERIOD_JITTER)) / 100;
|
|
const s32 divider = INV_MPU6050_FREQ_DIVIDER(st);
|
|
s64 delta, interval;
|
|
bool use_it_timestamp = false;
|
|
|
|
if (st->it_timestamp == 0) {
|
|
/* not initialized, forced to use it_timestamp */
|
|
use_it_timestamp = true;
|
|
} else if (nb == 1) {
|
|
/*
|
|
* Validate the use of it timestamp by checking if interrupt
|
|
* has been delayed.
|
|
* nb > 1 means interrupt was delayed for more than 1 sample,
|
|
* so it's obviously not good.
|
|
* Compute the chip period between 2 interrupts for validating.
|
|
*/
|
|
delta = div_s64(timestamp - st->it_timestamp, divider);
|
|
if (delta > period_min && delta < period_max) {
|
|
/* update chip period and use it timestamp */
|
|
st->chip_period = (st->chip_period + delta) / 2;
|
|
use_it_timestamp = true;
|
|
}
|
|
}
|
|
|
|
if (use_it_timestamp) {
|
|
/*
|
|
* Manage case of multiple samples in the fifo (nb > 1):
|
|
* compute timestamp corresponding to the first sample using
|
|
* estimated chip period.
|
|
*/
|
|
interval = (nb - 1) * st->chip_period * divider;
|
|
st->data_timestamp = timestamp - interval;
|
|
}
|
|
|
|
/* save it timestamp */
|
|
st->it_timestamp = timestamp;
|
|
}
|
|
|
|
/**
|
|
* inv_mpu6050_get_timestamp() - Return the current data timestamp
|
|
*
|
|
* @st: driver state
|
|
* @return: current data timestamp
|
|
*
|
|
* This function returns the current data timestamp and prepares for next one.
|
|
*/
|
|
static s64 inv_mpu6050_get_timestamp(struct inv_mpu6050_state *st)
|
|
{
|
|
s64 ts;
|
|
|
|
/* return current data timestamp and increment */
|
|
ts = st->data_timestamp;
|
|
st->data_timestamp += st->chip_period * INV_MPU6050_FREQ_DIVIDER(st);
|
|
|
|
return ts;
|
|
}
|
|
|
|
int inv_reset_fifo(struct iio_dev *indio_dev)
|
|
{
|
|
int result;
|
|
u8 d;
|
|
struct inv_mpu6050_state *st = iio_priv(indio_dev);
|
|
|
|
/* reset it timestamp validation */
|
|
st->it_timestamp = 0;
|
|
|
|
/* disable interrupt */
|
|
result = regmap_write(st->map, st->reg->int_enable, 0);
|
|
if (result) {
|
|
dev_err(regmap_get_device(st->map), "int_enable failed %d\n",
|
|
result);
|
|
return result;
|
|
}
|
|
/* disable the sensor output to FIFO */
|
|
result = regmap_write(st->map, st->reg->fifo_en, 0);
|
|
if (result)
|
|
goto reset_fifo_fail;
|
|
/* disable fifo reading */
|
|
result = regmap_write(st->map, st->reg->user_ctrl,
|
|
st->chip_config.user_ctrl);
|
|
if (result)
|
|
goto reset_fifo_fail;
|
|
|
|
/* reset FIFO*/
|
|
d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_RST;
|
|
result = regmap_write(st->map, st->reg->user_ctrl, d);
|
|
if (result)
|
|
goto reset_fifo_fail;
|
|
|
|
/* enable interrupt */
|
|
if (st->chip_config.accl_fifo_enable ||
|
|
st->chip_config.gyro_fifo_enable) {
|
|
result = regmap_write(st->map, st->reg->int_enable,
|
|
INV_MPU6050_BIT_DATA_RDY_EN);
|
|
if (result)
|
|
return result;
|
|
}
|
|
/* enable FIFO reading */
|
|
d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_EN;
|
|
result = regmap_write(st->map, st->reg->user_ctrl, d);
|
|
if (result)
|
|
goto reset_fifo_fail;
|
|
/* enable sensor output to FIFO */
|
|
d = 0;
|
|
if (st->chip_config.gyro_fifo_enable)
|
|
d |= INV_MPU6050_BITS_GYRO_OUT;
|
|
if (st->chip_config.accl_fifo_enable)
|
|
d |= INV_MPU6050_BIT_ACCEL_OUT;
|
|
result = regmap_write(st->map, st->reg->fifo_en, d);
|
|
if (result)
|
|
goto reset_fifo_fail;
|
|
|
|
return 0;
|
|
|
|
reset_fifo_fail:
|
|
dev_err(regmap_get_device(st->map), "reset fifo failed %d\n", result);
|
|
result = regmap_write(st->map, st->reg->int_enable,
|
|
INV_MPU6050_BIT_DATA_RDY_EN);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* inv_mpu6050_read_fifo() - Transfer data from hardware FIFO to KFIFO.
