6803bd7956
* Generalized infrastructure for 'writable' ID registers, effectively allowing userspace to opt-out of certain vCPU features for its guest * Optimization for vSGI injection, opportunistically compressing MPIDR to vCPU mapping into a table * Improvements to KVM's PMU emulation, allowing userspace to select the number of PMCs available to a VM * Guest support for memory operation instructions (FEAT_MOPS) * Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing bugs and getting rid of useless code * Changes to the way the SMCCC filter is constructed, avoiding wasted memory allocations when not in use * Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing the overhead of errata mitigations * Miscellaneous kernel and selftest fixes LoongArch: * New architecture. The hardware uses the same model as x86, s390 and RISC-V, where guest/host mode is orthogonal to supervisor/user mode. The virtualization extensions are very similar to MIPS, therefore the code also has some similarities but it's been cleaned up to avoid some of the historical bogosities that are found in arch/mips. The kernel emulates MMU, timer and CSR accesses, while interrupt controllers are only emulated in userspace, at least for now. RISC-V: * Support for the Smstateen and Zicond extensions * Support for virtualizing senvcfg * Support for virtualized SBI debug console (DBCN) S390: * Nested page table management can be monitored through tracepoints and statistics x86: * Fix incorrect handling of VMX posted interrupt descriptor in KVM_SET_LAPIC, which could result in a dropped timer IRQ * Avoid WARN on systems with Intel IPI virtualization * Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs without forcing more common use cases to eat the extra memory overhead. * Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and SBPB, aka Selective Branch Predictor Barrier). * Fix a bug where restoring a vCPU snapshot that was taken within 1 second of creating the original vCPU would cause KVM to try to synchronize the vCPU's TSC and thus clobber the correct TSC being set by userspace. * Compute guest wall clock using a single TSC read to avoid generating an inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads. * "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain about a "Firmware Bug" if the bit isn't set for select F/M/S combos. Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to appease Windows Server 2022. * Don't apply side effects to Hyper-V's synthetic timer on writes from userspace to fix an issue where the auto-enable behavior can trigger spurious interrupts, i.e. do auto-enabling only for guest writes. * Remove an unnecessary kick of all vCPUs when synchronizing the dirty log without PML enabled. * Advertise "support" for non-serializing FS/GS base MSR writes as appropriate. * Harden the fast page fault path to guard against encountering an invalid root when walking SPTEs. * Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n. * Use the fast path directly from the timer callback when delivering Xen timer events, instead of waiting for the next iteration of the run loop. This was not done so far because previously proposed code had races, but now care is taken to stop the hrtimer at critical points such as restarting the timer or saving the timer information for userspace. * Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag. * Optimize injection of PMU interrupts that are simultaneous with NMIs. * Usual handful of fixes for typos and other warts. x86 - MTRR/PAT fixes and optimizations: * Clean up code that deals with honoring guest MTRRs when the VM has non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled. * Zap EPT entries when non-coherent DMA assignment stops/start to prevent using stale entries with the wrong memtype. * Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y. This was done as a workaround for virtual machine BIOSes that did not bother to clear CR0.CD (because ancient KVM/QEMU did not bother to set it, in turn), and there's zero reason to extend the quirk to also ignore guest PAT. x86 - SEV fixes: * Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while running an SEV-ES guest. * Clean up the recognition of emulation failures on SEV guests, when KVM would like to "skip" the instruction but it had already been partially emulated. This makes it possible to drop a hack that second guessed the (insufficient) information provided by the emulator, and just do the right thing. Documentation: * Various updates and fixes, mostly for x86 * MTRR and PAT fixes and optimizations: -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmVBZc0UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroP1LQf+NgsmZ1lkGQlKdSdijoQ856w+k0or l2SV1wUwiEdFPSGK+RTUlHV5Y1ni1dn/CqCVIJZKEI3ZtZ1m9/4HKIRXvbMwFHIH hx+E4Lnf8YUjsGjKTLd531UKcpphztZavQ6pXLEwazkSkDEra+JIKtooI8uU+9/p bd/eF1V+13a8CHQf1iNztFJVxqBJbVlnPx4cZDRQQvewskIDGnVDtwbrwCUKGtzD eNSzhY7si6O2kdQNkuA8xPhg29dYX9XLaCK2K1l8xOUm8WipLdtF86GAKJ5BVuOL 6ek/2QCYjZ7a+coAZNfgSEUi8JmFHEqCo7cnKmWzPJp+2zyXsdudqAhT1g== =UIxm -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM: - Generalized infrastructure for 'writable' ID registers, effectively allowing userspace to opt-out of certain vCPU features for its guest - Optimization for vSGI injection, opportunistically compressing MPIDR to vCPU mapping into a table - Improvements to KVM's PMU emulation, allowing userspace to select the number of PMCs available to a VM - Guest support for memory operation instructions (FEAT_MOPS) - Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing bugs and getting rid of useless code - Changes to the way the SMCCC filter is constructed, avoiding wasted memory allocations when not in use - Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing the overhead of errata mitigations - Miscellaneous kernel and selftest fixes LoongArch: - New architecture for kvm. The hardware uses the same model as x86, s390 and RISC-V, where guest/host mode is orthogonal to supervisor/user mode. The virtualization extensions are very similar to MIPS, therefore the code also has some similarities but it's been cleaned up to avoid some of the historical bogosities that are found in arch/mips. The kernel emulates MMU, timer and CSR accesses, while interrupt controllers are only emulated in userspace, at least for now. RISC-V: - Support for the Smstateen and Zicond extensions - Support for virtualizing senvcfg - Support for virtualized SBI debug console (DBCN) S390: - Nested page table management can be monitored through tracepoints and statistics x86: - Fix incorrect handling of VMX posted interrupt descriptor in KVM_SET_LAPIC, which could result in a dropped timer IRQ - Avoid WARN on systems with Intel IPI virtualization - Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs without forcing more common use cases to eat the extra memory overhead. - Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and SBPB, aka Selective Branch Predictor Barrier). - Fix a bug where restoring a vCPU snapshot that was taken within 1 second of creating the original vCPU would cause KVM to try to synchronize the vCPU's TSC and thus clobber the correct TSC being set by userspace. - Compute guest wall clock using a single TSC read to avoid generating an inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads. - "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain about a "Firmware Bug" if the bit isn't set for select F/M/S combos. Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to appease Windows Server 2022. - Don't apply side effects to Hyper-V's synthetic timer on writes from userspace to fix an issue where the auto-enable behavior can trigger spurious interrupts, i.e. do auto-enabling only for guest writes. - Remove an unnecessary kick of all vCPUs when synchronizing the dirty log without PML enabled. - Advertise "support" for non-serializing FS/GS base MSR writes as appropriate. - Harden the fast page fault path to guard against encountering an invalid root when walking SPTEs. - Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n. - Use the fast path directly from the timer callback when delivering Xen timer events, instead of waiting for the next iteration of the run loop. This was not done so far because previously proposed code had races, but now care is taken to stop the hrtimer at critical points such as restarting the timer or saving the timer information for userspace. - Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag. - Optimize injection of PMU interrupts that are simultaneous with NMIs. - Usual handful of fixes for typos and other warts. x86 - MTRR/PAT fixes and optimizations: - Clean up code that deals with honoring guest MTRRs when the VM has non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled. - Zap EPT entries when non-coherent DMA assignment stops/start to prevent using stale entries with the wrong memtype. - Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y This was done as a workaround for virtual machine BIOSes that did not bother to clear CR0.CD (because ancient KVM/QEMU did not bother to set it, in turn), and there's zero reason to extend the quirk to also ignore guest PAT. x86 - SEV fixes: - Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while running an SEV-ES guest. - Clean up the recognition of emulation failures on SEV guests, when KVM would like to "skip" the instruction but it had already been partially emulated. This makes it possible to drop a hack that second guessed the (insufficient) information provided by the emulator, and just do the right thing. Documentation: - Various updates and fixes, mostly for x86 - MTRR and PAT fixes and optimizations" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (164 commits) KVM: selftests: Avoid using forced target for generating arm64 headers tools headers arm64: Fix references to top srcdir in Makefile KVM: arm64: Add tracepoint for MMIO accesses where ISV==0 KVM: arm64: selftest: Perform ISB before reading PAR_EL1 KVM: arm64: selftest: Add the missing .guest_prepare() KVM: arm64: Always invalidate TLB for stage-2 permission faults KVM: x86: Service NMI requests after PMI requests in VM-Enter path KVM: arm64: Handle AArch32 SPSR_{irq,abt,und,fiq} as RAZ/WI KVM: arm64: Do not let a L1 hypervisor access the *32_EL2 sysregs KVM: arm64: Refine _EL2 system register list that require trap reinjection arm64: Add missing _EL2 encodings arm64: Add missing _EL12 encodings KVM: selftests: aarch64: vPMU test for validating user accesses KVM: selftests: aarch64: vPMU register test for unimplemented counters KVM: selftests: aarch64: vPMU register test for implemented counters KVM: selftests: aarch64: Introduce vpmu_counter_access test tools: Import arm_pmuv3.h KVM: arm64: PMU: Allow userspace to limit PMCR_EL0.N for the guest KVM: arm64: Sanitize PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} before first run KVM: arm64: Add {get,set}_user for PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} ...
1147 lines
28 KiB
C
1147 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/kernel/traps.c
|
|
*
|
|
* Copyright (C) 1995-2009 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/ubsan.h>
|
|
#include <linux/cfi.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/efi.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/extable.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/kprobes.h>
|
|
#include <asm/patching.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/stack_pointer.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/system_misc.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
static bool __kprobes __check_eq(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_Z_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_ne(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_Z_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_cs(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_C_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_cc(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_C_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_mi(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_N_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_pl(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_N_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_vs(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_V_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_vc(unsigned long pstate)
|
|
{
|
|
return (pstate & PSR_V_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_hi(unsigned long pstate)
|
|
{
|
|
pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
|
|
return (pstate & PSR_C_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_ls(unsigned long pstate)
|
|
{
|
|
pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
|
|
return (pstate & PSR_C_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_ge(unsigned long pstate)
|
|
{
|
|
pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
|
|
return (pstate & PSR_N_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_lt(unsigned long pstate)
|
|
{
|
|
pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
|
|
return (pstate & PSR_N_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_gt(unsigned long pstate)
|
|
{
|
|
/*PSR_N_BIT ^= PSR_V_BIT */
|
|
unsigned long temp = pstate ^ (pstate << 3);
|
|
|
|
temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
|
|
return (temp & PSR_N_BIT) == 0;
|
|
}
|
|
|
|
static bool __kprobes __check_le(unsigned long pstate)
|
|
{
|
|
/*PSR_N_BIT ^= PSR_V_BIT */
|
|
unsigned long temp = pstate ^ (pstate << 3);
|
|
|
|
temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
|
|
return (temp & PSR_N_BIT) != 0;
|
|
}
|
|
|
|
static bool __kprobes __check_al(unsigned long pstate)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
|
|
* it behaves identically to 0b1110 ("al").
