4c88bb96e4
When CONFIG_DEBUG_VM is defined check that pending remove and tracking nibbles (bits 31-24 of the page refcount) are cleared. Should the earlier stages of the page lifespan have a race or logical error, such check could help in exposing the issue. Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com> Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
715 lines
20 KiB
C
715 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Page table allocation functions
|
|
*
|
|
* Copyright IBM Corp. 2016
|
|
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
*/
|
|
|
|
#include <linux/sysctl.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/gmap.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#ifdef CONFIG_PGSTE
|
|
|
|
int page_table_allocate_pgste = 0;
|
|
EXPORT_SYMBOL(page_table_allocate_pgste);
|
|
|
|
static struct ctl_table page_table_sysctl[] = {
|
|
{
|
|
.procname = "allocate_pgste",
|
|
.data = &page_table_allocate_pgste,
|
|
.maxlen = sizeof(int),
|
|
.mode = S_IRUGO | S_IWUSR,
|
|
.proc_handler = proc_dointvec_minmax,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = SYSCTL_ONE,
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static struct ctl_table page_table_sysctl_dir[] = {
|
|
{
|
|
.procname = "vm",
|
|
.maxlen = 0,
|
|
.mode = 0555,
|
|
.child = page_table_sysctl,
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static int __init page_table_register_sysctl(void)
|
|
{
|
|
return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
|
|
}
|
|
__initcall(page_table_register_sysctl);
|
|
|
|
#endif /* CONFIG_PGSTE */
|
|
|
|
unsigned long *crst_table_alloc(struct mm_struct *mm)
|
|
{
|
|
struct page *page = alloc_pages(GFP_KERNEL, 2);
|
|
|
|
if (!page)
|
|
return NULL;
|
|
arch_set_page_dat(page, 2);
|
|
return (unsigned long *) page_to_virt(page);
|
|
}
|
|
|
|
void crst_table_free(struct mm_struct *mm, unsigned long *table)
|
|
{
|
|
free_pages((unsigned long) table, 2);
|
|
}
|
|
|
|
static void __crst_table_upgrade(void *arg)
|
|
{
|
|
struct mm_struct *mm = arg;
|
|
|
|
/* change all active ASCEs to avoid the creation of new TLBs */
|
|
if (current->active_mm == mm) {
|
|
S390_lowcore.user_asce = mm->context.asce;
|
|
__ctl_load(S390_lowcore.user_asce, 7, 7);
|
|
}
|
|
__tlb_flush_local();
|
|
}
|
|
|
|
int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
|
|
{
|
|
unsigned long *pgd = NULL, *p4d = NULL, *__pgd;
|
|
unsigned long asce_limit = mm->context.asce_limit;
|
|
|
|
/* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
|
|
VM_BUG_ON(asce_limit < _REGION2_SIZE);
|
|
|
|
if (end <= asce_limit)
|
|
return 0;
|
|
|
|
if (asce_limit == _REGION2_SIZE) {
|
|
p4d = crst_table_alloc(mm);
|
|
if (unlikely(!p4d))
|
|
goto err_p4d;
|
|
crst_table_init(p4d, _REGION2_ENTRY_EMPTY);
|
|
}
|
|
if (end > _REGION1_SIZE) {
|
|
pgd = crst_table_alloc(mm);
|
|
if (unlikely(!pgd))
|
|
goto err_pgd;
|
|
crst_table_init(pgd, _REGION1_ENTRY_EMPTY);
|
|
}
|
|
|
|
spin_lock_bh(&mm->page_table_lock);
|
|
|
|
/*
|
|
* This routine gets called with mmap_lock lock held and there is
|
|
* no reason to optimize for the case of otherwise. However, if
|
|
* that would ever change, the below check will let us know.
