All instructions copying data between kernel and user memory are tagged with either _ASM_EXTABLE_UA or _ASM_EXTABLE_CPY entries in the exception table. ex_fault_handler_type() returns EX_HANDLER_UACCESS for both of these. Recovery is only possible when the machine check was triggered on a read from user memory. In this case the same strategy for recovery applies as if the user had made the access in ring3. If the fault was in kernel memory while copying to user there is no current recovery plan. For MOV and MOVZ instructions a full decode of the instruction is done to find the source address. For MOVS instructions the source address is in the %rsi register. The function fault_in_kernel_space() determines whether the source address is kernel or user, upgrade it from "static" so it can be used here. Co-developed-by: Youquan Song <youquan.song@intel.com> Signed-off-by: Youquan Song <youquan.song@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20201006210910.21062-7-tony.luck@intel.com
493 lines
13 KiB
C
493 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* MCE grading rules.
|
|
* Copyright 2008, 2009 Intel Corporation.
|
|
*
|
|
* Author: Andi Kleen
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/init.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/mce.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/insn-eval.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Grade an mce by severity. In general the most severe ones are processed
|
|
* first. Since there are quite a lot of combinations test the bits in a
|
|
* table-driven way. The rules are simply processed in order, first
|
|
* match wins.
|
|
*
|
|
* Note this is only used for machine check exceptions, the corrected
|
|
* errors use much simpler rules. The exceptions still check for the corrected
|
|
* errors, but only to leave them alone for the CMCI handler (except for
|
|
* panic situations)
|
|
*/
|
|
|
|
enum context { IN_KERNEL = 1, IN_USER = 2, IN_KERNEL_RECOV = 3 };
|
|
enum ser { SER_REQUIRED = 1, NO_SER = 2 };
|
|
enum exception { EXCP_CONTEXT = 1, NO_EXCP = 2 };
|
|
|
|
static struct severity {
|
|
u64 mask;
|
|
u64 result;
|
|
unsigned char sev;
|
|
unsigned char mcgmask;
|
|
unsigned char mcgres;
|
|
unsigned char ser;
|
|
unsigned char context;
|
|
unsigned char excp;
|
|
unsigned char covered;
|
|
unsigned char cpu_model;
|
|
unsigned char cpu_minstepping;
|
|
unsigned char bank_lo, bank_hi;
|
|
char *msg;
|
|
} severities[] = {
|
|
#define MCESEV(s, m, c...) { .sev = MCE_ ## s ## _SEVERITY, .msg = m, ## c }
|
|
#define BANK_RANGE(l, h) .bank_lo = l, .bank_hi = h
|
|
#define MODEL_STEPPING(m, s) .cpu_model = m, .cpu_minstepping = s
|
|
#define KERNEL .context = IN_KERNEL
|
|
#define USER .context = IN_USER
|
|
#define KERNEL_RECOV .context = IN_KERNEL_RECOV
|
|
#define SER .ser = SER_REQUIRED
|
|
#define NOSER .ser = NO_SER
|
|
#define EXCP .excp = EXCP_CONTEXT
|
|
#define NOEXCP .excp = NO_EXCP
|
|
#define BITCLR(x) .mask = x, .result = 0
|
|
#define BITSET(x) .mask = x, .result = x
|