|
|
*/
|
|
pstate_check_t * const aarch32_opcode_cond_checks[16] = {
|
|
__check_eq, __check_ne, __check_cs, __check_cc,
|
|
__check_mi, __check_pl, __check_vs, __check_vc,
|
|
__check_hi, __check_ls, __check_ge, __check_lt,
|
|
__check_gt, __check_le, __check_al, __check_al
|
|
};
|
|
|
|
int show_unhandled_signals = 0;
|
|
|
|
static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
|
|
{
|
|
unsigned long addr = instruction_pointer(regs);
|
|
char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
|
|
int i;
|
|
|
|
if (user_mode(regs))
|
|
return;
|
|
|
|
for (i = -4; i < 1; i++) {
|
|
unsigned int val, bad;
|
|
|
|
bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
|
|
|
|
if (!bad)
|
|
p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
|
|
else
|
|
p += sprintf(p, i == 0 ? "(????????) " : "???????? ");
|
|
}
|
|
|
|
printk("%sCode: %s\n", lvl, str);
|
|
}
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
#define S_PREEMPT " PREEMPT"
|
|
#elif defined(CONFIG_PREEMPT_RT)
|
|
#define S_PREEMPT " PREEMPT_RT"
|
|
#else
|
|
#define S_PREEMPT ""
|
|
#endif
|
|
|
|
#define S_SMP " SMP"
|
|
|
|
static int __die(const char *str, long err, struct pt_regs *regs)
|
|
{
|
|
static int die_counter;
|
|
int ret;
|
|
|
|
pr_emerg("Internal error: %s: %016lx [#%d]" S_PREEMPT S_SMP "\n",
|
|
str, err, ++die_counter);
|
|
|
|
/* trap and error numbers are mostly meaningless on ARM */
|
|
ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
|
|
if (ret == NOTIFY_STOP)
|
|
return ret;
|
|
|
|
print_modules();
|
|
show_regs(regs);
|
|
|
|
dump_kernel_instr(KERN_EMERG, regs);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static DEFINE_RAW_SPINLOCK(die_lock);
|
|
|
|
/*
|
|
* This function is protected against re-entrancy.
|
|
*/
|
|
void die(const char *str, struct pt_regs *regs, long err)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&die_lock, flags);
|
|
|
|
oops_enter();
|
|
|
|
console_verbose();
|
|
bust_spinlocks(1);
|
|
ret = __die(str, err, regs);
|
|
|
|
if (regs && kexec_should_crash(current))
|
|
crash_kexec(regs);
|
|
|
|
bust_spinlocks(0);
|
|
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
|
|
oops_exit();
|
|
|
|
if (in_interrupt())
|
|
panic("%s: Fatal exception in interrupt", str);
|
|
if (panic_on_oops)
|
|
panic("%s: Fatal exception", str);
|
|
|
|
raw_spin_unlock_irqrestore(&die_lock, flags);
|
|
|
|
if (ret != NOTIFY_STOP)
|
|
make_task_dead(SIGSEGV);
|
|
}
|
|
|
|
static void arm64_show_signal(int signo, const char *str)
|
|
{
|
|
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
struct task_struct *tsk = current;
|
|
unsigned long esr = tsk->thread.fault_code;
|
|
struct pt_regs *regs = task_pt_regs(tsk);
|
|
|
|
/* Leave if the signal won't be shown */
|
|
if (!show_unhandled_signals ||
|
|
!unhandled_signal(tsk, signo) ||
|
|
!__ratelimit(&rs))
|
|
return;
|
|
|
|
pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
|
|
if (esr)
|
|
pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
|
|
|
|
pr_cont("%s", str);
|
|
print_vma_addr(KERN_CONT " in ", regs->pc);
|
|
pr_cont("\n");
|
|
__show_regs(regs);
|
|
}
|
|
|
|
void arm64_force_sig_fault(int signo, int code, unsigned long far,
|
|
const char *str)
|
|
{
|
|
arm64_show_signal(signo, str);
|
|
if (signo == SIGKILL)
|
|
force_sig(SIGKILL);
|
|
else
|
|
force_sig_fault(signo, code, (void __user *)far);
|
|
}
|
|
|
|
void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
|
|
const char *str)
|
|
{
|
|
arm64_show_signal(SIGBUS, str);
|
|
force_sig_mceerr(code, (void __user *)far, lsb);
|
|
}
|
|
|
|
void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
|
|
const char *str)
|
|
{
|
|
arm64_show_signal(SIGTRAP, str);
|
|