|
|
*/
|
|
irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
|
|
{
|
|
struct iio_poll_func *pf = p;
|
|
struct iio_dev *indio_dev = pf->indio_dev;
|
|
struct inv_mpu6050_state *st = iio_priv(indio_dev);
|
|
size_t bytes_per_datum;
|
|
int result;
|
|
u8 data[INV_MPU6050_OUTPUT_DATA_SIZE];
|
|
u16 fifo_count;
|
|
s64 timestamp;
|
|
int int_status;
|
|
size_t i, nb;
|
|
|
|
mutex_lock(&st->lock);
|
|
|
|
/* ack interrupt and check status */
|
|
result = regmap_read(st->map, st->reg->int_status, &int_status);
|
|
if (result) {
|
|
dev_err(regmap_get_device(st->map),
|
|
"failed to ack interrupt\n");
|
|
goto flush_fifo;
|
|
}
|
|
/* handle fifo overflow by reseting fifo */
|
|
if (int_status & INV_MPU6050_BIT_FIFO_OVERFLOW_INT)
|
|
goto flush_fifo;
|
|
if (!(int_status & INV_MPU6050_BIT_RAW_DATA_RDY_INT)) {
|
|
dev_warn(regmap_get_device(st->map),
|
|
"spurious interrupt with status 0x%x\n", int_status);
|
|
goto end_session;
|
|
}
|
|
|
|
if (!(st->chip_config.accl_fifo_enable |
|
|
st->chip_config.gyro_fifo_enable))
|
|
goto end_session;
|
|
bytes_per_datum = 0;
|
|
if (st->chip_config.accl_fifo_enable)
|
|
bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
|
|
|
|
if (st->chip_config.gyro_fifo_enable)
|
|
bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
|
|
|
|
/*
|
|
* read fifo_count register to know how many bytes are inside the FIFO
|
|
* right now
|
|
*/
|
|
result = regmap_bulk_read(st->map, st->reg->fifo_count_h, data,
|
|
INV_MPU6050_FIFO_COUNT_BYTE);
|
|
if (result)
|
|
goto end_session;
|
|
fifo_count = get_unaligned_be16(&data[0]);
|
|
/* compute and process all complete datum */
|
|
nb = fifo_count / bytes_per_datum;
|
|
inv_mpu6050_update_period(st, pf->timestamp, nb);
|
|
for (i = 0; i < nb; ++i) {
|
|
result = regmap_bulk_read(st->map, st->reg->fifo_r_w,
|
|
data, bytes_per_datum);
|
|
if (result)
|
|
goto flush_fifo;
|
|
/* skip first samples if needed */
|
|
if (st->skip_samples) {
|
|
st->skip_samples--;
|
|
continue;
|
|
}
|
|
timestamp = inv_mpu6050_get_timestamp(st);
|
|
iio_push_to_buffers_with_timestamp(indio_dev, data, timestamp);
|
|
}
|
|
|
|
end_session:
|
|
mutex_unlock(&st->lock);
|
|
iio_trigger_notify_done(indio_dev->trig);
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
flush_fifo:
|
|
/* Flush HW and SW FIFOs. */
|
|
inv_reset_fifo(indio_dev);
|
|
mutex_unlock(&st->lock);
|
|
iio_trigger_notify_done(indio_dev->trig);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|