linux/arch/arm64/kernel/module.c
Ard Biesheuvel 8a6e40e1f6 arm64: head: move dynamic shadow call stack patching into early C runtime
Once we update the early kernel mapping code to only map the kernel once
with the right permissions, we can no longer perform code patching via
this mapping.

So move this code to an earlier stage of the boot, right after applying
the relocations.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-54-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-16 12:42:30 +00:00

603 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AArch64 loadable module support.
*
* Copyright (C) 2012 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*/
#define pr_fmt(fmt) "Modules: " fmt
#include <linux/bitops.h>
#include <linux/elf.h>
#include <linux/ftrace.h>
#include <linux/gfp.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/moduleloader.h>
#include <linux/random.h>
#include <linux/scs.h>
#include <linux/vmalloc.h>
#include <asm/alternative.h>
#include <asm/insn.h>
#include <asm/scs.h>
#include <asm/sections.h>
static u64 module_direct_base __ro_after_init = 0;
static u64 module_plt_base __ro_after_init = 0;
/*
* Choose a random page-aligned base address for a window of 'size' bytes which
* entirely contains the interval [start, end - 1].
*/
static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
{
u64 max_pgoff, pgoff;
if ((end - start) >= size)
return 0;
max_pgoff = (size - (end - start)) / PAGE_SIZE;
pgoff = get_random_u32_inclusive(0, max_pgoff);
return start - pgoff * PAGE_SIZE;
}
/*
* Modules may directly reference data and text anywhere within the kernel
* image and other modules. References using PREL32 relocations have a +/-2G
* range, and so we need to ensure that the entire kernel image and all modules
* fall within a 2G window such that these are always within range.
*
* Modules may directly branch to functions and code within the kernel text,
* and to functions and code within other modules. These branches will use
* CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
* that the entire kernel text and all module text falls within a 128M window
* such that these are always within range. With PLTs, we can expand this to a
* 2G window.
*
* We chose the 128M region to surround the entire kernel image (rather than
* just the text) as using the same bounds for the 128M and 2G regions ensures
* by construction that we never select a 128M region that is not a subset of
* the 2G region. For very large and unusual kernel configurations this means
* we may fall back to PLTs where they could have been avoided, but this keeps
* the logic significantly simpler.
*/
static int __init module_init_limits(void)
{
u64 kernel_end = (u64)_end;
u64 kernel_start = (u64)_text;
u64 kernel_size = kernel_end - kernel_start;
/*
* The default modules region is placed immediately below the kernel
* image, and is large enough to use the full 2G relocation range.
*/
BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
if (!kaslr_enabled()) {
if (kernel_size < SZ_128M)
module_direct_base = kernel_end - SZ_128M;
if (kernel_size < SZ_2G)
module_plt_base = kernel_end - SZ_2G;
} else {
u64 min = kernel_start;
u64 max = kernel_end;
if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
} else {
module_direct_base = random_bounding_box(SZ_128M, min, max);
if (module_direct_base) {
min = module_direct_base;
max = module_direct_base + SZ_128M;
}
}
module_plt_base = random_bounding_box(SZ_2G, min, max);
}
pr_info("%llu pages in range for non-PLT usage",
module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
pr_info("%llu pages in range for PLT usage",
module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
return 0;
}
subsys_initcall(module_init_limits);
void *module_alloc(unsigned long size)
{
void *p = NULL;
/*
* Where possible, prefer to allocate within direct branch range of the
* kernel such that no PLTs are necessary.
*/
if (module_direct_base) {
p = __vmalloc_node_range(size, MODULE_ALIGN,
module_direct_base,
module_direct_base + SZ_128M,
GFP_KERNEL | __GFP_NOWARN,
PAGE_KERNEL, 0, NUMA_NO_NODE,
__builtin_return_address(0));
}
if (!p && module_plt_base) {
p = __vmalloc_node_range(size, MODULE_ALIGN,
module_plt_base,
module_plt_base + SZ_2G,
GFP_KERNEL | __GFP_NOWARN,
PAGE_KERNEL, 0, NUMA_NO_NODE,
__builtin_return_address(0));
}
if (!p) {
pr_warn_ratelimited("%s: unable to allocate memory\n",
__func__);
}
if (p && (kasan_alloc_module_shadow(p, size, GFP_KERNEL) < 0)) {
vfree(p);
return NULL;
}
/* Memory is intended to be executable, reset the pointer tag. */
return kasan_reset_tag(p);
}
enum aarch64_reloc_op {
RELOC_OP_NONE,
RELOC_OP_ABS,
RELOC_OP_PREL,
RELOC_OP_PAGE,
};
static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
{
switch (reloc_op) {
case RELOC_OP_ABS:
return val;
case RELOC_OP_PREL:
return val - (u64)place;
case RELOC_OP_PAGE:
return (val & ~0xfff) - ((u64)place & ~0xfff);
case RELOC_OP_NONE:
return 0;
}
pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
return 0;
}
static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
{
s64 sval = do_reloc(op, place, val);
/*
* The ELF psABI for AArch64 documents the 16-bit and 32-bit place
* relative and absolute relocations as having a range of [-2^15, 2^16)
* or [-2^31, 2^32), respectively. However, in order to be able to
* detect overflows reliably, we have to choose whether we interpret
* such quantities as signed or as unsigned, and stick with it.