|
#define MCGMASK(x, y) .mcgmask = x, .mcgres = y
|
|
#define MASK(x, y) .mask = x, .result = y
|
|
#define MCI_UC_S (MCI_STATUS_UC|MCI_STATUS_S)
|
|
#define MCI_UC_AR (MCI_STATUS_UC|MCI_STATUS_AR)
|
|
#define MCI_UC_SAR (MCI_STATUS_UC|MCI_STATUS_S|MCI_STATUS_AR)
|
|
#define MCI_ADDR (MCI_STATUS_ADDRV|MCI_STATUS_MISCV)
|
|
|
|
MCESEV(
|
|
NO, "Invalid",
|
|
BITCLR(MCI_STATUS_VAL)
|
|
),
|
|
MCESEV(
|
|
NO, "Not enabled",
|
|
EXCP, BITCLR(MCI_STATUS_EN)
|
|
),
|
|
MCESEV(
|
|
PANIC, "Processor context corrupt",
|
|
BITSET(MCI_STATUS_PCC)
|
|
),
|
|
/* When MCIP is not set something is very confused */
|
|
MCESEV(
|
|
PANIC, "MCIP not set in MCA handler",
|
|
EXCP, MCGMASK(MCG_STATUS_MCIP, 0)
|
|
),
|
|
/* Neither return not error IP -- no chance to recover -> PANIC */
|
|
MCESEV(
|
|
PANIC, "Neither restart nor error IP",
|
|
EXCP, MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, 0)
|
|
),
|
|
MCESEV(
|
|
PANIC, "In kernel and no restart IP",
|
|
EXCP, KERNEL, MCGMASK(MCG_STATUS_RIPV, 0)
|
|
),
|
|
MCESEV(
|
|
PANIC, "In kernel and no restart IP",
|
|
EXCP, KERNEL_RECOV, MCGMASK(MCG_STATUS_RIPV, 0)
|
|
),
|
|
MCESEV(
|
|
KEEP, "Corrected error",
|
|
NOSER, BITCLR(MCI_STATUS_UC)
|
|
),
|
|
/*
|
|
* known AO MCACODs reported via MCE or CMC:
|
|
*
|
|
* SRAO could be signaled either via a machine check exception or
|
|
* CMCI with the corresponding bit S 1 or 0. So we don't need to
|
|
* check bit S for SRAO.
|
|
*/
|
|
MCESEV(
|
|
AO, "Action optional: memory scrubbing error",
|
|
SER, MASK(MCI_UC_AR|MCACOD_SCRUBMSK, MCI_STATUS_UC|MCACOD_SCRUB)
|
|
),
|
|
MCESEV(
|
|
AO, "Action optional: last level cache writeback error",
|
|
SER, MASK(MCI_UC_AR|MCACOD, MCI_STATUS_UC|MCACOD_L3WB)
|
|
),
|
|
/*
|
|
* Quirk for Skylake/Cascade Lake. Patrol scrubber may be configured
|
|
* to report uncorrected errors using CMCI with a special signature.
|
|
* UC=0, MSCOD=0x0010, MCACOD=binary(000X 0000 1100 XXXX) reported
|
|
* in one of the memory controller banks.
|
|
* Set severity to "AO" for same action as normal patrol scrub error.
|
|
*/
|
|
MCESEV(
|
|
AO, "Uncorrected Patrol Scrub Error",
|
|
SER, MASK(MCI_STATUS_UC|MCI_ADDR|0xffffeff0, MCI_ADDR|0x001000c0),
|
|
MODEL_STEPPING(INTEL_FAM6_SKYLAKE_X, 4), BANK_RANGE(13, 18)
|
|
),
|
|
|
|
/* ignore OVER for UCNA */
|
|
MCESEV(
|
|
UCNA, "Uncorrected no action required",
|
|
SER, MASK(MCI_UC_SAR, MCI_STATUS_UC)
|
|
),
|
|
MCESEV(
|
|
PANIC, "Illegal combination (UCNA with AR=1)",
|
|
SER,
|
|
MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_UC|MCI_STATUS_AR)
|
|
),
|
|
MCESEV(
|
|
KEEP, "Non signalled machine check",
|
|
SER, BITCLR(MCI_STATUS_S)
|
|
),
|
|
|
|
MCESEV(
|
|
PANIC, "Action required with lost events",
|
|
SER, BITSET(MCI_STATUS_OVER|MCI_UC_SAR)
|
|
),
|
|
|
|
/* known AR MCACODs: */
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
MCESEV(
|
|
KEEP, "Action required but unaffected thread is continuable",
|
|
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR, MCI_UC_SAR|MCI_ADDR),
|
|
MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, MCG_STATUS_RIPV)
|
|
),
|
|
MCESEV(
|
|
AR, "Action required: data load in error recoverable area of kernel",
|
|
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
|
|
KERNEL_RECOV
|
|
),
|
|
MCESEV(
|
|
AR, "Action required: data load error in a user process",
|
|
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
|
|
USER
|
|
),
|
|
MCESEV(
|
|
AR, "Action required: instruction fetch error in a user process",
|
|
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR),
|
|
USER
|
|
),
|
|
MCESEV(
|
|
PANIC, "Data load in unrecoverable area of kernel",
|
|
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
|
|
KERNEL
|
|
),
|
|
MCESEV(
|
|
PANIC, "Instruction fetch error in kernel",
|
|
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR),
|
|
KERNEL
|
|
),
|
|
#endif
|
|
MCESEV(
|
|
PANIC, "Action required: unknown MCACOD",
|
|
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_SAR)
|
|
),
|
|
|
|
MCESEV(
|
|
SOME, "Action optional: unknown MCACOD",
|
|
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_S)
|
|
),
|
|
MCESEV(
|
|
SOME, "Action optional with lost events",
|
|
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_OVER|MCI_UC_S)
|
|
),
|
|
|
|
MCESEV(
|
|
PANIC, "Overflowed uncorrected",
|
|
BITSET(MCI_STATUS_OVER|MCI_STATUS_UC)
|
|
),
|
|
MCESEV(
|
|
UC, "Uncorrected",
|
|
BITSET(MCI_STATUS_UC)
|
|
),
|
|
MCESEV(
|
|
SOME, "No match",
|
|
BITSET(0)
|
|
) /* always matches. keep at end */
|
|
};
|
|
|
|
#define mc_recoverable(mcg) (((mcg) & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) == \
|
|
(MCG_STATUS_RIPV|MCG_STATUS_EIPV))
|
|
|
|
static bool is_copy_from_user(struct pt_regs *regs)
|
|
{
|
|
u8 insn_buf[MAX_INSN_SIZE];
|
|
struct insn insn;
|
|
unsigned long addr;
|
|
|
|
if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, MAX_INSN_SIZE))
|
|
return false;
|
|
|
|
kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
|
|
insn_get_opcode(&insn);
|
|
if (!insn.opcode.got)
|
|
return false;
|
|
|
|
switch (insn.opcode.value) {
|
|
/* MOV mem,reg */
|
|
case 0x8A: case 0x8B:
|
|
/* MOVZ mem,reg */
|
|
case 0xB60F: case 0xB70F:
|
|
insn_get_modrm(&insn);
|
|
insn_get_sib(&insn);
|
|
if (!insn.modrm.got || !insn.sib.got)
|
|
return false;
|
|
addr = (unsigned long)insn_get_addr_ref(&insn, regs);
|
|
break;
|
|
/* REP MOVS */
|
|
case 0xA4: case 0xA5:
|
|
addr = regs->si;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (fault_in_kernel_space(addr))
|
|
return false;
|
|
|
|
current->mce_vaddr = (void __user *)addr;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If mcgstatus indicated that ip/cs on the stack were
|
|
* no good, then "m->cs" will be zero and we will have
|
|
* to assume the worst case (IN_KERNEL) as we actually
|
|
* have no idea what we were executing when the machine
|
|
* check hit.
|
|
* If we do have a good "m->cs" (or a faked one in the
|
|
* case we were executing in VM86 mode) we can use it to
|
|
* distinguish an exception taken in user from from one
|
|
* taken in the kernel.