force_sig_ptrace_errno_trap(errno, (void __user *)far);
|
|
}
|
|
|
|
void arm64_notify_die(const char *str, struct pt_regs *regs,
|
|
int signo, int sicode, unsigned long far,
|
|
unsigned long err)
|
|
{
|
|
if (user_mode(regs)) {
|
|
WARN_ON(regs != current_pt_regs());
|
|
current->thread.fault_address = 0;
|
|
current->thread.fault_code = err;
|
|
|
|
arm64_force_sig_fault(signo, sicode, far, str);
|
|
} else {
|
|
die(str, regs, err);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#define PSTATE_IT_1_0_SHIFT 25
|
|
#define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT)
|
|
#define PSTATE_IT_7_2_SHIFT 10
|
|
#define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT)
|
|
|
|
static u32 compat_get_it_state(struct pt_regs *regs)
|
|
{
|
|
u32 it, pstate = regs->pstate;
|
|
|
|
it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
|
|
it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
|
|
|
|
return it;
|
|
}
|
|
|
|
static void compat_set_it_state(struct pt_regs *regs, u32 it)
|
|
{
|
|
u32 pstate_it;
|
|
|
|
pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
|
|
pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
|
|
|
|
regs->pstate &= ~PSR_AA32_IT_MASK;
|
|
regs->pstate |= pstate_it;
|
|
}
|
|
|
|
static void advance_itstate(struct pt_regs *regs)
|
|
{
|
|
u32 it;
|
|
|
|
/* ARM mode */
|
|
if (!(regs->pstate & PSR_AA32_T_BIT) ||
|
|
!(regs->pstate & PSR_AA32_IT_MASK))
|
|
return;
|
|
|
|
it = compat_get_it_state(regs);
|
|
|
|
/*
|
|
* If this is the last instruction of the block, wipe the IT
|
|
* state. Otherwise advance it.
|
|
*/
|
|
if (!(it & 7))
|
|
it = 0;
|
|
else
|
|
it = (it & 0xe0) | ((it << 1) & 0x1f);
|
|
|
|
compat_set_it_state(regs, it);
|
|
}
|
|
#else
|
|
static void advance_itstate(struct pt_regs *regs)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
|
|
{
|
|
regs->pc += size;
|
|
|
|
/*
|
|
* If we were single stepping, we want to get the step exception after
|
|
* we return from the trap.
|
|
*/
|
|
if (user_mode(regs))
|
|
user_fastforward_single_step(current);
|
|
|
|
if (compat_user_mode(regs))
|
|
advance_itstate(regs);
|
|
else
|
|
regs->pstate &= ~PSR_BTYPE_MASK;
|
|
}
|
|
|
|
static int user_insn_read(struct pt_regs *regs, u32 *insnp)
|
|
{
|
|
u32 instr;
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
if (compat_thumb_mode(regs)) {
|
|
/* 16-bit Thumb instruction */
|
|
__le16 instr_le;
|
|
if (get_user(instr_le, (__le16 __user *)pc))
|
|
return -EFAULT;
|
|
instr = le16_to_cpu(instr_le);
|
|
if (aarch32_insn_is_wide(instr)) {
|
|
u32 instr2;
|
|
|
|
if (get_user(instr_le, (__le16 __user *)(pc + 2)))
|
|
return -EFAULT;
|
|
instr2 = le16_to_cpu(instr_le);
|
|
instr = (instr << 16) | instr2;
|
|
}
|
|
} else {
|
|
/* 32-bit ARM instruction */
|
|
__le32 instr_le;
|
|
if (get_user(instr_le, (__le32 __user *)pc))
|
|
return -EFAULT;
|
|
instr = le32_to_cpu(instr_le);
|
|
}
|
|
|
|
*insnp = instr;
|
|
return 0;
|
|
}
|
|
|
|
void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
|
|
{
|
|
const char *desc;
|
|
struct pt_regs *regs = current_pt_regs();
|
|
|
|
if (WARN_ON(!user_mode(regs)))
|
|
return;
|
|
|
|
switch (signal) {
|
|
case SIGILL:
|
|
desc = "undefined instruction";
|
|
break;
|
|
case SIGSEGV:
|
|
desc = "illegal memory access";
|
|
break;
|
|
default:
|
|
desc = "unknown or unrecoverable error";
|
|
break;
|
|
}
|
|
|
|
/* Force signals we don't understand to SIGKILL */
|
|
if (WARN_ON(signal != SIGKILL &&
|
|
siginfo_layout(signal, code) != SIL_FAULT)) {
|
|
signal = SIGKILL;
|
|
}
|
|
|
|
arm64_notify_die(desc, regs, signal, code, address, err);
|
|
}
|
|
|
|
/*
|
|
* Set up process info to signal segmentation fault - called on access error.