* The way we organize our address space requires a signed
* interpretation of 32-bit relative references, so let's use that
* for all R_AARCH64_PRELxx relocations. This means our upper
* bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
*/
switch (len) {
case 16:
*(s16 *)place = sval;
switch (op) {
case RELOC_OP_ABS:
if (sval < 0 || sval > U16_MAX)
return -ERANGE;
break;
case RELOC_OP_PREL:
if (sval < S16_MIN || sval > S16_MAX)
return -ERANGE;
break;
default:
pr_err("Invalid 16-bit data relocation (%d)\n", op);
return 0;
}
break;
case 32:
*(s32 *)place = sval;
switch (op) {
case RELOC_OP_ABS:
if (sval < 0 || sval > U32_MAX)
return -ERANGE;
break;
case RELOC_OP_PREL:
if (sval < S32_MIN || sval > S32_MAX)
return -ERANGE;
break;
default:
pr_err("Invalid 32-bit data relocation (%d)\n", op);
return 0;
}
break;
case 64:
*(s64 *)place = sval;
break;
default:
pr_err("Invalid length (%d) for data relocation\n", len);
return 0;
}
return 0;
}
enum aarch64_insn_movw_imm_type {
AARCH64_INSN_IMM_MOVNZ,
AARCH64_INSN_IMM_MOVKZ,
};
static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
int lsb, enum aarch64_insn_movw_imm_type imm_type)
{
u64 imm;
s64 sval;
u32 insn = le32_to_cpu(*place);
sval = do_reloc(op, place, val);
imm = sval >> lsb;
if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
/*
* For signed MOVW relocations, we have to manipulate the
* instruction encoding depending on whether or not the
* immediate is less than zero.
*/
insn &= ~(3 << 29);
if (sval >= 0) {
/* >=0: Set the instruction to MOVZ (opcode 10b). */
insn |= 2 << 29;
} else {
/*
* <0: Set the instruction to MOVN (opcode 00b).
* Since we've masked the opcode already, we
* don't need to do anything other than
* inverting the new immediate field.
*/
imm = ~imm;
}
}
/* Update the instruction with the new encoding. */
insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
*place = cpu_to_le32(insn);
if (imm > U16_MAX)
return -ERANGE;
return 0;
}
static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
int lsb, int len, enum aarch64_insn_imm_type imm_type)
{
u64 imm, imm_mask;
s64 sval;
u32 insn = le32_to_cpu(*place);
/* Calculate the relocation value. */
sval = do_reloc(op, place, val);
sval >>= lsb;
/* Extract the value bits and shift them to bit 0. */
imm_mask = (BIT(lsb + len) - 1) >> lsb;
imm = sval & imm_mask;
/* Update the instruction's immediate field. */
insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
*place = cpu_to_le32(insn);
/*
* Extract the upper value bits (including the sign bit) and
* shift them to bit 0.
*/
sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
/*
* Overflow has occurred if the upper bits are not all equal to
* the sign bit of the value.
