Dennis Dalessandro 1994c31340 RDMA/hfi1: Consolidate software versions
There is no need to have separate user and kernel software versions. There
is a single software that the kernel is compatible with.

Also remove the notion of a "kernel type" that is long since deprecated.

Link: https://lore.kernel.org/r/20220520183722.48973.60262.stgit@awfm-01.cornelisnetworks.com
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2022-05-24 15:08:32 -03:00

1679 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
/*
* Copyright(c) 2020 Cornelis Networks, Inc.
* Copyright(c) 2015-2020 Intel Corporation.
*/
#include <linux/poll.h>
#include <linux/cdev.h>
#include <linux/vmalloc.h>
#include <linux/io.h>
#include <linux/sched/mm.h>
#include <linux/bitmap.h>
#include <rdma/ib.h>
#include "hfi.h"
#include "pio.h"
#include "device.h"
#include "common.h"
#include "trace.h"
#include "mmu_rb.h"
#include "user_sdma.h"
#include "user_exp_rcv.h"
#include "aspm.h"
#undef pr_fmt
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
/*
* File operation functions
*/
static int hfi1_file_open(struct inode *inode, struct file *fp);
static int hfi1_file_close(struct inode *inode, struct file *fp);
static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
static u64 kvirt_to_phys(void *addr);
static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
static void init_subctxts(struct hfi1_ctxtdata *uctxt,
const struct hfi1_user_info *uinfo);
static int init_user_ctxt(struct hfi1_filedata *fd,
struct hfi1_ctxtdata *uctxt);
static void user_init(struct hfi1_ctxtdata *uctxt);
static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
u32 len);
static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
u32 len);
static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
u32 len);
static int setup_base_ctxt(struct hfi1_filedata *fd,
struct hfi1_ctxtdata *uctxt);
static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
static int find_sub_ctxt(struct hfi1_filedata *fd,
const struct hfi1_user_info *uinfo);
static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
struct hfi1_user_info *uinfo,
struct hfi1_ctxtdata **cd);
static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
unsigned long arg);
static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
unsigned long arg);
static vm_fault_t vma_fault(struct vm_fault *vmf);
static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
unsigned long arg);
static const struct file_operations hfi1_file_ops = {
.owner = THIS_MODULE,
.write_iter = hfi1_write_iter,
.open = hfi1_file_open,
.release = hfi1_file_close,
.unlocked_ioctl = hfi1_file_ioctl,
.poll = hfi1_poll,
.mmap = hfi1_file_mmap,
.llseek = noop_llseek,
};
static const struct vm_operations_struct vm_ops = {
.fault = vma_fault,
};
/*
* Types of memories mapped into user processes' space
*/
enum mmap_types {
PIO_BUFS = 1,
PIO_BUFS_SOP,
PIO_CRED,
RCV_HDRQ,
RCV_EGRBUF,
UREGS,
EVENTS,
STATUS,
RTAIL,
SUBCTXT_UREGS,
SUBCTXT_RCV_HDRQ,
SUBCTXT_EGRBUF,
SDMA_COMP
};
/*
* Masks and offsets defining the mmap tokens
*/
#define HFI1_MMAP_OFFSET_MASK 0xfffULL
#define HFI1_MMAP_OFFSET_SHIFT 0
#define HFI1_MMAP_SUBCTXT_MASK 0xfULL
#define HFI1_MMAP_SUBCTXT_SHIFT 12
#define HFI1_MMAP_CTXT_MASK 0xffULL
#define HFI1_MMAP_CTXT_SHIFT 16
#define HFI1_MMAP_TYPE_MASK 0xfULL
#define HFI1_MMAP_TYPE_SHIFT 24
#define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
#define HFI1_MMAP_MAGIC_SHIFT 32
#define HFI1_MMAP_MAGIC 0xdabbad00
#define HFI1_MMAP_TOKEN_SET(field, val) \
(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
#define HFI1_MMAP_TOKEN_GET(field, token) \
(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
HFI1_MMAP_TOKEN_SET(TYPE, type) | \
HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
#define dbg(fmt, ...) \
pr_info(fmt, ##__VA_ARGS__)
static inline int is_valid_mmap(u64 token)
{
return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
}
static int hfi1_file_open(struct inode *inode, struct file *fp)
{
struct hfi1_filedata *fd;
struct hfi1_devdata *dd = container_of(inode->i_cdev,
struct hfi1_devdata,
user_cdev);
if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
return -EINVAL;
if (!refcount_inc_not_zero(&dd->user_refcount))
return -ENXIO;
/* The real work is performed later in assign_ctxt() */
fd = kzalloc(sizeof(*fd), GFP_KERNEL);
if (!fd || init_srcu_struct(&fd->pq_srcu))
goto nomem;
spin_lock_init(&fd->pq_rcu_lock);
spin_lock_init(&fd->tid_lock);