|
|
*/
|
|
VM_BUG_ON(asce_limit != mm->context.asce_limit);
|
|
|
|
if (p4d) {
|
|
__pgd = (unsigned long *) mm->pgd;
|
|
p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd);
|
|
mm->pgd = (pgd_t *) p4d;
|
|
mm->context.asce_limit = _REGION1_SIZE;
|
|
mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
|
|
_ASCE_USER_BITS | _ASCE_TYPE_REGION2;
|
|
mm_inc_nr_puds(mm);
|
|
}
|
|
if (pgd) {
|
|
__pgd = (unsigned long *) mm->pgd;
|
|
pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd);
|
|
mm->pgd = (pgd_t *) pgd;
|
|
mm->context.asce_limit = TASK_SIZE_MAX;
|
|
mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
|
|
_ASCE_USER_BITS | _ASCE_TYPE_REGION1;
|
|
}
|
|
|
|
spin_unlock_bh(&mm->page_table_lock);
|
|
|
|
on_each_cpu(__crst_table_upgrade, mm, 0);
|
|
|
|
return 0;
|
|
|
|
err_pgd:
|
|
crst_table_free(mm, p4d);
|
|
err_p4d:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
|
|
{
|
|
unsigned int old, new;
|
|
|
|
do {
|
|
old = atomic_read(v);
|
|
new = old ^ bits;
|
|
} while (atomic_cmpxchg(v, old, new) != old);
|
|
return new;
|
|
}
|
|
|
|
#ifdef CONFIG_PGSTE
|
|
|
|
struct page *page_table_alloc_pgste(struct mm_struct *mm)
|
|
{
|
|
struct page *page;
|
|
u64 *table;
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (page) {
|
|
table = (u64 *)page_to_virt(page);
|
|
memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
|
|
memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
void page_table_free_pgste(struct page *page)
|
|
{
|
|
__free_page(page);
|
|
}
|
|
|
|
#endif /* CONFIG_PGSTE */
|
|
|
|
/*
|
|
* A 2KB-pgtable is either upper or lower half of a normal page.
|
|
* The second half of the page may be unused or used as another
|
|
* 2KB-pgtable.
|
|
*
|
|
* Whenever possible the parent page for a new 2KB-pgtable is picked
|
|
* from the list of partially allocated pages mm_context_t::pgtable_list.
|
|
* In case the list is empty a new parent page is allocated and added to
|
|
* the list.
|
|
*
|
|
* When a parent page gets fully allocated it contains 2KB-pgtables in both
|
|
* upper and lower halves and is removed from mm_context_t::pgtable_list.
|
|
*
|
|
* When 2KB-pgtable is freed from to fully allocated parent page that
|
|
* page turns partially allocated and added to mm_context_t::pgtable_list.
|
|
*
|
|
* If 2KB-pgtable is freed from the partially allocated parent page that
|
|
* page turns unused and gets removed from mm_context_t::pgtable_list.
|
|
* Furthermore, the unused parent page is released.
|
|
*
|
|
* As follows from the above, no unallocated or fully allocated parent
|
|
* pages are contained in mm_context_t::pgtable_list.
|
|
*
|
|
* The upper byte (bits 24-31) of the parent page _refcount is used
|
|
* for tracking contained 2KB-pgtables and has the following format:
|
|
*
|
|
* PP AA
|
|
* 01234567 upper byte (bits 24-31) of struct page::_refcount
|
|
* || ||
|
|
* || |+--- upper 2KB-pgtable is allocated
|
|
* || +---- lower 2KB-pgtable is allocated
|
|
* |+------- upper 2KB-pgtable is pending for removal
|
|
* +-------- lower 2KB-pgtable is pending for removal
|
|
*
|
|
* (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why
|
|
* using _refcount is possible).
|
|
*
|
|
* When 2KB-pgtable is allocated the corresponding AA bit is set to 1.
|
|
* The parent page is either:
|
|
* - added to mm_context_t::pgtable_list in case the second half of the
|
|
* parent page is still unallocated;
|
|
* - removed from mm_context_t::pgtable_list in case both hales of the
|
|
* parent page are allocated;
|
|
* These operations are protected with mm_context_t::lock.
|
|
*
|
|
* When 2KB-pgtable is deallocated the corresponding AA bit is set to 0
|
|
* and the corresponding PP bit is set to 1 in a single atomic operation.
|
|
* Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually
|
|
* exclusive and may never be both set to 1!
|
|
* The parent page is either:
|
|
* - added to mm_context_t::pgtable_list in case the second half of the
|
|
* parent page is still allocated;
|
|
* - removed from mm_context_t::pgtable_list in case the second half of
|
|
* the parent page is unallocated;
|
|
* These operations are protected with mm_context_t::lock.
|
|
*
|
|
* It is important to understand that mm_context_t::lock only protects
|
|
* mm_context_t::pgtable_list and AA bits, but not the parent page itself
|
|
* and PP bits.
