5c785014b6
This fixes the "shared memory state machine" (SMSM) interrupt logic to avoid missing transitions happening while the interrupts are masked. SM6115 support is added to smd-rpm and rpmpd. The Qualcomm SCM firmware driver is once again made possible to compile and load as a kernel module. An out-of-bounds error related to the cooling devices of the AOSS driver is corrected. The binding is converted to YAML and a generic compatible is introduced to reduce the driver churn. The GENI wrapper gains a helper function used in I2C and SPI for switching the serial engine hardware to use the wrapper's DMA-engine. Lastly it contains a number of cleanups and smaller fixes for rpmhpd, socinfo, CPR, mdt_loader and the GENI DT binding. -----BEGIN PGP SIGNATURE----- iQJPBAABCAA5FiEEBd4DzF816k8JZtUlCx85Pw2ZrcUFAmEa29wbHGJqb3JuLmFu ZGVyc3NvbkBsaW5hcm8ub3JnAAoJEAsfOT8Nma3FFnMP/A2Od7JYhdjH7sfc3i3B 0zws88lT7XTo9KSMpLFrQg1Qzp3ELDMfVhS2CpsekZn1g7s6RGnbQrh2Mac9Yh4z +7e4YLhoMxEkdbEVvbVRIX4parFWD/KxUdkyXM8gKZntJzOFl6VY5V8aKi+7IO+/ CdWHvELDVXMe2LkBd3lKE1AlS2MjkohXpFKgRwkY4r2nVXwqYTdkfJvXdGdhECGr ld4ZIvIR6ERLmVpGvTxdU5W0z2xsLTbPYDPSv6mPkWqDYSOyXV3zABV1fSkH28ot wIoesHyI3vL4/LNIlHn+tcWj1Ou8hSzxZmxfq7cdKbkfwPLCWE5D8+HEO4kmbFiF 5Dds+oxvKSFpf/wppK7bUSEd9Q+dKsrFt2mdWy/sYRe1EaEv5sFBgE0rV3+c6ykL tptUEFlaB2si7PKSpKje8czHn4Akuc6BwT6xovZZ72K8CNz9D71etSkoNLLXa54d bJibw2eNTT1EOACC/FPBO9AS11Icm6wszn/dcaSwaSPGQ6cR3lvAwHqzDFMGHp+x L+iojgnZoHykFhQjGuGrI3yTHOpp0MCNxRoN7DlFwm7KLKVHqeqg+xHXtV9sJer8 iAhY/uepLRxc1oC5Z+Ejx1gABmKycXtzKQ9ecwTclrk66ampWQBlv5+Bxd5w/hux ZR96mJPmpk1WKOX3FAgdeaaP =88qN -----END PGP SIGNATURE----- gpgsig -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmEdDA4ACgkQmmx57+YA GNmAmw//WfdprWl2SJGfyojhDeeUq6ZeNesMFBabFss7Ar++szhyFSu3bqlyH6WC ZgPOZOJakKQq2EGKNm7RuEgeR8sEUs9czetNO8AqVy1szlhqnUKhG0OO+uLqRLQn Hvf1fc+uG3xeaFP0/Q/4fuG+GL1fnmXIJWl0nZFUGfWyQ3mxxm5fLq1DM27KAzP1 eKMqtCh3F0qHMWZTJd084LO2XXyUTVVBbXAQKX/IQmH6+BK3Q2YMToo/919HCnZs XfgcdKuB/fOfi1n+PgGNODdTJ/Uy10WkSALZHlzKfr77AUCs9+RWxdkogCmACJBs IhNoZ/6D6a6kCIEuaEjHtNsMAVoG0bYpaB9vFLhJgF4wfdCd+DuOXkCy9B7vI4/8 7/SKArKYrG1sPlhDGFaWZjWEFBCGycDDsHQ4T2ecZ5d3f+Kuimgx7NLYhKRHPI+9 8QVJwNbIGrNXjwIn6S0AeqDLoXIzMmAbNvuX1lFz0OyEkbgDYPSuUPmKYoKh0VL5 +aTPYANbKxfF7nIPxfN580yjQGZmJmctyhkqnavEB6HdNySO2/oM5F2uGRVdVKnv 5HaPLqWZf2PffjAg+bU3O3bBlYRdIpEaKaa1eHFIMTgK7nlcvFESWWtwg+IBKdqY JI3Kkg5PP3jxqxybzgFPE298vI1G6/so2A12HBi0dl28XheK+wM= =dS58 -----END PGP SIGNATURE----- Merge tag 'qcom-drivers-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/qcom/linux into arm/drivers Qualcomm driver updates for v5.15 This fixes the "shared memory state machine" (SMSM) interrupt logic to avoid missing transitions happening while the interrupts are masked. SM6115 support is added to smd-rpm and rpmpd. The Qualcomm SCM firmware driver is once again made possible to compile and load as a kernel module. An out-of-bounds error related to the cooling devices of the AOSS driver is corrected. The binding is converted to YAML and a generic compatible is introduced to reduce the driver churn. The GENI wrapper gains a helper function used in I2C and SPI for switching the serial engine hardware to use the wrapper's DMA-engine. Lastly it contains a number of cleanups and smaller fixes for rpmhpd, socinfo, CPR, mdt_loader and the GENI DT binding. * tag 'qcom-drivers-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/qcom/linux: soc: qcom: smsm: Fix missed interrupts if state changes while masked soc: qcom: smsm: Implement support for get_irqchip_state soc: qcom: mdt_loader: be more informative on errors dt-bindings: qcom: geni-se: document iommus soc: qcom: smd-rpm: Add SM6115 compatible soc: qcom: geni: Add support for gpi dma soc: qcom: geni: move GENI_IF_DISABLE_RO to common header PM: AVS: qcom-cpr: Use nvmem_cell_read_variable_le_u32() drivers: soc: qcom: rpmpd: Add SM6115 RPM Power Domains dt-bindings: power: rpmpd: Add SM6115 to rpmpd binding dt-bindings: soc: qcom: smd-rpm: Add SM6115 compatible soc: qcom: aoss: Fix the out of bound usage of cooling_devs firmware: qcom_scm: Allow qcom_scm driver to be loadable as a permenent module soc: qcom: socinfo: Don't print anything if nothing found soc: qcom: rpmhpd: Use corner in power_off soc: qcom: aoss: Add generic compatible dt-bindings: soc: qcom: aoss: Convert to YAML dt-bindings: soc: qcom: aoss: Add SC8180X and generic compatible firmware: qcom_scm: remove a duplicative condition firmware: qcom_scm: Mark string array const Link: https://lore.kernel.org/r/20210816214840.581244-1-bjorn.andersson@linaro.org Signed-off-by: Arnd Bergmann <arnd@arndb.de>
279 lines
9.9 KiB
Plaintext
279 lines
9.9 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0-only
|
|
#
|
|
# For a description of the syntax of this configuration file,
|
|
# see Documentation/kbuild/kconfig-language.rst.
|
|
#
|
|
|
|
menu "Firmware Drivers"
|
|
|
|
source "drivers/firmware/arm_scmi/Kconfig"
|
|
|
|
config ARM_SCPI_PROTOCOL
|
|
tristate "ARM System Control and Power Interface (SCPI) Message Protocol"
|
|
depends on ARM || ARM64 || COMPILE_TEST
|
|
depends on MAILBOX
|
|
help
|
|
System Control and Power Interface (SCPI) Message Protocol is
|
|
defined for the purpose of communication between the Application
|
|
Cores(AP) and the System Control Processor(SCP). The MHU peripheral
|
|
provides a mechanism for inter-processor communication between SCP
|
|
and AP.
|
|
|
|
SCP controls most of the power management on the Application
|
|
Processors. It offers control and management of: the core/cluster
|
|
power states, various power domain DVFS including the core/cluster,
|
|
certain system clocks configuration, thermal sensors and many
|
|
others.
|
|
|
|
This protocol library provides interface for all the client drivers
|
|
making use of the features offered by the SCP.
|
|
|
|
config ARM_SCPI_POWER_DOMAIN
|
|
tristate "SCPI power domain driver"
|
|
depends on ARM_SCPI_PROTOCOL || (COMPILE_TEST && OF)
|
|
default y
|
|
select PM_GENERIC_DOMAINS if PM
|
|
help
|
|
This enables support for the SCPI power domains which can be
|
|
enabled or disabled via the SCP firmware
|
|
|
|
config ARM_SDE_INTERFACE
|
|
bool "ARM Software Delegated Exception Interface (SDEI)"
|
|
depends on ARM64
|
|
help
|
|
The Software Delegated Exception Interface (SDEI) is an ARM
|
|
standard for registering callbacks from the platform firmware
|
|
into the OS. This is typically used to implement RAS notifications.
|
|
|
|
config EDD
|
|
tristate "BIOS Enhanced Disk Drive calls determine boot disk"
|
|
depends on X86
|
|
help
|
|
Say Y or M here if you want to enable BIOS Enhanced Disk Drive
|
|
Services real mode BIOS calls to determine which disk
|
|
BIOS tries boot from. This information is then exported via sysfs.