spin_lock_init(&fd->invalid_lock);
fd->rec_cpu_num = -1; /* no cpu affinity by default */
fd->dd = dd;
fp->private_data = fd;
return 0;
nomem:
kfree(fd);
fp->private_data = NULL;
if (refcount_dec_and_test(&dd->user_refcount))
complete(&dd->user_comp);
return -ENOMEM;
}
static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
unsigned long arg)
{
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
int ret = 0;
int uval = 0;
hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
cmd != HFI1_IOCTL_GET_VERS &&
!uctxt)
return -EINVAL;
switch (cmd) {
case HFI1_IOCTL_ASSIGN_CTXT:
ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
break;
case HFI1_IOCTL_CTXT_INFO:
ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
break;
case HFI1_IOCTL_USER_INFO:
ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
break;
case HFI1_IOCTL_CREDIT_UPD:
if (uctxt)
sc_return_credits(uctxt->sc);
break;
case HFI1_IOCTL_TID_UPDATE:
ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
break;
case HFI1_IOCTL_TID_FREE:
ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
break;
case HFI1_IOCTL_TID_INVAL_READ:
ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
break;
case HFI1_IOCTL_RECV_CTRL:
ret = manage_rcvq(uctxt, fd->subctxt, arg);
break;
case HFI1_IOCTL_POLL_TYPE:
if (get_user(uval, (int __user *)arg))
return -EFAULT;
uctxt->poll_type = (typeof(uctxt->poll_type))uval;
break;
case HFI1_IOCTL_ACK_EVENT:
ret = user_event_ack(uctxt, fd->subctxt, arg);
break;
case HFI1_IOCTL_SET_PKEY:
ret = set_ctxt_pkey(uctxt, arg);
break;
case HFI1_IOCTL_CTXT_RESET:
ret = ctxt_reset(uctxt);
break;
case HFI1_IOCTL_GET_VERS:
uval = HFI1_USER_SWVERSION;
if (put_user(uval, (int __user *)arg))
return -EFAULT;
break;
default:
return -EINVAL;
}
return ret;
}
static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
{
struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
struct hfi1_user_sdma_pkt_q *pq;
struct hfi1_user_sdma_comp_q *cq = fd->cq;
int done = 0, reqs = 0;
unsigned long dim = from->nr_segs;
int idx;
if (!HFI1_CAP_IS_KSET(SDMA))
return -EINVAL;
idx = srcu_read_lock(&fd->pq_srcu);
pq = srcu_dereference(fd->pq, &fd->pq_srcu);
if (!cq || !pq) {
srcu_read_unlock(&fd->pq_srcu, idx);
return -EIO;
}
if (!iter_is_iovec(from) || !dim) {
srcu_read_unlock(&fd->pq_srcu, idx);
return -EINVAL;
}
trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
srcu_read_unlock(&fd->pq_srcu, idx);
return -ENOSPC;
}
while (dim) {
int ret;
unsigned long count = 0;
ret = hfi1_user_sdma_process_request(
fd, (struct iovec *)(from->iov + done),
dim, &count);
if (ret) {
reqs = ret;
break;
}
dim -= count;
done += count;
reqs++;
}
srcu_read_unlock(&fd->pq_srcu, idx);
return reqs;
}
static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
{
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd;
unsigned long flags;
u64 token = vma->vm_pgoff << PAGE_SHIFT,
memaddr = 0;
void *memvirt = NULL;
u8 subctxt, mapio = 0, vmf = 0, type;
ssize_t memlen = 0;
int ret = 0;
u16 ctxt;
if (!is_valid_mmap(token) || !uctxt ||
!(vma->vm_flags & VM_SHARED)) {
ret = -EINVAL;
goto done;
}
dd = uctxt->dd;
ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
type = HFI1_MMAP_TOKEN_GET(TYPE, token);
if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
ret = -EINVAL;
goto done;
}
flags = vma->vm_flags;
switch (type) {
case PIO_BUFS:
case PIO_BUFS_SOP:
memaddr = ((dd->physaddr + TXE_PIO_SEND) +
/* chip pio base */
(uctxt->sc->hw_context * BIT(16))) +
/* 64K PIO space / ctxt */
(type == PIO_BUFS_SOP ?
(TXE_PIO_SIZE / 2) : 0); /* sop? */
/*
* Map only the amount allocated to the context, not the
* entire available context's PIO space.
*/
memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
flags &= ~VM_MAYREAD;
flags |= VM_DONTCOPY | VM_DONTEXPAND;
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
mapio = 1;
break;
case PIO_CRED:
if (flags & VM_WRITE) {
ret = -EPERM;
goto done;
}
/*
* The credit return location for this context could be on the
* second or third page allocated for credit returns (if number
* of enabled contexts > 64 and 128 respectively).
*/
memvirt = dd->cr_base[uctxt->numa_id].va;
memaddr = virt_to_phys(memvirt) +
(((u64)uctxt->sc->hw_free -
(u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
memlen = PAGE_SIZE;
flags &= ~VM_MAYWRITE;
flags |= VM_DONTCOPY | VM_DONTEXPAND;
/*
* The driver has already allocated memory for credit
* returns and programmed it into the chip. Has that
* memory been flagged as non-cached?