|
|
*
|
|
* Releasing the parent page happens whenever the PP bit turns from 1 to 0,
|
|
* while both AA bits and the second PP bit are already unset. Then the
|
|
* parent page does not contain any 2KB-pgtable fragment anymore, and it has
|
|
* also been removed from mm_context_t::pgtable_list. It is safe to release
|
|
* the page therefore.
|
|
*
|
|
* PGSTE memory spaces use full 4KB-pgtables and do not need most of the
|
|
* logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable
|
|
* while the PP bits are never used, nor such a page is added to or removed
|
|
* from mm_context_t::pgtable_list.
|
|
*/
|
|
unsigned long *page_table_alloc(struct mm_struct *mm)
|
|
{
|
|
unsigned long *table;
|
|
struct page *page;
|
|
unsigned int mask, bit;
|
|
|
|
/* Try to get a fragment of a 4K page as a 2K page table */
|
|
if (!mm_alloc_pgste(mm)) {
|
|
table = NULL;
|
|
spin_lock_bh(&mm->context.lock);
|
|
if (!list_empty(&mm->context.pgtable_list)) {
|
|
page = list_first_entry(&mm->context.pgtable_list,
|
|
struct page, lru);
|
|
mask = atomic_read(&page->_refcount) >> 24;
|
|
/*
|
|
* The pending removal bits must also be checked.
|
|
* Failure to do so might lead to an impossible
|
|
* value of (i.e 0x13 or 0x23) written to _refcount.
|
|
* Such values violate the assumption that pending and
|
|
* allocation bits are mutually exclusive, and the rest
|
|
* of the code unrails as result. That could lead to
|
|
* a whole bunch of races and corruptions.
|
|
*/
|
|
mask = (mask | (mask >> 4)) & 0x03U;
|
|
if (mask != 0x03U) {
|
|
table = (unsigned long *) page_to_virt(page);
|
|
bit = mask & 1; /* =1 -> second 2K */
|
|
if (bit)
|
|
table += PTRS_PER_PTE;
|
|
atomic_xor_bits(&page->_refcount,
|
|
0x01U << (bit + 24));
|
|
list_del(&page->lru);
|
|
}
|
|
}
|
|
spin_unlock_bh(&mm->context.lock);
|
|
if (table)
|
|
return table;
|
|
}
|
|
/* Allocate a fresh page */
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page)
|
|
return NULL;
|
|
if (!pgtable_pte_page_ctor(page)) {
|
|
__free_page(page);
|
|
return NULL;
|
|
}
|
|
arch_set_page_dat(page, 0);
|
|
/* Initialize page table */
|
|
table = (unsigned long *) page_to_virt(page);
|
|
if (mm_alloc_pgste(mm)) {
|
|
/* Return 4K page table with PGSTEs */
|
|
atomic_xor_bits(&page->_refcount, 0x03U << 24);
|
|
memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
|
|
memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
|
|
} else {
|
|
/* Return the first 2K fragment of the page */
|
|
atomic_xor_bits(&page->_refcount, 0x01U << 24);
|
|
memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
|
|
spin_lock_bh(&mm->context.lock);
|
|
list_add(&page->lru, &mm->context.pgtable_list);
|
|
spin_unlock_bh(&mm->context.lock);
|
|
}
|
|
return table;
|
|
}
|
|
|
|
static void page_table_release_check(struct page *page, void *table,
|
|
unsigned int half, unsigned int mask)
|
|
{
|
|
char msg[128];
|
|
|
|
if (!IS_ENABLED(CONFIG_DEBUG_VM) || !mask)
|
|
return;
|
|
snprintf(msg, sizeof(msg),
|
|
"Invalid pgtable %p release half 0x%02x mask 0x%02x",
|
|
table, half, mask);
|
|
dump_page(page, msg);
|
|
}
|
|
|
|