|
|
|
|
This option is experimental and is known to fail to boot on some
|
|
obscure configurations. Most disk controller BIOS vendors do
|
|
not yet implement this feature.
|
|
|
|
config EDD_OFF
|
|
bool "Sets default behavior for EDD detection to off"
|
|
depends on EDD
|
|
default n
|
|
help
|
|
Say Y if you want EDD disabled by default, even though it is compiled into the
|
|
kernel. Say N if you want EDD enabled by default. EDD can be dynamically set
|
|
using the kernel parameter 'edd={on|skipmbr|off}'.
|
|
|
|
config FIRMWARE_MEMMAP
|
|
bool "Add firmware-provided memory map to sysfs" if EXPERT
|
|
default X86
|
|
help
|
|
Add the firmware-provided (unmodified) memory map to /sys/firmware/memmap.
|
|
That memory map is used for example by kexec to set up parameter area
|
|
for the next kernel, but can also be used for debugging purposes.
|
|
|
|
See also Documentation/ABI/testing/sysfs-firmware-memmap.
|
|
|
|
config EFI_PCDP
|
|
bool "Console device selection via EFI PCDP or HCDP table"
|
|
depends on ACPI && EFI && IA64
|
|
default y if IA64
|
|
help
|
|
If your firmware supplies the PCDP table, and you want to
|
|
automatically use the primary console device it describes
|
|
as the Linux console, say Y here.
|
|
|
|
If your firmware supplies the HCDP table, and you want to
|
|
use the first serial port it describes as the Linux console,
|
|
say Y here. If your EFI ConOut path contains only a UART
|
|
device, it will become the console automatically. Otherwise,
|
|
you must specify the "console=hcdp" kernel boot argument.
|
|
|
|
Neither the PCDP nor the HCDP affects naming of serial devices,
|
|
so a serial console may be /dev/ttyS0, /dev/ttyS1, etc, depending
|
|
on how the driver discovers devices.
|
|
|
|
You must also enable the appropriate drivers (serial, VGA, etc.)
|
|
|
|
See DIG64_HCDPv20_042804.pdf available from
|
|
<http://www.dig64.org/specifications/>
|
|
|
|
config DMIID
|
|
bool "Export DMI identification via sysfs to userspace"
|
|
depends on DMI
|
|
default y
|
|
help
|
|
Say Y here if you want to query SMBIOS/DMI system identification
|
|
information from userspace through /sys/class/dmi/id/ or if you want
|
|
DMI-based module auto-loading.
|
|
|
|
config DMI_SYSFS
|
|
tristate "DMI table support in sysfs"
|
|
depends on SYSFS && DMI
|
|
default n
|
|
help
|
|
Say Y or M here to enable the exporting of the raw DMI table
|
|
data via sysfs. This is useful for consuming the data without
|
|
requiring any access to /dev/mem at all. Tables are found
|
|
under /sys/firmware/dmi when this option is enabled and
|
|
loaded.
|
|
|
|
config DMI_SCAN_MACHINE_NON_EFI_FALLBACK
|
|
bool
|
|
|
|
config ISCSI_IBFT_FIND
|
|
bool "iSCSI Boot Firmware Table Attributes"
|
|
depends on X86 && ISCSI_IBFT
|
|
default n
|
|
help
|
|
This option enables the kernel to find the region of memory
|
|
in which the ISCSI Boot Firmware Table (iBFT) resides. This
|
|
is necessary for iSCSI Boot Firmware Table Attributes module to work
|
|
properly.
|
|
|
|
config ISCSI_IBFT
|
|
tristate "iSCSI Boot Firmware Table Attributes module"
|
|
select ISCSI_BOOT_SYSFS
|
|
select ISCSI_IBFT_FIND if X86
|
|
depends on ACPI && SCSI && SCSI_LOWLEVEL
|
|
default n
|
|
help
|
|
This option enables support for detection and exposing of iSCSI
|
|
Boot Firmware Table (iBFT) via sysfs to userspace. If you wish to
|
|
detect iSCSI boot parameters dynamically during system boot, say Y.
|
|
Otherwise, say N.
|
|
|
|
config RASPBERRYPI_FIRMWARE
|
|
tristate "Raspberry Pi Firmware Driver"
|
|
depends on BCM2835_MBOX
|
|
help
|
|
This option enables support for communicating with the firmware on the
|
|
Raspberry Pi.