*/
/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
mapio = 1;
break;
case RCV_HDRQ:
memlen = rcvhdrq_size(uctxt);
memvirt = uctxt->rcvhdrq;
break;
case RCV_EGRBUF: {
unsigned long addr;
int i;
/*
* The RcvEgr buffer need to be handled differently
* as multiple non-contiguous pages need to be mapped
* into the user process.
*/
memlen = uctxt->egrbufs.size;
if ((vma->vm_end - vma->vm_start) != memlen) {
dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
(vma->vm_end - vma->vm_start), memlen);
ret = -EINVAL;
goto done;
}
if (vma->vm_flags & VM_WRITE) {
ret = -EPERM;
goto done;
}
vma->vm_flags &= ~VM_MAYWRITE;
addr = vma->vm_start;
for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
memlen = uctxt->egrbufs.buffers[i].len;
memvirt = uctxt->egrbufs.buffers[i].addr;
ret = remap_pfn_range(
vma, addr,
/*
* virt_to_pfn() does the same, but
* it's not available on x86_64
* when CONFIG_MMU is enabled.
*/
PFN_DOWN(__pa(memvirt)),
memlen,
vma->vm_page_prot);
if (ret < 0)
goto done;
addr += memlen;
}
ret = 0;
goto done;
}
case UREGS:
/*
* Map only the page that contains this context's user
* registers.
*/
memaddr = (unsigned long)
(dd->physaddr + RXE_PER_CONTEXT_USER)
+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
/*
* TidFlow table is on the same page as the rest of the
* user registers.
*/
memlen = PAGE_SIZE;
flags |= VM_DONTCOPY | VM_DONTEXPAND;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
mapio = 1;
break;
case EVENTS:
/*
* Use the page where this context's flags are. User level
* knows where it's own bitmap is within the page.
*/
memaddr = (unsigned long)
(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
memlen = PAGE_SIZE;
/*
* v3.7 removes VM_RESERVED but the effect is kept by
* using VM_IO.
*/
flags |= VM_IO | VM_DONTEXPAND;
vmf = 1;
break;
case STATUS:
if (flags & VM_WRITE) {
ret = -EPERM;
goto done;
}
memaddr = kvirt_to_phys((void *)dd->status);
memlen = PAGE_SIZE;
flags |= VM_IO | VM_DONTEXPAND;
break;
case RTAIL:
if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
/*
* If the memory allocation failed, the context alloc
* also would have failed, so we would never get here
*/
ret = -EINVAL;
goto done;
}
if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
ret = -EPERM;
goto done;
}
memlen = PAGE_SIZE;
memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
flags &= ~VM_MAYWRITE;
break;
case SUBCTXT_UREGS:
memaddr = (u64)uctxt->subctxt_uregbase;
memlen = PAGE_SIZE;
flags |= VM_IO | VM_DONTEXPAND;
vmf = 1;
break;
case SUBCTXT_RCV_HDRQ:
memaddr = (u64)uctxt->subctxt_rcvhdr_base;
memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
flags |= VM_IO | VM_DONTEXPAND;
vmf = 1;
break;
case SUBCTXT_EGRBUF:
memaddr = (u64)uctxt->subctxt_rcvegrbuf;
memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
flags |= VM_IO | VM_DONTEXPAND;
flags &= ~VM_MAYWRITE;
vmf = 1;
break;
case SDMA_COMP: {
struct hfi1_user_sdma_comp_q *cq = fd->cq;
if (!cq) {
ret = -EFAULT;
goto done;
}
memaddr = (u64)cq->comps;
memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
flags |= VM_IO | VM_DONTEXPAND;
vmf = 1;
break;
}
default:
ret = -EINVAL;
break;
}
if ((vma->vm_end - vma->vm_start) != memlen) {
hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
uctxt->ctxt, fd->subctxt,
(vma->vm_end - vma->vm_start), memlen);
ret = -EINVAL;
goto done;
}
vma->vm_flags = flags;
hfi1_cdbg(PROC,
"%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
vma->vm_end - vma->vm_start, vma->vm_flags);
if (vmf) {
vma->vm_pgoff = PFN_DOWN(memaddr);
vma->vm_ops = &vm_ops;
ret = 0;
} else if (mapio) {
ret = io_remap_pfn_range(vma, vma->vm_start,
PFN_DOWN(memaddr),
memlen,
vma->vm_page_prot);
} else if (memvirt) {
ret = remap_pfn_range(vma, vma->vm_start,
PFN_DOWN(__pa(memvirt)),
memlen,
vma->vm_page_prot);
} else {
ret = remap_pfn_range(vma, vma->vm_start,
PFN_DOWN(memaddr),
memlen,
vma->vm_page_prot);
}
done:
return ret;
}
/*
* Local (non-chip) user memory is not mapped right away but as it is
* accessed by the user-level code.