void page_table_free(struct mm_struct *mm, unsigned long *table)
|
|
{
|
|
unsigned int mask, bit, half;
|
|
struct page *page;
|
|
|
|
page = virt_to_page(table);
|
|
if (!mm_alloc_pgste(mm)) {
|
|
/* Free 2K page table fragment of a 4K page */
|
|
bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
|
|
spin_lock_bh(&mm->context.lock);
|
|
/*
|
|
* Mark the page for delayed release. The actual release
|
|
* will happen outside of the critical section from this
|
|
* function or from __tlb_remove_table()
|
|
*/
|
|
mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
|
|
mask >>= 24;
|
|
if (mask & 0x03U)
|
|
list_add(&page->lru, &mm->context.pgtable_list);
|
|
else
|
|
list_del(&page->lru);
|
|
spin_unlock_bh(&mm->context.lock);
|
|
mask = atomic_xor_bits(&page->_refcount, 0x10U << (bit + 24));
|
|
mask >>= 24;
|
|
if (mask != 0x00U)
|
|
return;
|
|
half = 0x01U << bit;
|
|
} else {
|
|
half = 0x03U;
|
|
mask = atomic_xor_bits(&page->_refcount, 0x03U << 24);
|
|
mask >>= 24;
|
|
}
|
|
|
|
page_table_release_check(page, table, half, mask);
|
|
pgtable_pte_page_dtor(page);
|
|
__free_page(page);
|
|
}
|
|
|
|
void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
|
|
unsigned long vmaddr)
|
|
{
|
|
struct mm_struct *mm;
|
|
struct page *page;
|
|
unsigned int bit, mask;
|
|
|
|
mm = tlb->mm;
|
|
page = virt_to_page(table);
|
|
if (mm_alloc_pgste(mm)) {
|
|
gmap_unlink(mm, table, vmaddr);
|
|
table = (unsigned long *) ((unsigned long)table | 0x03U);
|
|
tlb_remove_table(tlb, table);
|
|
return;
|
|
}
|
|
bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
|
|
spin_lock_bh(&mm->context.lock);
|
|
/*
|
|
* Mark the page for delayed release. The actual release will happen
|
|
* outside of the critical section from __tlb_remove_table() or from
|
|
* page_table_free()
|
|
*/
|
|
mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
|
|
mask >>= 24;
|
|
if (mask & 0x03U)
|
|
list_add_tail(&page->lru, &mm->context.pgtable_list);
|
|
else
|
|
list_del(&page->lru);
|
|
spin_unlock_bh(&mm->context.lock);
|
|
table = (unsigned long *) ((unsigned long) table | (0x01U << bit));
|
|
tlb_remove_table(tlb, table);
|
|
}
|
|
|
|
void __tlb_remove_table(void *_table)
|
|
{
|
|
unsigned int mask = (unsigned long) _table & 0x03U, half = mask;
|
|
void *table = (void *)((unsigned long) _table ^ mask);
|
|
struct page *page = virt_to_page(table);
|
|
|
|
switch (half) {
|
|
case 0x00U: /* pmd, pud, or p4d */
|
|
free_pages((unsigned long) table, 2);
|
|
return;
|
|
case 0x01U: /* lower 2K of a 4K page table */
|
|
case 0x02U: /* higher 2K of a 4K page table */
|
|
mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24));
|
|
mask >>= 24;
|
|
if (mask != 0x00U)
|
|
return;
|
|
break;
|
|
case 0x03U: /* 4K page table with pgstes */
|
|
mask = atomic_xor_bits(&page->_refcount, 0x03U << 24);
|
|
mask >>= 24;
|
|
break;
|
|
}
|
|
|
|
page_table_release_check(page, table, half, mask);
|
|
pgtable_pte_page_dtor(page);
|
|
__free_page(page);
|
|
}
|
|
|
|
/*
|
|
* Base infrastructure required to generate basic asces, region, segment,
|
|
* and page tables that do not make use of enhanced features like EDAT1.
