1a280f48c0
That's an adaptation of commit f3a112c0c40d ("x86,rethook,kprobes: Replace kretprobe with rethook on x86") to s390. Replaces the kretprobe code with rethook on s390. With this patch, kretprobe on s390 uses the rethook instead of kretprobe specific trampoline code. Tested-by: Ilya Leoshkevich <iii@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
526 lines
14 KiB
C
526 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Kernel Probes (KProbes)
|
|
*
|
|
* Copyright IBM Corp. 2002, 2006
|
|
*
|
|
* s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kprobes: " fmt
|
|
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/ftrace.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/dis.h>
|
|
#include "kprobes.h"
|
|
#include "entry.h"
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe);
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
struct kretprobe_blackpoint kretprobe_blacklist[] = { };
|
|
|
|
static int insn_page_in_use;
|
|
|
|
void *alloc_insn_page(void)
|
|
{
|
|
void *page;
|
|
|
|
page = module_alloc(PAGE_SIZE);
|
|
if (!page)
|
|
return NULL;
|
|
__set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
|
|
return page;
|
|
}
|
|
|
|
static void *alloc_s390_insn_page(void)
|
|
{
|
|
if (xchg(&insn_page_in_use, 1) == 1)
|
|
return NULL;
|
|
return &kprobes_insn_page;
|
|
}
|
|
|
|
static void free_s390_insn_page(void *page)
|
|
{
|
|
xchg(&insn_page_in_use, 0);
|
|
}
|
|
|
|
struct kprobe_insn_cache kprobe_s390_insn_slots = {
|
|
.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
|
|
.alloc = alloc_s390_insn_page,
|
|
.free = free_s390_insn_page,
|
|
.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
|
|
.insn_size = MAX_INSN_SIZE,
|
|
};
|
|
|
|
static void copy_instruction(struct kprobe *p)
|
|
{
|
|
kprobe_opcode_t insn[MAX_INSN_SIZE];
|
|
s64 disp, new_disp;
|
|
u64 addr, new_addr;
|
|
unsigned int len;
|
|
|
|
len = insn_length(*p->addr >> 8);
|
|
memcpy(&insn, p->addr, len);
|
|
p->opcode = insn[0];
|
|
if (probe_is_insn_relative_long(&insn[0])) {
|
|
/*
|
|
* For pc-relative instructions in RIL-b or RIL-c format patch
|
|
* the RI2 displacement field. We have already made sure that
|
|
* the insn slot for the patched instruction is within the same
|
|
* 2GB area as the original instruction (either kernel image or
|
|
* module area). Therefore the new displacement will always fit.
|
|
*/
|
|
disp = *(s32 *)&insn[1];
|
|
addr = (u64)(unsigned long)p->addr;
|
|
new_addr = (u64)(unsigned long)p->ainsn.insn;
|
|
new_disp = ((addr + (disp * 2)) - new_addr) / 2;
|
|
*(s32 *)&insn[1] = new_disp;
|
|
}
|
|
s390_kernel_write(p->ainsn.insn, &insn, len);
|
|
}
|
|
NOKPROBE_SYMBOL(copy_instruction);
|
|
|
|
static int s390_get_insn_slot(struct kprobe *p)
|
|
{
|
|
/*
|
|
* Get an insn slot that is within the same 2GB area like the original
|
|
* instruction. That way instructions with a 32bit signed displacement
|
|
* field can be patched and executed within the insn slot.
|
|
*/
|
|
p->ainsn.insn = NULL;
|
|
if (is_kernel((unsigned long)p->addr))
|
|
p->ainsn.insn = get_s390_insn_slot();
|
|
else if (is_module_addr(p->addr))
|
|
p->ainsn.insn = get_insn_slot();
|
|
return p->ainsn.insn ? 0 : -ENOMEM;
|
|
}
|
|
NOKPROBE_SYMBOL(s390_get_insn_slot);
|
|
|
|
static void s390_free_insn_slot(struct kprobe *p)
|
|
{
|
|
if (!p->ainsn.insn)
|
|
return;
|
|
if (is_kernel((unsigned long)p->addr))
|
|
free_s390_insn_slot(p->ainsn.insn, 0);
|
|
else
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
NOKPROBE_SYMBOL(s390_free_insn_slot);
|
|
|
|
/* Check if paddr is at an instruction boundary */
|
|
static bool can_probe(unsigned long paddr)
|
|
{
|
|
unsigned long addr, offset = 0;
|
|
kprobe_opcode_t insn;
|
|
struct kprobe *kp;
|
|
|
|
if (paddr & 0x01)
|
|
return false;
|
|
|
|
if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
|
|
return false;
|
|
|
|
/* Decode instructions */
|
|
addr = paddr - offset;
|
|
while (addr < paddr) {
|
|
if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
|
|
return false;
|
|
|
|
if (insn >> 8 == 0) {
|
|
if (insn != BREAKPOINT_INSTRUCTION) {
|
|
/*
|
|
* Note that QEMU inserts opcode 0x0000 to implement
|
|
* software breakpoints for guests. Since the size of
|
|
* the original instruction is unknown, stop following
|
|
* instructions and prevent setting a kprobe.