*/
static vm_fault_t vma_fault(struct vm_fault *vmf)
{
struct page *page;
page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
if (!page)
return VM_FAULT_SIGBUS;
get_page(page);
vmf->page = page;
return 0;
}
static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
{
struct hfi1_ctxtdata *uctxt;
__poll_t pollflag;
uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
if (!uctxt)
pollflag = EPOLLERR;
else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
pollflag = poll_urgent(fp, pt);
else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
pollflag = poll_next(fp, pt);
else /* invalid */
pollflag = EPOLLERR;
return pollflag;
}
static int hfi1_file_close(struct inode *inode, struct file *fp)
{
struct hfi1_filedata *fdata = fp->private_data;
struct hfi1_ctxtdata *uctxt = fdata->uctxt;
struct hfi1_devdata *dd = container_of(inode->i_cdev,
struct hfi1_devdata,
user_cdev);
unsigned long flags, *ev;
fp->private_data = NULL;
if (!uctxt)
goto done;
hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
flush_wc();
/* drain user sdma queue */
hfi1_user_sdma_free_queues(fdata, uctxt);
/* release the cpu */
hfi1_put_proc_affinity(fdata->rec_cpu_num);
/* clean up rcv side */
hfi1_user_exp_rcv_free(fdata);
/*
* fdata->uctxt is used in the above cleanup. It is not ready to be
* removed until here.
*/
fdata->uctxt = NULL;
hfi1_rcd_put(uctxt);
/*
* Clear any left over, unhandled events so the next process that
* gets this context doesn't get confused.
*/
ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
*ev = 0;
spin_lock_irqsave(&dd->uctxt_lock, flags);
__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
goto done;
}
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
/*
* Disable receive context and interrupt available, reset all
* RcvCtxtCtrl bits to default values.
*/
hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
HFI1_RCVCTRL_TIDFLOW_DIS |
HFI1_RCVCTRL_INTRAVAIL_DIS |
HFI1_RCVCTRL_TAILUPD_DIS |
HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
HFI1_RCVCTRL_NO_EGR_DROP_DIS |
HFI1_RCVCTRL_URGENT_DIS, uctxt);
/* Clear the context's J_KEY */
hfi1_clear_ctxt_jkey(dd, uctxt);
/*
* If a send context is allocated, reset context integrity
* checks to default and disable the send context.
*/
if (uctxt->sc) {
sc_disable(uctxt->sc);
set_pio_integrity(uctxt->sc);
}
hfi1_free_ctxt_rcv_groups(uctxt);
hfi1_clear_ctxt_pkey(dd, uctxt);
uctxt->event_flags = 0;
deallocate_ctxt(uctxt);
done:
if (refcount_dec_and_test(&dd->user_refcount))
complete(&dd->user_comp);
cleanup_srcu_struct(&fdata->pq_srcu);
kfree(fdata);
return 0;
}
/*
* Convert kernel *virtual* addresses to physical addresses.
* This is used to vmalloc'ed addresses.
*/
static u64 kvirt_to_phys(void *addr)
{
struct page *page;
u64 paddr = 0;
page = vmalloc_to_page(addr);
if (page)
paddr = page_to_pfn(page) << PAGE_SHIFT;
return paddr;
}
/**
* complete_subctxt - complete sub-context info
* @fd: valid filedata pointer
*
* Sub-context info can only be set up after the base context
* has been completed. This is indicated by the clearing of the
* HFI1_CTXT_BASE_UINIT bit.
*
* Wait for the bit to be cleared, and then complete the subcontext
* initialization.
*
*/
static int complete_subctxt(struct hfi1_filedata *fd)
{
int ret;
unsigned long flags;
/*
* sub-context info can only be set up after the base context
* has been completed.
*/
ret = wait_event_interruptible(
fd->uctxt->wait,
!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
ret = -ENOMEM;
/* Finish the sub-context init */
if (!ret) {
fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
ret = init_user_ctxt(fd, fd->uctxt);
}
if (ret) {
spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
hfi1_rcd_put(fd->uctxt);
fd->uctxt = NULL;
}
return ret;
}
static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
{
int ret;
unsigned int swmajor;
struct hfi1_ctxtdata *uctxt = NULL;
struct hfi1_user_info uinfo;
if (fd->uctxt)
return -EINVAL;
if (sizeof(uinfo) != len)
return -EINVAL;
if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
return -EFAULT;
swmajor = uinfo.userversion >> 16;
if (swmajor != HFI1_USER_SWMAJOR)
return -ENODEV;
if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
return -EINVAL;
/*
* Acquire the mutex to protect against multiple creations of what
* could be a shared base context.
*/
mutex_lock(&hfi1_mutex);
/*
* Get a sub context if available (fd->uctxt will be set).
* ret < 0 error, 0 no context, 1 sub-context found
*/
ret = find_sub_ctxt(fd, &uinfo);
/*
* Allocate a base context if context sharing is not required or a
* sub context wasn't found.
*/
if (!ret)
ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
mutex_unlock(&hfi1_mutex);
/* Depending on the context type, finish the appropriate init */
switch (ret) {
case 0:
ret = setup_base_ctxt(fd, uctxt);
if (ret)
deallocate_ctxt(uctxt);
break;
case 1:
ret = complete_subctxt(fd);
break;
default:
break;
}
return ret;
}
/**
* match_ctxt - match context
* @fd: valid filedata pointer
* @uinfo: user info to compare base context with
* @uctxt: context to compare uinfo to.