|
|
*/
|
|
static int error_context(struct mce *m, struct pt_regs *regs)
|
|
{
|
|
enum handler_type t;
|
|
|
|
if ((m->cs & 3) == 3)
|
|
return IN_USER;
|
|
if (!mc_recoverable(m->mcgstatus))
|
|
return IN_KERNEL;
|
|
|
|
t = ex_get_fault_handler_type(m->ip);
|
|
if (t == EX_HANDLER_FAULT) {
|
|
m->kflags |= MCE_IN_KERNEL_RECOV;
|
|
return IN_KERNEL_RECOV;
|
|
}
|
|
if (t == EX_HANDLER_UACCESS && regs && is_copy_from_user(regs)) {
|
|
m->kflags |= MCE_IN_KERNEL_RECOV;
|
|
m->kflags |= MCE_IN_KERNEL_COPYIN;
|
|
return IN_KERNEL_RECOV;
|
|
}
|
|
|
|
return IN_KERNEL;
|
|
}
|
|
|
|
static int mce_severity_amd_smca(struct mce *m, enum context err_ctx)
|
|
{
|
|
u32 addr = MSR_AMD64_SMCA_MCx_CONFIG(m->bank);
|
|
u32 low, high;
|
|
|
|
/*
|
|
* We need to look at the following bits:
|
|
* - "succor" bit (data poisoning support), and
|
|
* - TCC bit (Task Context Corrupt)
|
|
* in MCi_STATUS to determine error severity.
|
|
*/
|
|
if (!mce_flags.succor)
|
|
return MCE_PANIC_SEVERITY;
|
|
|
|
if (rdmsr_safe(addr, &low, &high))
|
|
return MCE_PANIC_SEVERITY;
|
|
|
|
/* TCC (Task context corrupt). If set and if IN_KERNEL, panic. */
|
|
if ((low & MCI_CONFIG_MCAX) &&
|
|
(m->status & MCI_STATUS_TCC) &&
|
|
(err_ctx == IN_KERNEL))
|
|
return MCE_PANIC_SEVERITY;
|
|
|
|
/* ...otherwise invoke hwpoison handler. */
|
|
return MCE_AR_SEVERITY;
|
|
}
|
|
|
|
/*
|
|
* See AMD Error Scope Hierarchy table in a newer BKDG. For example
|
|
* 49125_15h_Models_30h-3Fh_BKDG.pdf, section "RAS Features"
|
|
*/
|
|
static int mce_severity_amd(struct mce *m, struct pt_regs *regs, int tolerant,
|
|
char **msg, bool is_excp)
|
|
{
|
|
enum context ctx = error_context(m, regs);
|
|
|
|
/* Processor Context Corrupt, no need to fumble too much, die! */
|
|
if (m->status & MCI_STATUS_PCC)
|
|
return MCE_PANIC_SEVERITY;
|
|
|
|
if (m->status & MCI_STATUS_UC) {
|
|
|
|
if (ctx == IN_KERNEL)
|
|
return MCE_PANIC_SEVERITY;
|
|
|
|
/*
|
|
* On older systems where overflow_recov flag is not present, we
|
|
* should simply panic if an error overflow occurs. If
|
|
* overflow_recov flag is present and set, then software can try
|
|
* to at least kill process to prolong system operation.
|
|
*/
|
|
if (mce_flags.overflow_recov) {
|
|
if (mce_flags.smca)
|
|
return mce_severity_amd_smca(m, ctx);
|
|
|
|
/* kill current process */
|
|
return MCE_AR_SEVERITY;
|
|
} else {
|
|
/* at least one error was not logged */
|
|
if (m->status & MCI_STATUS_OVER)
|
|
return MCE_PANIC_SEVERITY;
|
|
}
|
|
|
|
/*
|
|
* For any other case, return MCE_UC_SEVERITY so that we log the
|
|
* error and exit #MC handler.
|
|
*/
|
|
return MCE_UC_SEVERITY;
|
|
}
|
|
|
|
/*
|
|
* deferred error: poll handler catches these and adds to mce_ring so
|
|
* memory-failure can take recovery actions.