|
|
*/
|
|
void arm64_notify_segfault(unsigned long addr)
|
|
{
|
|
int code;
|
|
|
|
mmap_read_lock(current->mm);
|
|
if (find_vma(current->mm, untagged_addr(addr)) == NULL)
|
|
code = SEGV_MAPERR;
|
|
else
|
|
code = SEGV_ACCERR;
|
|
mmap_read_unlock(current->mm);
|
|
|
|
force_signal_inject(SIGSEGV, code, addr, 0);
|
|
}
|
|
|
|
void do_el0_undef(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
u32 insn;
|
|
|
|
/* check for AArch32 breakpoint instructions */
|
|
if (!aarch32_break_handler(regs))
|
|
return;
|
|
|
|
if (user_insn_read(regs, &insn))
|
|
goto out_err;
|
|
|
|
if (try_emulate_mrs(regs, insn))
|
|
return;
|
|
|
|
if (try_emulate_armv8_deprecated(regs, insn))
|
|
return;
|
|
|
|
out_err:
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
|
}
|
|
|
|
void do_el1_undef(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
u32 insn;
|
|
|
|
if (aarch64_insn_read((void *)regs->pc, &insn))
|
|
goto out_err;
|
|
|
|
if (try_emulate_el1_ssbs(regs, insn))
|
|
return;
|
|
|
|
out_err:
|
|
die("Oops - Undefined instruction", regs, esr);
|
|
}
|
|
|
|
void do_el0_bti(struct pt_regs *regs)
|
|
{
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
|
}
|
|
|
|
void do_el1_bti(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
if (efi_runtime_fixup_exception(regs, "BTI violation")) {
|
|
regs->pstate &= ~PSR_BTYPE_MASK;
|
|
return;
|
|
}
|
|
die("Oops - BTI", regs, esr);
|
|
}
|
|
|
|
void do_el0_fpac(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
|
|
}
|
|
|
|
void do_el1_fpac(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
/*
|
|
* Unexpected FPAC exception in the kernel: kill the task before it
|
|
* does any more harm.
|
|
*/
|
|
die("Oops - FPAC", regs, esr);
|
|
}
|
|
|
|
void do_el0_mops(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
arm64_mops_reset_regs(®s->user_regs, esr);
|
|
|
|
/*
|
|
* If single stepping then finish the step before executing the
|
|
* prologue instruction.
|
|
*/
|
|
user_fastforward_single_step(current);
|
|
}
|
|
|
|
#define __user_cache_maint(insn, address, res) \
|
|
if (address >= TASK_SIZE_MAX) { \
|
|
res = -EFAULT; \
|
|
} else { \
|
|
uaccess_ttbr0_enable(); \
|
|
asm volatile ( \
|
|
"1: " insn ", %1\n" \
|
|
" mov %w0, #0\n" \
|
|
"2:\n" \
|
|
_ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0) \
|
|
: "=r" (res) \
|
|
: "r" (address)); \
|
|
uaccess_ttbr0_disable(); \
|
|
}
|
|
|
|
static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
unsigned long tagged_address, address;
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
|
|
int ret = 0;
|
|
|
|
tagged_address = pt_regs_read_reg(regs, rt);
|
|
address = untagged_addr(tagged_address);
|
|
|
|
switch (crm) {
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
|
|
__user_cache_maint("dc civac", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
|
|
__user_cache_maint("dc civac", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */
|
|
__user_cache_maint("sys 3, c7, c13, 1", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */
|
|
__user_cache_maint("sys 3, c7, c12, 1", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
|
|
__user_cache_maint("dc civac", address, ret);
|
|
break;
|
|
case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
|
|
__user_cache_maint("ic ivau", address, ret);
|
|
break;
|
|
default:
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
|
return;
|
|
}
|
|
|
|
if (ret)
|
|
arm64_notify_segfault(tagged_address);
|
|
else
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
|
|
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_1542419)) {
|
|
/* Hide DIC so that we can trap the unnecessary maintenance...*/
|
|
val &= ~BIT(CTR_EL0_DIC_SHIFT);
|
|
|
|
/* ... and fake IminLine to reduce the number of traps. */
|
|
val &= ~CTR_EL0_IminLine_MASK;
|
|
val |= (PAGE_SHIFT - 2) & CTR_EL0_IminLine_MASK;
|
|
}
|
|
|
|
pt_regs_write_reg(regs, rt, val);
|
|
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
|
|
pt_regs_write_reg(regs, rt, arch_timer_read_counter());
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
|
|
pt_regs_write_reg(regs, rt, arch_timer_get_rate());
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
static void mrs_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
u32 sysreg, rt;
|
|
|
|
rt = ESR_ELx_SYS64_ISS_RT(esr);
|
|
sysreg = esr_sys64_to_sysreg(esr);
|
|
|
|
if (do_emulate_mrs(regs, sysreg, rt) != 0)
|
|
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
|
}
|
|
|
|
static void wfi_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
|
|
struct sys64_hook {
|
|
unsigned long esr_mask;
|
|
unsigned long esr_val;
|
|
void (*handler)(unsigned long esr, struct pt_regs *regs);
|
|
};
|
|
|
|
static const struct sys64_hook sys64_hooks[] = {
|
|
{
|
|
.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
|
|
.handler = user_cache_maint_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CTR_EL0 */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
|
|
.handler = ctr_read_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CNTVCT_EL0 */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
|
|
.handler = cntvct_read_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CNTVCTSS_EL0 */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
|
|
.handler = cntvct_read_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CNTFRQ_EL0 */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
|
|
.handler = cntfrq_read_handler,
|
|
},
|
|
{
|
|
/* Trap read access to CPUID registers */
|
|
.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
|
|
.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
|
|
.handler = mrs_handler,
|
|
},
|
|
{
|
|
/* Trap WFI instructions executed in userspace */
|
|