|
|
*/
|
|
|
|
static struct kmem_cache *base_pgt_cache;
|
|
|
|
static unsigned long *base_pgt_alloc(void)
|
|
{
|
|
unsigned long *table;
|
|
|
|
table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
|
|
if (table)
|
|
memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
|
|
return table;
|
|
}
|
|
|
|
static void base_pgt_free(unsigned long *table)
|
|
{
|
|
kmem_cache_free(base_pgt_cache, table);
|
|
}
|
|
|
|
static unsigned long *base_crst_alloc(unsigned long val)
|
|
{
|
|
unsigned long *table;
|
|
|
|
table = (unsigned long *)__get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
|
|
if (table)
|
|
crst_table_init(table, val);
|
|
return table;
|
|
}
|
|
|
|
static void base_crst_free(unsigned long *table)
|
|
{
|
|
free_pages((unsigned long)table, CRST_ALLOC_ORDER);
|
|
}
|
|
|
|
#define BASE_ADDR_END_FUNC(NAME, SIZE) \
|
|
static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \
|
|
unsigned long end) \
|
|
{ \
|
|
unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \
|
|
\
|
|
return (next - 1) < (end - 1) ? next : end; \
|
|
}
|
|
|
|
BASE_ADDR_END_FUNC(page, _PAGE_SIZE)
|
|
BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
|
|
BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
|
|
BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
|
|
BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
|
|
|
|
static inline unsigned long base_lra(unsigned long address)
|
|
{
|
|
unsigned long real;
|
|
|
|
asm volatile(
|
|
" lra %0,0(%1)\n"
|
|
: "=d" (real) : "a" (address) : "cc");
|
|
return real;
|
|
}
|
|
|
|
static int base_page_walk(unsigned long *origin, unsigned long addr,
|
|
unsigned long end, int alloc)
|
|
{
|
|
unsigned long *pte, next;
|
|
|
|
if (!alloc)
|
|
return 0;
|
|
pte = origin;
|
|
pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
|
|
do {
|
|
next = base_page_addr_end(addr, end);
|
|
*pte = base_lra(addr);
|
|
} while (pte++, addr = next, addr < end);
|
|
return 0;
|
|
}
|
|
|
|
static int base_segment_walk(unsigned long *origin, unsigned long addr,
|
|
unsigned long end, int alloc)
|
|
{
|
|
unsigned long *ste, next, *table;
|
|
int rc;
|
|
|
|
ste = origin;
|
|
ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
|
|
do {
|
|
next = base_segment_addr_end(addr, end);
|
|
if (*ste & _SEGMENT_ENTRY_INVALID) {
|
|
if (!alloc)
|
|
continue;
|
|
table = base_pgt_alloc();
|
|
if (!table)
|
|
return -ENOMEM;
|
|
*ste = __pa(table) | _SEGMENT_ENTRY;
|
|
}
|
|
table = __va(*ste & _SEGMENT_ENTRY_ORIGIN);
|
|
rc = base_page_walk(table, addr, next, alloc);
|
|
if (rc)
|
|
return rc;
|
|
if (!alloc)
|
|
base_pgt_free(table);
|
|
cond_resched();
|
|
} while (ste++, addr = next, addr < end);
|
|
return 0;
|
|
}
|
|
|
|
static int base_region3_walk(unsigned long *origin, unsigned long addr,
|
|
unsigned long end, int alloc)
|
|
{
|
|
unsigned long *rtte, next, *table;
|
|
int rc;
|
|
|
|
rtte = origin;
|
|
rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
|
|
do {
|
|
next = base_region3_addr_end(addr, end);
|
|
if (*rtte & _REGION_ENTRY_INVALID) {
|
|
if (!alloc)
|
|
continue;
|
|
table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
*rtte = __pa(table) | _REGION3_ENTRY;
|
|
}
|
|
table = __va(*rtte & _REGION_ENTRY_ORIGIN);
|
|
rc = base_segment_walk(table, addr, next, alloc);
|
|
if (rc)
|
|
return rc;
|
|
if (!alloc)
|
|
base_crst_free(table);
|
|
} while (rtte++, addr = next, addr < end);
|
|
return 0;
|
|
}
|
|
|
|
static int base_region2_walk(unsigned long *origin, unsigned long addr,
|
|
unsigned long end, int alloc)
|
|
{
|
|
unsigned long *rste, next, *table;
|
|
int rc;
|
|
|
|
rste = origin;
|
|
rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
|
|
do {
|
|
next = base_region2_addr_end(addr, end);
|
|
if (*rste & _REGION_ENTRY_INVALID) {
|
|
if (!alloc)
|
|
continue;
|
|
table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
*rste = __pa(table) | _REGION2_ENTRY;
|
|
}
|
|
table = __va(*rste & _REGION_ENTRY_ORIGIN);
|
|
rc = base_region3_walk(table, addr, next, alloc);
|
|
if (rc)
|
|
return rc;
|
|
if (!alloc)
|
|
base_crst_free(table);
|
|
} while (rste++, addr = next, addr < end);
|
|
return 0;
|
|
}
|
|
|
|
static int base_region1_walk(unsigned long *origin, unsigned long addr,
|
|
unsigned long end, int alloc)
|
|
{
|
|
unsigned long *rfte, next, *table;
|
|
int rc;
|
|
|
|
rfte = origin;
|
|
rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
|
|
do {
|
|
next = base_region1_addr_end(addr, end);
|
|
if (*rfte & _REGION_ENTRY_INVALID) {
|
|
if (!alloc)
|
|
continue;
|
|
table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
*rfte = __pa(table) | _REGION1_ENTRY;
|
|
}
|
|
table = __va(*rfte & _REGION_ENTRY_ORIGIN);
|
|
rc = base_region2_walk(table, addr, next, alloc);
|
|
if (rc)
|
|
return rc;
|
|
if (!alloc)
|
|
base_crst_free(table);
|
|
} while (rfte++, addr = next, addr < end);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* base_asce_free - free asce and tables returned from base_asce_alloc()
|
|
* @asce: asce to be freed
|
|
*
|
|
* Frees all region, segment, and page tables that were allocated with a
|
|
* corresponding base_asce_alloc() call.