*/
if ((u64)(sval + 1) >= 2)
return -ERANGE;
return 0;
}
static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
__le32 *place, u64 val)
{
u32 insn;
if (!is_forbidden_offset_for_adrp(place))
return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
AARCH64_INSN_IMM_ADR);
/* patch ADRP to ADR if it is in range */
if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
AARCH64_INSN_IMM_ADR)) {
insn = le32_to_cpu(*place);
insn &= ~BIT(31);
} else {
/* out of range for ADR -> emit a veneer */
val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
if (!val)
return -ENOEXEC;
insn = aarch64_insn_gen_branch_imm((u64)place, val,
AARCH64_INSN_BRANCH_NOLINK);
}
*place = cpu_to_le32(insn);
return 0;
}
int apply_relocate_add(Elf64_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me)
{
unsigned int i;
int ovf;
bool overflow_check;
Elf64_Sym *sym;
void *loc;
u64 val;
Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
/* loc corresponds to P in the AArch64 ELF document. */
loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
+ rel[i].r_offset;
/* sym is the ELF symbol we're referring to. */
sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
+ ELF64_R_SYM(rel[i].r_info);
/* val corresponds to (S + A) in the AArch64 ELF document. */
val = sym->st_value + rel[i].r_addend;
/* Check for overflow by default. */
overflow_check = true;
/* Perform the static relocation. */
switch (ELF64_R_TYPE(rel[i].r_info)) {
/* Null relocations. */
case R_ARM_NONE:
case R_AARCH64_NONE:
ovf = 0;
break;
/* Data relocations. */
case R_AARCH64_ABS64:
overflow_check = false;
ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
break;
case R_AARCH64_ABS32:
ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
break;
case R_AARCH64_ABS16:
ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
break;
case R_AARCH64_PREL64:
overflow_check = false;
ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
break;
case R_AARCH64_PREL32:
ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
break;
case R_AARCH64_PREL16:
ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
break;
/* MOVW instruction relocations. */
case R_AARCH64_MOVW_UABS_G0_NC:
overflow_check = false;
fallthrough;
case R_AARCH64_MOVW_UABS_G0:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_UABS_G1_NC:
overflow_check = false;
fallthrough;
case R_AARCH64_MOVW_UABS_G1:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_UABS_G2_NC:
overflow_check = false;
fallthrough;
case R_AARCH64_MOVW_UABS_G2:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_UABS_G3:
/* We're using the top bits so we can't overflow. */
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_SABS_G0:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_SABS_G1:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_SABS_G2:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_PREL_G0_NC:
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_PREL_G0:
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_PREL_G1_NC:
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_PREL_G1:
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_PREL_G2_NC:
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_PREL_G2:
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_PREL_G3:
/* We're using the top bits so we can't overflow. */
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
AARCH64_INSN_IMM_MOVNZ);
break;
/* Immediate instruction relocations. */
case R_AARCH64_LD_PREL_LO19:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
AARCH64_INSN_IMM_19);
break;
case R_AARCH64_ADR_PREL_LO21:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
AARCH64_INSN_IMM_ADR);
break;
case R_AARCH64_ADR_PREL_PG_HI21_NC:
overflow_check = false;
fallthrough;
case R_AARCH64_ADR_PREL_PG_HI21:
ovf = reloc_insn_adrp(me, sechdrs, loc, val);
if (ovf && ovf != -ERANGE)
return ovf;
break;
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_LDST8_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
AARCH64_INSN_IMM_12);
break;
case R_AARCH64_LDST16_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
AARCH64_INSN_IMM_12);
break;
case R_AARCH64_LDST32_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
AARCH64_INSN_IMM_12);
break;
case R_AARCH64_LDST64_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
AARCH64_INSN_IMM_12);
break;
case R_AARCH64_LDST128_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
AARCH64_INSN_IMM_12);
break;
case R_AARCH64_TSTBR14:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
AARCH64_INSN_IMM_14);
break;
case R_AARCH64_CONDBR19:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
AARCH64_INSN_IMM_19);
break;
case R_AARCH64_JUMP26:
case R_AARCH64_CALL26:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
AARCH64_INSN_IMM_26);
if (ovf == -ERANGE) {
val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
if (!val)
return -ENOEXEC;
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
26, AARCH64_INSN_IMM_26);
}
break;
default:
pr_err("module %s: unsupported RELA relocation: %llu\n",
me->name, ELF64_R_TYPE(rel[i].r_info));
return -ENOEXEC;
}
if (overflow_check && ovf == -ERANGE)
goto overflow;
}
return 0;
overflow:
pr_err("module %s: overflow in relocation type %d val %Lx\n",
me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
return -ENOEXEC;
}
static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
{
*plt = get_plt_entry(addr, plt);
}
static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *mod)
{
#if defined(CONFIG_DYNAMIC_FTRACE)
const Elf_Shdr *s;
struct plt_entry *plts;
s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
if (!s)
return -ENOEXEC;
plts = (void *)s->sh_addr;
__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
mod->arch.ftrace_trampolines = plts;
#endif
return 0;
}
int module_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *me)
{
const Elf_Shdr *s;
s = find_section(hdr, sechdrs, ".altinstructions");
if (s)
apply_alternatives_module((void *)s->sh_addr, s->sh_size);
if (scs_is_dynamic()) {
s = find_section(hdr, sechdrs, ".init.eh_frame");
if (s)
__pi_scs_patch((void *)s->sh_addr, s->sh_size);
}
return module_init_ftrace_plt(hdr, sechdrs, me);
}