.esr_mask = ESR_ELx_WFx_MASK,
|
|
.esr_val = ESR_ELx_WFx_WFI_VAL,
|
|
.handler = wfi_handler,
|
|
},
|
|
{},
|
|
};
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int cond;
|
|
|
|
/* Only a T32 instruction can trap without CV being set */
|
|
if (!(esr & ESR_ELx_CV)) {
|
|
u32 it;
|
|
|
|
it = compat_get_it_state(regs);
|
|
if (!it)
|
|
return true;
|
|
|
|
cond = it >> 4;
|
|
} else {
|
|
cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
|
|
}
|
|
|
|
return aarch32_opcode_cond_checks[cond](regs->pstate);
|
|
}
|
|
|
|
static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
|
|
|
|
pt_regs_write_reg(regs, reg, arch_timer_get_rate());
|
|
arm64_skip_faulting_instruction(regs, 4);
|
|
}
|
|
|
|
static const struct sys64_hook cp15_32_hooks[] = {
|
|
{
|
|
.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
|
|
.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
|
|
.handler = compat_cntfrq_read_handler,
|
|
},
|
|
{},
|
|
};
|
|
|
|
static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
|
|
int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
|
|
u64 val = arch_timer_read_counter();
|
|
|
|
pt_regs_write_reg(regs, rt, lower_32_bits(val));
|
|
pt_regs_write_reg(regs, rt2, upper_32_bits(val));
|
|
arm64_skip_faulting_instruction(regs, 4);
|
|
}
|
|
|
|
static const struct sys64_hook cp15_64_hooks[] = {
|
|
{
|
|
.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
|
|
.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
|
|
.handler = compat_cntvct_read_handler,
|
|
},
|
|
{
|
|
.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
|
|
.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
|
|
.handler = compat_cntvct_read_handler,
|
|
},
|
|
{},
|
|
};
|
|
|
|
void do_el0_cp15(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
const struct sys64_hook *hook, *hook_base;
|
|
|
|
if (!cp15_cond_valid(esr, regs)) {
|
|
/*
|
|
* There is no T16 variant of a CP access, so we
|
|
* always advance PC by 4 bytes.
|
|
*/
|
|
arm64_skip_faulting_instruction(regs, 4);
|
|
return;
|
|
}
|
|
|
|
switch (ESR_ELx_EC(esr)) {
|
|
case ESR_ELx_EC_CP15_32:
|
|
hook_base = cp15_32_hooks;
|
|
break;
|
|
case ESR_ELx_EC_CP15_64:
|
|
hook_base = cp15_64_hooks;
|
|
break;
|
|
default:
|
|
do_el0_undef(regs, esr);
|
|
return;
|
|
}
|
|
|
|
for (hook = hook_base; hook->handler; hook++)
|
|
if ((hook->esr_mask & esr) == hook->esr_val) {
|
|
hook->handler(esr, regs);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* New cp15 instructions may previously have been undefined at
|
|
* EL0. Fall back to our usual undefined instruction handler
|
|
* so that we handle these consistently.
|
|
*/
|
|
do_el0_undef(regs, esr);
|
|
}
|
|
#endif
|
|
|
|
void do_el0_sys(unsigned long esr, struct pt_regs *regs)
|
|
{
|
|
const struct sys64_hook *hook;
|
|
|
|
for (hook = sys64_hooks; hook->handler; hook++)
|
|
if ((hook->esr_mask & esr) == hook->esr_val) {
|
|
hook->handler(esr, regs);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* New SYS instructions may previously have been undefined at EL0. Fall
|
|
* back to our usual undefined instruction handler so that we handle
|
|
* these consistently.
|
|
*/
|
|
do_el0_undef(regs, esr);
|
|
}
|
|
|
|
static const char *esr_class_str[] = {
|
|
[0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
|
|
[ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
|
|
[ESR_ELx_EC_WFx] = "WFI/WFE",
|
|
[ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
|
|
[ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
|
|
[ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
|
|
[ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
|
|
[ESR_ELx_EC_FP_ASIMD] = "ASIMD",
|
|
[ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
|
|
[ESR_ELx_EC_PAC] = "PAC",
|
|
[ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
|
|
[ESR_ELx_EC_BTI] = "BTI",
|
|
[ESR_ELx_EC_ILL] = "PSTATE.IL",
|
|
[ESR_ELx_EC_SVC32] = "SVC (AArch32)",
|
|
[ESR_ELx_EC_HVC32] = "HVC (AArch32)",
|
|
[ESR_ELx_EC_SMC32] = "SMC (AArch32)",
|
|
[ESR_ELx_EC_SVC64] = "SVC (AArch64)",
|
|
[ESR_ELx_EC_HVC64] = "HVC (AArch64)",
|
|
[ESR_ELx_EC_SMC64] = "SMC (AArch64)",
|
|
[ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
|
|
[ESR_ELx_EC_SVE] = "SVE",
|
|
[ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB",
|
|
[ESR_ELx_EC_FPAC] = "FPAC",
|
|
[ESR_ELx_EC_SME] = "SME",
|
|
[ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
|
|
[ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
|
|
[ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
|
|
[ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
|
|
[ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
|
|
[ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
|
|
[ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
|
|
[ESR_ELx_EC_MOPS] = "MOPS",
|
|
[ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
|
|
[ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
|
|
[ESR_ELx_EC_SERROR] = "SError",
|
|
[ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
|
|
[ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
|
|
[ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
|
|
[ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
|
|
[ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
|
|
[ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
|
|
[ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
|
|
[ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
|
|
[ESR_ELx_EC_BRK64] = "BRK (AArch64)",
|
|
};
|
|
|
|
const char *esr_get_class_string(unsigned long esr)
|
|
{
|
|
return esr_class_str[ESR_ELx_EC(esr)];
|
|
}
|
|
|
|
/*
|
|
* bad_el0_sync handles unexpected, but potentially recoverable synchronous
|
|
* exceptions taken from EL0.