*
* Compare the given context with the given information to see if it
* can be used for a sub context.
*/
static int match_ctxt(struct hfi1_filedata *fd,
const struct hfi1_user_info *uinfo,
struct hfi1_ctxtdata *uctxt)
{
struct hfi1_devdata *dd = fd->dd;
unsigned long flags;
u16 subctxt;
/* Skip dynamically allocated kernel contexts */
if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
return 0;
/* Skip ctxt if it doesn't match the requested one */
if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
uctxt->jkey != generate_jkey(current_uid()) ||
uctxt->subctxt_id != uinfo->subctxt_id ||
uctxt->subctxt_cnt != uinfo->subctxt_cnt)
return 0;
/* Verify the sharing process matches the base */
if (uctxt->userversion != uinfo->userversion)
return -EINVAL;
/* Find an unused sub context */
spin_lock_irqsave(&dd->uctxt_lock, flags);
if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
/* context is being closed, do not use */
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
return 0;
}
subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
HFI1_MAX_SHARED_CTXTS);
if (subctxt >= uctxt->subctxt_cnt) {
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
return -EBUSY;
}
fd->subctxt = subctxt;
__set_bit(fd->subctxt, uctxt->in_use_ctxts);
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
fd->uctxt = uctxt;
hfi1_rcd_get(uctxt);
return 1;
}
/**
* find_sub_ctxt - fund sub-context
* @fd: valid filedata pointer
* @uinfo: matching info to use to find a possible context to share.
*
* The hfi1_mutex must be held when this function is called. It is
* necessary to ensure serialized creation of shared contexts.
*
* Return:
* 0 No sub-context found
* 1 Subcontext found and allocated
* errno EINVAL (incorrect parameters)
* EBUSY (all sub contexts in use)
*/
static int find_sub_ctxt(struct hfi1_filedata *fd,
const struct hfi1_user_info *uinfo)
{
struct hfi1_ctxtdata *uctxt;
struct hfi1_devdata *dd = fd->dd;
u16 i;
int ret;
if (!uinfo->subctxt_cnt)
return 0;
for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
uctxt = hfi1_rcd_get_by_index(dd, i);
if (uctxt) {
ret = match_ctxt(fd, uinfo, uctxt);
hfi1_rcd_put(uctxt);
/* value of != 0 will return */
if (ret)
return ret;
}
}
return 0;
}
static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
struct hfi1_user_info *uinfo,
struct hfi1_ctxtdata **rcd)
{
struct hfi1_ctxtdata *uctxt;
int ret, numa;
if (dd->flags & HFI1_FROZEN) {
/*
* Pick an error that is unique from all other errors
* that are returned so the user process knows that
* it tried to allocate while the SPC was frozen. It
* it should be able to retry with success in a short
* while.
*/
return -EIO;
}
if (!dd->freectxts)
return -EBUSY;
/*
* If we don't have a NUMA node requested, preference is towards
* device NUMA node.
*/
fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
if (fd->rec_cpu_num != -1)
numa = cpu_to_node(fd->rec_cpu_num);
else
numa = numa_node_id();
ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
if (ret < 0) {
dd_dev_err(dd, "user ctxtdata allocation failed\n");
return ret;
}
hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
uctxt->numa_id);
/*
* Allocate and enable a PIO send context.
*/
uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
if (!uctxt->sc) {
ret = -ENOMEM;
goto ctxdata_free;
}
hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
uctxt->sc->hw_context);
ret = sc_enable(uctxt->sc);
if (ret)
goto ctxdata_free;
/*
* Setup sub context information if the user-level has requested
* sub contexts.
* This has to be done here so the rest of the sub-contexts find the
* proper base context.
* NOTE: _set_bit() can be used here because the context creation is
* protected by the mutex (rather than the spin_lock), and will be the
* very first instance of this context.