|
|
*/
|
|
return false;
|
|
}
|
|
/*
|
|
* Check if the instruction has been modified by another
|
|
* kprobe, in which case the original instruction is
|
|
* decoded.
|
|
*/
|
|
kp = get_kprobe((void *)addr);
|
|
if (!kp) {
|
|
/* not a kprobe */
|
|
return false;
|
|
}
|
|
insn = kp->opcode;
|
|
}
|
|
addr += insn_length(insn >> 8);
|
|
}
|
|
return addr == paddr;
|
|
}
|
|
|
|
int arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
if (!can_probe((unsigned long)p->addr))
|
|
return -EINVAL;
|
|
/* Make sure the probe isn't going on a difficult instruction */
|
|
if (probe_is_prohibited_opcode(p->addr))
|
|
return -EINVAL;
|
|
if (s390_get_insn_slot(p))
|
|
return -ENOMEM;
|
|
copy_instruction(p);
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_prepare_kprobe);
|
|
|
|
struct swap_insn_args {
|
|
struct kprobe *p;
|
|
unsigned int arm_kprobe : 1;
|
|
};
|
|
|
|
static int swap_instruction(void *data)
|
|
{
|
|
struct swap_insn_args *args = data;
|
|
struct kprobe *p = args->p;
|
|
u16 opc;
|
|
|
|
opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
|
|
s390_kernel_write(p->addr, &opc, sizeof(opc));
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(swap_instruction);
|
|
|
|
void arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
|
|
|
|
stop_machine_cpuslocked(swap_instruction, &args, NULL);
|
|
}
|
|
NOKPROBE_SYMBOL(arch_arm_kprobe);
|
|
|
|
void arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
|
|
|
|
stop_machine_cpuslocked(swap_instruction, &args, NULL);
|
|
}
|
|
NOKPROBE_SYMBOL(arch_disarm_kprobe);
|
|
|
|
void arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
s390_free_insn_slot(p);
|
|
}
|
|
NOKPROBE_SYMBOL(arch_remove_kprobe);
|
|
|
|
static void enable_singlestep(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs,
|
|
unsigned long ip)
|
|
{
|
|
struct per_regs per_kprobe;
|
|
|
|
/* Set up the PER control registers %cr9-%cr11 */
|
|
per_kprobe.control = PER_EVENT_IFETCH;
|
|
per_kprobe.start = ip;
|
|
per_kprobe.end = ip;
|
|
|
|
/* Save control regs and psw mask */
|
|
__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
|
|
kcb->kprobe_saved_imask = regs->psw.mask &
|
|
(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
|
|
|
|
/* Set PER control regs, turns on single step for the given address */
|
|
__ctl_load(per_kprobe, 9, 11);
|
|
regs->psw.mask |= PSW_MASK_PER;
|
|
regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
|
|
regs->psw.addr = ip;
|
|
}
|
|
NOKPROBE_SYMBOL(enable_singlestep);
|
|
|
|
static void disable_singlestep(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs,
|
|
unsigned long ip)
|
|
{
|
|
/* Restore control regs and psw mask, set new psw address */
|
|
__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
|
|
regs->psw.mask &= ~PSW_MASK_PER;
|
|
regs->psw.mask |= kcb->kprobe_saved_imask;
|
|
regs->psw.addr = ip;
|
|
}
|
|
NOKPROBE_SYMBOL(disable_singlestep);
|
|
|
|
/*
|
|
* Activate a kprobe by storing its pointer to current_kprobe. The
|
|
* previous kprobe is stored in kcb->prev_kprobe. A stack of up to
|
|
* two kprobes can be active, see KPROBE_REENTER.
|
|
*/
|
|
static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
|
|
{
|
|
kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
__this_cpu_write(current_kprobe, p);
|
|
}
|
|
NOKPROBE_SYMBOL(push_kprobe);
|
|
|
|
/*
|
|
* Deactivate a kprobe by backing up to the previous state. If the
|
|
* current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
|
|
* for any other state prev_kprobe.kp will be NULL.
|
|
*/
|
|
static void pop_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
NOKPROBE_SYMBOL(pop_kprobe);
|
|
|
|
static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
|
|
{
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SSDONE:
|
|
case KPROBE_HIT_ACTIVE:
|
|
kprobes_inc_nmissed_count(p);
|
|
break;
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
default:
|
|
/*
|
|
* A kprobe on the code path to single step an instruction
|
|
* is a BUG. The code path resides in the .kprobes.text
|
|
* section and is executed with interrupts disabled.
|
|
*/
|
|
pr_err("Failed to recover from reentered kprobes.\n");
|
|
dump_kprobe(p);
|
|
BUG();
|
|
}
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_reenter_check);
|
|
|
|
static int kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb;
|
|
struct kprobe *p;
|
|
|
|
/*
|
|
* We want to disable preemption for the entire duration of kprobe
|
|
* processing. That includes the calls to the pre/post handlers
|
|
* and single stepping the kprobe instruction.