|
|
*/
|
|
void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
|
|
{
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
current->thread.fault_address = 0;
|
|
current->thread.fault_code = esr;
|
|
|
|
arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
|
|
"Bad EL0 synchronous exception");
|
|
}
|
|
|
|
#ifdef CONFIG_VMAP_STACK
|
|
|
|
DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
|
|
__aligned(16);
|
|
|
|
void __noreturn panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
|
|
{
|
|
unsigned long tsk_stk = (unsigned long)current->stack;
|
|
unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
|
|
unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
|
|
|
|
console_verbose();
|
|
pr_emerg("Insufficient stack space to handle exception!");
|
|
|
|
pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
|
|
pr_emerg("FAR: 0x%016lx\n", far);
|
|
|
|
pr_emerg("Task stack: [0x%016lx..0x%016lx]\n",
|
|
tsk_stk, tsk_stk + THREAD_SIZE);
|
|
pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n",
|
|
irq_stk, irq_stk + IRQ_STACK_SIZE);
|
|
pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
|
|
ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
|
|
|
|
__show_regs(regs);
|
|
|
|
/*
|
|
* We use nmi_panic to limit the potential for recusive overflows, and
|
|
* to get a better stack trace.
|
|
*/
|
|
nmi_panic(NULL, "kernel stack overflow");
|
|
cpu_park_loop();
|
|
}
|
|
#endif
|
|
|
|
void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
console_verbose();
|
|
|
|
pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
|
|
smp_processor_id(), esr, esr_get_class_string(esr));
|
|
if (regs)
|
|
__show_regs(regs);
|
|
|
|
nmi_panic(regs, "Asynchronous SError Interrupt");
|
|
|
|
cpu_park_loop();
|
|
}
|
|
|
|
bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
unsigned long aet = arm64_ras_serror_get_severity(esr);
|
|
|
|
switch (aet) {
|
|
case ESR_ELx_AET_CE: /* corrected error */
|
|
case ESR_ELx_AET_UEO: /* restartable, not yet consumed */
|
|
/*
|
|
* The CPU can make progress. We may take UEO again as
|
|
* a more severe error.
|
|
*/
|
|
return false;
|
|
|
|
case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */
|
|
case ESR_ELx_AET_UER: /* Uncorrected Recoverable */
|
|
/*
|
|
* The CPU can't make progress. The exception may have
|
|
* been imprecise.
|
|
*
|
|
* Neoverse-N1 #1349291 means a non-KVM SError reported as
|
|
* Unrecoverable should be treated as Uncontainable. We
|
|
* call arm64_serror_panic() in both cases.
|
|
*/
|
|
return true;
|
|
|
|
case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */
|
|
default:
|
|
/* Error has been silently propagated */
|
|
arm64_serror_panic(regs, esr);
|
|
}
|
|
}
|
|
|
|
void do_serror(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
/* non-RAS errors are not containable */
|
|
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
|
|
arm64_serror_panic(regs, esr);
|
|
}
|
|
|
|
/* GENERIC_BUG traps */
|
|
#ifdef CONFIG_GENERIC_BUG
|
|
int is_valid_bugaddr(unsigned long addr)
|
|
{
|
|
/*
|
|
* bug_handler() only called for BRK #BUG_BRK_IMM.
|
|
* So the answer is trivial -- any spurious instances with no
|
|
* bug table entry will be rejected by report_bug() and passed
|
|
* back to the debug-monitors code and handled as a fatal
|
|
* unexpected debug exception.