*/
__set_bit(0, uctxt->in_use_ctxts);
if (uinfo->subctxt_cnt)
init_subctxts(uctxt, uinfo);
uctxt->userversion = uinfo->userversion;
uctxt->flags = hfi1_cap_mask; /* save current flag state */
init_waitqueue_head(&uctxt->wait);
strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
uctxt->jkey = generate_jkey(current_uid());
hfi1_stats.sps_ctxts++;
/*
* Disable ASPM when there are open user/PSM contexts to avoid
* issues with ASPM L1 exit latency
*/
if (dd->freectxts-- == dd->num_user_contexts)
aspm_disable_all(dd);
*rcd = uctxt;
return 0;
ctxdata_free:
hfi1_free_ctxt(uctxt);
return ret;
}
static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
{
mutex_lock(&hfi1_mutex);
hfi1_stats.sps_ctxts--;
if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
aspm_enable_all(uctxt->dd);
mutex_unlock(&hfi1_mutex);
hfi1_free_ctxt(uctxt);
}
static void init_subctxts(struct hfi1_ctxtdata *uctxt,
const struct hfi1_user_info *uinfo)
{
uctxt->subctxt_cnt = uinfo->subctxt_cnt;
uctxt->subctxt_id = uinfo->subctxt_id;
set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
}
static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
{
int ret = 0;
u16 num_subctxts = uctxt->subctxt_cnt;
uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
if (!uctxt->subctxt_uregbase)
return -ENOMEM;
/* We can take the size of the RcvHdr Queue from the master */
uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
num_subctxts);
if (!uctxt->subctxt_rcvhdr_base) {
ret = -ENOMEM;
goto bail_ureg;
}
uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
num_subctxts);
if (!uctxt->subctxt_rcvegrbuf) {
ret = -ENOMEM;
goto bail_rhdr;
}
return 0;
bail_rhdr:
vfree(uctxt->subctxt_rcvhdr_base);
uctxt->subctxt_rcvhdr_base = NULL;
bail_ureg:
vfree(uctxt->subctxt_uregbase);
uctxt->subctxt_uregbase = NULL;
return ret;
}
static void user_init(struct hfi1_ctxtdata *uctxt)
{
unsigned int rcvctrl_ops = 0;
/* initialize poll variables... */
uctxt->urgent = 0;
uctxt->urgent_poll = 0;
/*
* Now enable the ctxt for receive.
* For chips that are set to DMA the tail register to memory
* when they change (and when the update bit transitions from
* 0 to 1. So for those chips, we turn it off and then back on.
* This will (very briefly) affect any other open ctxts, but the
* duration is very short, and therefore isn't an issue. We
* explicitly set the in-memory tail copy to 0 beforehand, so we
* don't have to wait to be sure the DMA update has happened
* (chip resets head/tail to 0 on transition to enable).
*/
if (hfi1_rcvhdrtail_kvaddr(uctxt))
clear_rcvhdrtail(uctxt);
/* Setup J_KEY before enabling the context */
hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
/*
* Ignore the bit in the flags for now until proper
* support for multiple packet per rcv array entry is
* added.
*/
if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
/*
* The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
* We can't rely on the correct value to be set from prior
* uses of the chip or ctxt. Therefore, add the rcvctrl op
* for both cases.
*/
if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
else
rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
}
static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
{
struct hfi1_ctxt_info cinfo;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
if (sizeof(cinfo) != len)
return -EINVAL;
memset(&cinfo, 0, sizeof(cinfo));
cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
/* adjust flag if this fd is not able to cache */
if (!fd->use_mn)
cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
cinfo.num_active = hfi1_count_active_units();
cinfo.unit = uctxt->dd->unit;
cinfo.ctxt = uctxt->ctxt;
cinfo.subctxt = fd->subctxt;
cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
uctxt->dd->rcv_entries.group_size) +
uctxt->expected_count;
cinfo.credits = uctxt->sc->credits;
cinfo.numa_node = uctxt->numa_id;
cinfo.rec_cpu = fd->rec_cpu_num;
cinfo.send_ctxt = uctxt->sc->hw_context;
cinfo.egrtids = uctxt->egrbufs.alloced;
cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
cinfo.sdma_ring_size = fd->cq->nentries;
cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
if (copy_to_user((void __user *)arg, &cinfo, len))
return -EFAULT;
return 0;
}
static int init_user_ctxt(struct hfi1_filedata *fd,
struct hfi1_ctxtdata *uctxt)
{
int ret;
ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
if (ret)
return ret;
ret = hfi1_user_exp_rcv_init(fd, uctxt);
if (ret)
hfi1_user_sdma_free_queues(fd, uctxt);
return ret;
}
static int setup_base_ctxt(struct hfi1_filedata *fd,
struct hfi1_ctxtdata *uctxt)
{
struct hfi1_devdata *dd = uctxt->dd;
int ret = 0;
hfi1_init_ctxt(uctxt->sc);
/* Now allocate the RcvHdr queue and eager buffers. */
ret = hfi1_create_rcvhdrq(dd, uctxt);
if (ret)
goto done;
ret = hfi1_setup_eagerbufs(uctxt);
if (ret)
goto done;
/* If sub-contexts are enabled, do the appropriate setup */
if (uctxt->subctxt_cnt)
ret = setup_subctxt(uctxt);
if (ret)
goto done;
ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
if (ret)
goto done;
ret = init_user_ctxt(fd, uctxt);
if (ret)
goto done;
user_init(uctxt);
/* Now that the context is set up, the fd can get a reference. */
fd->uctxt = uctxt;
hfi1_rcd_get(uctxt);
done:
if (uctxt->subctxt_cnt) {
/*
* On error, set the failed bit so sub-contexts will clean up
* correctly.
*/
if (ret)
set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
/*
* Base context is done (successfully or not), notify anybody
* using a sub-context that is waiting for this completion.