|
|
*/
|
|
if (m->status & MCI_STATUS_DEFERRED)
|
|
return MCE_DEFERRED_SEVERITY;
|
|
|
|
/*
|
|
* corrected error: poll handler catches these and passes responsibility
|
|
* of decoding the error to EDAC
|
|
*/
|
|
return MCE_KEEP_SEVERITY;
|
|
}
|
|
|
|
static int mce_severity_intel(struct mce *m, struct pt_regs *regs,
|
|
int tolerant, char **msg, bool is_excp)
|
|
{
|
|
enum exception excp = (is_excp ? EXCP_CONTEXT : NO_EXCP);
|
|
enum context ctx = error_context(m, regs);
|
|
struct severity *s;
|
|
|
|
for (s = severities;; s++) {
|
|
if ((m->status & s->mask) != s->result)
|
|
continue;
|
|
if ((m->mcgstatus & s->mcgmask) != s->mcgres)
|
|
continue;
|
|
if (s->ser == SER_REQUIRED && !mca_cfg.ser)
|
|
continue;
|
|
if (s->ser == NO_SER && mca_cfg.ser)
|
|
continue;
|
|
if (s->context && ctx != s->context)
|
|
continue;
|
|
if (s->excp && excp != s->excp)
|
|
continue;
|
|
if (s->cpu_model && boot_cpu_data.x86_model != s->cpu_model)
|
|
continue;
|
|
if (s->cpu_minstepping && boot_cpu_data.x86_stepping < s->cpu_minstepping)
|
|
continue;
|
|
if (s->bank_lo && (m->bank < s->bank_lo || m->bank > s->bank_hi))
|
|
continue;
|
|
if (msg)
|
|
*msg = s->msg;
|
|
s->covered = 1;
|
|
if (s->sev >= MCE_UC_SEVERITY && ctx == IN_KERNEL) {
|
|
if (tolerant < 1)
|
|
return MCE_PANIC_SEVERITY;
|
|
}
|
|
return s->sev;
|
|
}
|
|
}
|
|
|
|
/* Default to mce_severity_intel */
|
|
int (*mce_severity)(struct mce *m, struct pt_regs *regs, int tolerant, char **msg, bool is_excp) =
|
|
mce_severity_intel;
|
|
|
|
void __init mcheck_vendor_init_severity(void)
|
|
{
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
|
|
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
|
|
mce_severity = mce_severity_amd;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static void *s_start(struct seq_file *f, loff_t *pos)
|
|
{
|
|
if (*pos >= ARRAY_SIZE(severities))
|
|
return NULL;
|
|
return &severities[*pos];
|
|
}
|
|
|
|
static void *s_next(struct seq_file *f, void *data, loff_t *pos)
|
|
{
|
|
if (++(*pos) >= ARRAY_SIZE(severities))
|
|
return NULL;
|
|
return &severities[*pos];
|
|
}
|
|
|
|
static void s_stop(struct seq_file *f, void *data)
|
|
{
|
|
}
|
|
|
|
static int s_show(struct seq_file *f, void *data)
|
|
{
|
|
struct severity *ser = data;
|
|
seq_printf(f, "%d\t%s\n", ser->covered, ser->msg);
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations severities_seq_ops = {
|
|
.start = s_start,
|
|
.next = s_next,
|
|
.stop = s_stop,
|
|
.show = s_show,
|
|
};
|
|
|
|
static int severities_coverage_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &severities_seq_ops);
|
|
}
|
|
|
|
static ssize_t severities_coverage_write(struct file *file,
|
|
const char __user *ubuf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(severities); i++)
|
|
severities[i].covered = 0;
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations severities_coverage_fops = {
|
|
.open = severities_coverage_open,
|
|
.release = seq_release,
|
|
.read = seq_read,
|
|
.write = severities_coverage_write,
|
|
.llseek = seq_lseek,
|
|
};
|
|
|
|
static int __init severities_debugfs_init(void)
|
|
{
|
|
struct dentry *dmce;
|
|
|
|
dmce = mce_get_debugfs_dir();
|
|
|
|
debugfs_create_file("severities-coverage", 0444, dmce, NULL,
|
|
&severities_coverage_fops);
|
|
return 0;
|
|
}
|
|
late_initcall(severities_debugfs_init);
|
|
#endif /* CONFIG_DEBUG_FS */
|