|
|
*/
|
|
void base_asce_free(unsigned long asce)
|
|
{
|
|
unsigned long *table = __va(asce & _ASCE_ORIGIN);
|
|
|
|
if (!asce)
|
|
return;
|
|
switch (asce & _ASCE_TYPE_MASK) {
|
|
case _ASCE_TYPE_SEGMENT:
|
|
base_segment_walk(table, 0, _REGION3_SIZE, 0);
|
|
break;
|
|
case _ASCE_TYPE_REGION3:
|
|
base_region3_walk(table, 0, _REGION2_SIZE, 0);
|
|
break;
|
|
case _ASCE_TYPE_REGION2:
|
|
base_region2_walk(table, 0, _REGION1_SIZE, 0);
|
|
break;
|
|
case _ASCE_TYPE_REGION1:
|
|
base_region1_walk(table, 0, TASK_SIZE_MAX, 0);
|
|
break;
|
|
}
|
|
base_crst_free(table);
|
|
}
|
|
|
|
static int base_pgt_cache_init(void)
|
|
{
|
|
static DEFINE_MUTEX(base_pgt_cache_mutex);
|
|
unsigned long sz = _PAGE_TABLE_SIZE;
|
|
|
|
if (base_pgt_cache)
|
|
return 0;
|
|
mutex_lock(&base_pgt_cache_mutex);
|
|
if (!base_pgt_cache)
|
|
base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
|
|
mutex_unlock(&base_pgt_cache_mutex);
|
|
return base_pgt_cache ? 0 : -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* base_asce_alloc - create kernel mapping without enhanced DAT features
|
|
* @addr: virtual start address of kernel mapping
|
|
* @num_pages: number of consecutive pages
|
|
*
|
|
* Generate an asce, including all required region, segment and page tables,
|
|
* that can be used to access the virtual kernel mapping. The difference is
|
|
* that the returned asce does not make use of any enhanced DAT features like
|
|
* e.g. large pages. This is required for some I/O functions that pass an
|
|
* asce, like e.g. some service call requests.
|
|
*
|
|
* Note: the returned asce may NEVER be attached to any cpu. It may only be
|
|
* used for I/O requests. tlb entries that might result because the
|
|
* asce was attached to a cpu won't be cleared.
|
|
*/
|
|
unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
|
|
{
|
|
unsigned long asce, *table, end;
|
|
int rc;
|
|
|
|
if (base_pgt_cache_init())
|
|
return 0;
|
|
end = addr + num_pages * PAGE_SIZE;
|
|
if (end <= _REGION3_SIZE) {
|
|
table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
|
|
if (!table)
|
|
return 0;
|
|
rc = base_segment_walk(table, addr, end, 1);
|
|
asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
|
|
} else if (end <= _REGION2_SIZE) {
|
|
table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
|
|
if (!table)
|
|
return 0;
|
|
rc = base_region3_walk(table, addr, end, 1);
|
|
asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
|
|
} else if (end <= _REGION1_SIZE) {
|
|
table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
|
|
if (!table)
|
|
return 0;
|
|
rc = base_region2_walk(table, addr, end, 1);
|
|
asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
|
|
} else {
|
|
table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
|
|
if (!table)
|
|
return 0;
|
|
rc = base_region1_walk(table, addr, end, 1);
|
|
asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
|
|
}
|
|
if (rc) {
|
|
base_asce_free(asce);
|
|
asce = 0;
|
|
}
|
|
return asce;
|
|
}
|