*/
clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
wake_up(&uctxt->wait);
}
return ret;
}
static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
{
struct hfi1_base_info binfo;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
unsigned offset;
trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
if (sizeof(binfo) != len)
return -EINVAL;
memset(&binfo, 0, sizeof(binfo));
binfo.hw_version = dd->revision;
binfo.sw_version = HFI1_USER_SWVERSION;
binfo.bthqp = RVT_KDETH_QP_PREFIX;
binfo.jkey = uctxt->jkey;
/*
* If more than 64 contexts are enabled the allocated credit
* return will span two or three contiguous pages. Since we only
* map the page containing the context's credit return address,
* we need to calculate the offset in the proper page.
*/
offset = ((u64)uctxt->sc->hw_free -
(u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
fd->subctxt, offset);
binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
fd->subctxt,
uctxt->sc->base_addr);
binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
uctxt->ctxt,
fd->subctxt,
uctxt->sc->base_addr);
binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
fd->subctxt,
uctxt->rcvhdrq);
binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
fd->subctxt,
uctxt->egrbufs.rcvtids[0].dma);
binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
fd->subctxt, 0);
/*
* user regs are at
* (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
*/
binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
fd->subctxt, 0);
offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
sizeof(*dd->events));
binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
fd->subctxt,
offset);
binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
fd->subctxt,
dd->status);
if (HFI1_CAP_IS_USET(DMA_RTAIL))
binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
fd->subctxt, 0);
if (uctxt->subctxt_cnt) {
binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
uctxt->ctxt,
fd->subctxt, 0);
binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
uctxt->ctxt,
fd->subctxt, 0);
binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
uctxt->ctxt,
fd->subctxt, 0);
}
if (copy_to_user((void __user *)arg, &binfo, len))
return -EFAULT;
return 0;
}
/**
* user_exp_rcv_setup - Set up the given tid rcv list
* @fd: file data of the current driver instance
* @arg: ioctl argumnent for user space information
* @len: length of data structure associated with ioctl command
*
* Wrapper to validate ioctl information before doing _rcv_setup.
*
*/
static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
u32 len)
{
int ret;
unsigned long addr;
struct hfi1_tid_info tinfo;
if (sizeof(tinfo) != len)
return -EINVAL;
if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
return -EFAULT;
ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
if (!ret) {
/*
* Copy the number of tidlist entries we used
* and the length of the buffer we registered.
*/
addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
sizeof(tinfo.tidcnt)))
return -EFAULT;
addr = arg + offsetof(struct hfi1_tid_info, length);
if (copy_to_user((void __user *)addr, &tinfo.length,
sizeof(tinfo.length)))
ret = -EFAULT;
}
return ret;
}
/**
* user_exp_rcv_clear - Clear the given tid rcv list
* @fd: file data of the current driver instance
* @arg: ioctl argumnent for user space information
* @len: length of data structure associated with ioctl command
*
* The hfi1_user_exp_rcv_clear() can be called from the error path. Because
* of this, we need to use this wrapper to copy the user space information
* before doing the clear.
*/
static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
u32 len)
{
int ret;
unsigned long addr;
struct hfi1_tid_info tinfo;
if (sizeof(tinfo) != len)
return -EINVAL;
if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
return -EFAULT;
ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
if (!ret) {
addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
sizeof(tinfo.tidcnt)))
return -EFAULT;
}
return ret;
}
/**
* user_exp_rcv_invalid - Invalidate the given tid rcv list
* @fd: file data of the current driver instance
* @arg: ioctl argumnent for user space information
* @len: length of data structure associated with ioctl command
*
* Wrapper to validate ioctl information before doing _rcv_invalid.
*
*/
static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
u32 len)
{
int ret;
unsigned long addr;
struct hfi1_tid_info tinfo;
if (sizeof(tinfo) != len)
return -EINVAL;
if (!fd->invalid_tids)
return -EINVAL;
if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
return -EFAULT;
ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
if (ret)
return ret;
addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
sizeof(tinfo.tidcnt)))
ret = -EFAULT;
return ret;
}
static __poll_t poll_urgent(struct file *fp,
struct poll_table_struct *pt)
{
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
__poll_t pollflag;
poll_wait(fp, &uctxt->wait, pt);
spin_lock_irq(&dd->uctxt_lock);
if (uctxt->urgent != uctxt->urgent_poll) {
pollflag = EPOLLIN | EPOLLRDNORM;
uctxt->urgent_poll = uctxt->urgent;
} else {
pollflag = 0;
set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
}
spin_unlock_irq(&dd->uctxt_lock);
return pollflag;
}
static __poll_t poll_next(struct file *fp,
struct poll_table_struct *pt)
{
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
__poll_t pollflag;
poll_wait(fp, &uctxt->wait, pt);
spin_lock_irq(&dd->uctxt_lock);
if (hdrqempty(uctxt)) {
set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
pollflag = 0;
} else {
pollflag = EPOLLIN | EPOLLRDNORM;
}
spin_unlock_irq(&dd->uctxt_lock);
return pollflag;
}
/*
* Find all user contexts in use, and set the specified bit in their
* event mask.
* See also find_ctxt() for a similar use, that is specific to send buffers.