|
|
*/
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static int bug_handler(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
switch (report_bug(regs->pc, regs)) {
|
|
case BUG_TRAP_TYPE_BUG:
|
|
die("Oops - BUG", regs, esr);
|
|
break;
|
|
|
|
case BUG_TRAP_TYPE_WARN:
|
|
break;
|
|
|
|
default:
|
|
/* unknown/unrecognised bug trap type */
|
|
return DBG_HOOK_ERROR;
|
|
}
|
|
|
|
/* If thread survives, skip over the BUG instruction and continue: */
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
static struct break_hook bug_break_hook = {
|
|
.fn = bug_handler,
|
|
.imm = BUG_BRK_IMM,
|
|
};
|
|
|
|
#ifdef CONFIG_CFI_CLANG
|
|
static int cfi_handler(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
unsigned long target;
|
|
u32 type;
|
|
|
|
target = pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TARGET, esr));
|
|
type = (u32)pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TYPE, esr));
|
|
|
|
switch (report_cfi_failure(regs, regs->pc, &target, type)) {
|
|
case BUG_TRAP_TYPE_BUG:
|
|
die("Oops - CFI", regs, esr);
|
|
break;
|
|
|
|
case BUG_TRAP_TYPE_WARN:
|
|
break;
|
|
|
|
default:
|
|
return DBG_HOOK_ERROR;
|
|
}
|
|
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
static struct break_hook cfi_break_hook = {
|
|
.fn = cfi_handler,
|
|
.imm = CFI_BRK_IMM_BASE,
|
|
.mask = CFI_BRK_IMM_MASK,
|
|
};
|
|
#endif /* CONFIG_CFI_CLANG */
|
|
|
|
static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
pr_err("%s generated an invalid instruction at %pS!\n",
|
|
"Kernel text patching",
|
|
(void *)instruction_pointer(regs));
|
|
|
|
/* We cannot handle this */
|
|
return DBG_HOOK_ERROR;
|
|
}
|
|
|
|
static struct break_hook fault_break_hook = {
|
|
.fn = reserved_fault_handler,
|
|
.imm = FAULT_BRK_IMM,
|
|
};
|
|
|
|
#ifdef CONFIG_KASAN_SW_TAGS
|
|
|
|
#define KASAN_ESR_RECOVER 0x20
|
|
#define KASAN_ESR_WRITE 0x10
|
|
#define KASAN_ESR_SIZE_MASK 0x0f
|
|
#define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK))
|
|
|
|
static int kasan_handler(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
bool recover = esr & KASAN_ESR_RECOVER;
|
|
bool write = esr & KASAN_ESR_WRITE;
|
|
size_t size = KASAN_ESR_SIZE(esr);
|
|
void *addr = (void *)regs->regs[0];
|
|
u64 pc = regs->pc;
|
|
|
|
kasan_report(addr, size, write, pc);
|
|
|
|
/*
|
|
* The instrumentation allows to control whether we can proceed after
|
|
* a crash was detected. This is done by passing the -recover flag to
|
|
* the compiler. Disabling recovery allows to generate more compact
|
|
* code.
|
|
*
|
|
* Unfortunately disabling recovery doesn't work for the kernel right
|
|
* now. KASAN reporting is disabled in some contexts (for example when
|
|
* the allocator accesses slab object metadata; this is controlled by
|
|
* current->kasan_depth). All these accesses are detected by the tool,
|
|
* even though the reports for them are not printed.
|
|
*
|
|
* This is something that might be fixed at some point in the future.
|
|
*/
|
|
if (!recover)
|
|
die("Oops - KASAN", regs, esr);
|
|
|
|
/* If thread survives, skip over the brk instruction and continue: */
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
static struct break_hook kasan_break_hook = {
|
|
.fn = kasan_handler,
|
|
.imm = KASAN_BRK_IMM,
|
|
.mask = KASAN_BRK_MASK,
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_UBSAN_TRAP
|
|
static int ubsan_handler(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
die(report_ubsan_failure(regs, esr & UBSAN_BRK_MASK), regs, esr);
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
static struct break_hook ubsan_break_hook = {
|
|
.fn = ubsan_handler,
|
|
.imm = UBSAN_BRK_IMM,
|
|
.mask = UBSAN_BRK_MASK,
|
|
};
|
|
#endif
|
|
|
|
#define esr_comment(esr) ((esr) & ESR_ELx_BRK64_ISS_COMMENT_MASK)
|
|
|
|
/*
|
|
* Initial handler for AArch64 BRK exceptions
|
|
* This handler only used until debug_traps_init().
|
|
*/
|
|
int __init early_brk64(unsigned long addr, unsigned long esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_CFI_CLANG
|
|
if ((esr_comment(esr) & ~CFI_BRK_IMM_MASK) == CFI_BRK_IMM_BASE)
|
|
return cfi_handler(regs, esr) != DBG_HOOK_HANDLED;
|
|
#endif
|
|
#ifdef CONFIG_KASAN_SW_TAGS
|
|
if ((esr_comment(esr) & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
|
|
return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
|
|
#endif
|
|
#ifdef CONFIG_UBSAN_TRAP
|
|
if ((esr_comment(esr) & ~UBSAN_BRK_MASK) == UBSAN_BRK_IMM)
|
|
return ubsan_handler(regs, esr) != DBG_HOOK_HANDLED;
|
|
#endif
|
|
return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
void __init trap_init(void)
|
|
{
|
|
register_kernel_break_hook(&bug_break_hook);
|
|
#ifdef CONFIG_CFI_CLANG
|
|
register_kernel_break_hook(&cfi_break_hook);
|
|
#endif
|
|
register_kernel_break_hook(&fault_break_hook);
|
|
#ifdef CONFIG_KASAN_SW_TAGS
|
|
register_kernel_break_hook(&kasan_break_hook);
|
|
#endif
|
|
#ifdef CONFIG_UBSAN_TRAP
|
|
register_kernel_break_hook(&ubsan_break_hook);
|
|
#endif
|
|
debug_traps_init();
|
|
}
|