|
|
*/
|
|
preempt_disable();
|
|
kcb = get_kprobe_ctlblk();
|
|
p = get_kprobe((void *)(regs->psw.addr - 2));
|
|
|
|
if (p) {
|
|
if (kprobe_running()) {
|
|
/*
|
|
* We have hit a kprobe while another is still
|
|
* active. This can happen in the pre and post
|
|
* handler. Single step the instruction of the
|
|
* new probe but do not call any handler function
|
|
* of this secondary kprobe.
|
|
* push_kprobe and pop_kprobe saves and restores
|
|
* the currently active kprobe.
|
|
*/
|
|
kprobe_reenter_check(kcb, p);
|
|
push_kprobe(kcb, p);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
} else {
|
|
/*
|
|
* If we have no pre-handler or it returned 0, we
|
|
* continue with single stepping. If we have a
|
|
* pre-handler and it returned non-zero, it prepped
|
|
* for changing execution path, so get out doing
|
|
* nothing more here.
|
|
*/
|
|
push_kprobe(kcb, p);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
if (p->pre_handler && p->pre_handler(p, regs)) {
|
|
pop_kprobe(kcb);
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
}
|
|
enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
|
|
return 1;
|
|
} /* else:
|
|
* No kprobe at this address and no active kprobe. The trap has
|
|
* not been caused by a kprobe breakpoint. The race of breakpoint
|
|
* vs. kprobe remove does not exist because on s390 as we use
|
|
* stop_machine to arm/disarm the breakpoints.
|
|
*/
|
|
preempt_enable_no_resched();
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_handler);
|
|
|
|
/*
|
|
* Called after single-stepping. p->addr is the address of the
|
|
* instruction whose first byte has been replaced by the "breakpoint"
|
|
* instruction. To avoid the SMP problems that can occur when we
|
|
* temporarily put back the original opcode to single-step, we
|
|
* single-stepped a copy of the instruction. The address of this
|
|
* copy is p->ainsn.insn.
|
|
*/
|
|
static void resume_execution(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
unsigned long ip = regs->psw.addr;
|
|
int fixup = probe_get_fixup_type(p->ainsn.insn);
|
|
|
|
if (fixup & FIXUP_PSW_NORMAL)
|
|
ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
|
|
|
|
if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
|
|
int ilen = insn_length(p->ainsn.insn[0] >> 8);
|
|
if (ip - (unsigned long) p->ainsn.insn == ilen)
|
|
ip = (unsigned long) p->addr + ilen;
|
|
}
|
|
|
|
if (fixup & FIXUP_RETURN_REGISTER) {
|
|
int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
|
|
regs->gprs[reg] += (unsigned long) p->addr -
|
|
(unsigned long) p->ainsn.insn;
|
|
}
|
|
|
|
disable_singlestep(kcb, regs, ip);
|
|
}
|
|
NOKPROBE_SYMBOL(resume_execution);
|
|
|
|
static int post_kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
struct kprobe *p = kprobe_running();
|
|
|
|
if (!p)
|
|
return 0;
|
|
|
|
if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
p->post_handler(p, regs, 0);
|
|
}
|
|
|
|
resume_execution(p, regs);
|
|
pop_kprobe(kcb);
|
|
preempt_enable_no_resched();
|
|
|
|
/*
|
|
* if somebody else is singlestepping across a probe point, psw mask
|
|
* will have PER set, in which case, continue the remaining processing
|
|
* of do_single_step, as if this is not a probe hit.
|
|
*/
|
|
if (regs->psw.mask & PSW_MASK_PER)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(post_kprobe_handler);
|
|
|
|
static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
struct kprobe *p = kprobe_running();
|
|
|
|
switch(kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the nip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
disable_singlestep(kcb, regs, (unsigned long) p->addr);
|
|
pop_kprobe(kcb);
|
|
preempt_enable_no_resched();
|
|
break;
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* In case the user-specified fault handler returned
|
|
* zero, try to fix up.
|
|
*/
|
|
if (fixup_exception(regs))
|
|
return 1;
|
|
/*
|
|
* fixup_exception() could not handle it,
|
|
* Let do_page_fault() fix it.
|
|
*/
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_trap_handler);
|
|
|
|
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
int ret;
|
|
|
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
|
local_irq_disable();
|
|
ret = kprobe_trap_handler(regs, trapnr);
|
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
|
local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_fault_handler);
|
|
|
|
/*
|
|
* Wrapper routine to for handling exceptions.
|
|
*/
|
|
int kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct die_args *args = (struct die_args *) data;
|
|
struct pt_regs *regs = args->regs;
|
|
int ret = NOTIFY_DONE;
|
|
|
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
|
local_irq_disable();
|
|
|
|
switch (val) {
|
|
case DIE_BPT:
|
|
if (kprobe_handler(regs))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
case DIE_SSTEP:
|
|
if (post_kprobe_handler(regs))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
case DIE_TRAP:
|
|
if (!preemptible() && kprobe_running() &&
|
|
kprobe_trap_handler(regs, args->trapnr))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
|
local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
|
|
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_exceptions_notify);
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_trampoline_kprobe);
|