*/
int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
{
struct hfi1_ctxtdata *uctxt;
struct hfi1_devdata *dd = ppd->dd;
u16 ctxt;
if (!dd->events)
return -EINVAL;
for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
ctxt++) {
uctxt = hfi1_rcd_get_by_index(dd, ctxt);
if (uctxt) {
unsigned long *evs;
int i;
/*
* subctxt_cnt is 0 if not shared, so do base
* separately, first, then remaining subctxt, if any
*/
evs = dd->events + uctxt_offset(uctxt);
set_bit(evtbit, evs);
for (i = 1; i < uctxt->subctxt_cnt; i++)
set_bit(evtbit, evs + i);
hfi1_rcd_put(uctxt);
}
}
return 0;
}
/**
* manage_rcvq - manage a context's receive queue
* @uctxt: the context
* @subctxt: the sub-context
* @arg: start/stop action to carry out
*
* start_stop == 0 disables receive on the context, for use in queue
* overflow conditions. start_stop==1 re-enables, to be used to
* re-init the software copy of the head register
*/
static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
unsigned long arg)
{
struct hfi1_devdata *dd = uctxt->dd;
unsigned int rcvctrl_op;
int start_stop;
if (subctxt)
return 0;
if (get_user(start_stop, (int __user *)arg))
return -EFAULT;
/* atomically clear receive enable ctxt. */
if (start_stop) {
/*
* On enable, force in-memory copy of the tail register to
* 0, so that protocol code doesn't have to worry about
* whether or not the chip has yet updated the in-memory
* copy or not on return from the system call. The chip
* always resets it's tail register back to 0 on a
* transition from disabled to enabled.
*/
if (hfi1_rcvhdrtail_kvaddr(uctxt))
clear_rcvhdrtail(uctxt);
rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
} else {
rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
}
hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
/* always; new head should be equal to new tail; see above */
return 0;
}
/*
* clear the event notifier events for this context.
* User process then performs actions appropriate to bit having been
* set, if desired, and checks again in future.
*/
static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
unsigned long arg)
{
int i;
struct hfi1_devdata *dd = uctxt->dd;
unsigned long *evs;
unsigned long events;
if (!dd->events)
return 0;
if (get_user(events, (unsigned long __user *)arg))
return -EFAULT;
evs = dd->events + uctxt_offset(uctxt) + subctxt;
for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
if (!test_bit(i, &events))
continue;
clear_bit(i, evs);
}
return 0;
}
static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
{
int i;
struct hfi1_pportdata *ppd = uctxt->ppd;
struct hfi1_devdata *dd = uctxt->dd;
u16 pkey;
if (!HFI1_CAP_IS_USET(PKEY_CHECK))
return -EPERM;
if (get_user(pkey, (u16 __user *)arg))
return -EFAULT;
if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
if (pkey == ppd->pkeys[i])
return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
return -ENOENT;
}
/**
* ctxt_reset - Reset the user context
* @uctxt: valid user context
*/
static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
{
struct send_context *sc;
struct hfi1_devdata *dd;
int ret = 0;
if (!uctxt || !uctxt->dd || !uctxt->sc)
return -EINVAL;
/*
* There is no protection here. User level has to guarantee that
* no one will be writing to the send context while it is being
* re-initialized. If user level breaks that guarantee, it will
* break it's own context and no one else's.
*/
dd = uctxt->dd;
sc = uctxt->sc;
/*
* Wait until the interrupt handler has marked the context as
* halted or frozen. Report error if we time out.
*/
wait_event_interruptible_timeout(
sc->halt_wait, (sc->flags & SCF_HALTED),
msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
if (!(sc->flags & SCF_HALTED))
return -ENOLCK;
/*
* If the send context was halted due to a Freeze, wait until the
* device has been "unfrozen" before resetting the context.
*/
if (sc->flags & SCF_FROZEN) {
wait_event_interruptible_timeout(
dd->event_queue,
!(READ_ONCE(dd->flags) & HFI1_FROZEN),
msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
if (dd->flags & HFI1_FROZEN)
return -ENOLCK;
if (dd->flags & HFI1_FORCED_FREEZE)
/*
* Don't allow context reset if we are into
* forced freeze
*/
return -ENODEV;
sc_disable(sc);
ret = sc_enable(sc);
hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
} else {
ret = sc_restart(sc);
}
if (!ret)
sc_return_credits(sc);
return ret;
}
static void user_remove(struct hfi1_devdata *dd)
{
hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
}
static int user_add(struct hfi1_devdata *dd)
{
char name[10];
int ret;
snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
&dd->user_cdev, &dd->user_device,
true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
if (ret)
user_remove(dd);
return ret;
}
/*
* Create per-unit files in /dev
*/
int hfi1_device_create(struct hfi1_devdata *dd)
{
return user_add(dd);
}
/*
* Remove per-unit files in /dev
* void, core kernel returns no errors for this stuff
*/
void hfi1_device_remove(struct hfi1_devdata *dd)
{
user_remove(dd);
}