|
|
|
|
config FW_CFG_SYSFS
|
|
tristate "QEMU fw_cfg device support in sysfs"
|
|
depends on SYSFS && (ARM || ARM64 || PARISC || PPC_PMAC || SPARC || X86)
|
|
depends on HAS_IOPORT_MAP
|
|
default n
|
|
help
|
|
Say Y or M here to enable the exporting of the QEMU firmware
|
|
configuration (fw_cfg) file entries via sysfs. Entries are
|
|
found under /sys/firmware/fw_cfg when this option is enabled
|
|
and loaded.
|
|
|
|
config FW_CFG_SYSFS_CMDLINE
|
|
bool "QEMU fw_cfg device parameter parsing"
|
|
depends on FW_CFG_SYSFS
|
|
help
|
|
Allow the qemu_fw_cfg device to be initialized via the kernel
|
|
command line or using a module parameter.
|
|
WARNING: Using incorrect parameters (base address in particular)
|
|
may crash your system.
|
|
|
|
config INTEL_STRATIX10_SERVICE
|
|
tristate "Intel Stratix10 Service Layer"
|
|
depends on ARCH_INTEL_SOCFPGA && ARM64 && HAVE_ARM_SMCCC
|
|
default n
|
|
help
|
|
Intel Stratix10 service layer runs at privileged exception level,
|
|
interfaces with the service providers (FPGA manager is one of them)
|
|
and manages secure monitor call to communicate with secure monitor
|
|
software at secure monitor exception level.
|
|
|
|
Say Y here if you want Stratix10 service layer support.
|
|
|
|
config INTEL_STRATIX10_RSU
|
|
tristate "Intel Stratix10 Remote System Update"
|
|
depends on INTEL_STRATIX10_SERVICE
|
|
help
|
|
The Intel Remote System Update (RSU) driver exposes interfaces
|
|
access through the Intel Service Layer to user space via sysfs
|
|
device attribute nodes. The RSU interfaces report/control some of
|
|
the optional RSU features of the Stratix 10 SoC FPGA.
|
|
|
|
The RSU provides a way for customers to update the boot
|
|
configuration of a Stratix 10 SoC device with significantly reduced
|
|
risk of corrupting the bitstream storage and bricking the system.
|
|
|
|
Enable RSU support if you are using an Intel SoC FPGA with the RSU
|
|
feature enabled and you want Linux user space control.
|
|
|
|
Say Y here if you want Intel RSU support.
|
|
|
|
config QCOM_SCM
|
|
tristate "Qcom SCM driver"
|
|
depends on ARM || ARM64
|
|
depends on HAVE_ARM_SMCCC
|
|
select RESET_CONTROLLER
|
|
|
|
config QCOM_SCM_DOWNLOAD_MODE_DEFAULT
|
|
bool "Qualcomm download mode enabled by default"
|
|
depends on QCOM_SCM
|
|
help
|
|
A device with "download mode" enabled will upon an unexpected
|
|
warm-restart enter a special debug mode that allows the user to
|
|
"download" memory content over USB for offline postmortem analysis.
|
|
The feature can be enabled/disabled on the kernel command line.
|
|
|
|
Say Y here to enable "download mode" by default.
|
|
|
|
config TI_SCI_PROTOCOL
|
|
tristate "TI System Control Interface (TISCI) Message Protocol"
|
|
depends on TI_MESSAGE_MANAGER
|
|
help
|
|
TI System Control Interface (TISCI) Message Protocol is used to manage
|
|
compute systems such as ARM, DSP etc with the system controller in
|
|
complex System on Chip(SoC) such as those found on certain keystone
|
|
generation SoC from TI.
|
|
|
|
System controller provides various facilities including power
|
|
management function support.
|
|
|
|
This protocol library is used by client drivers to use the features
|
|
provided by the system controller.
|
|
|
|
config TRUSTED_FOUNDATIONS
|
|
bool "Trusted Foundations secure monitor support"
|
|
depends on ARM && CPU_V7
|
|
help
|
|
Some devices (including most early Tegra-based consumer devices on
|
|
the market) are booted with the Trusted Foundations secure monitor
|
|
active, requiring some core operations to be performed by the secure
|
|
monitor instead of the kernel.
|
|
|
|
This option allows the kernel to invoke the secure monitor whenever
|
|
required on devices using Trusted Foundations. See the functions and
|
|
comments in linux/firmware/trusted_foundations.h or the device tree
|
|
bindings for "tlm,trusted-foundations" for details on how to use it.
|
|
|
|
Choose N if you don't know what this is about.
|
|
|
|
config TURRIS_MOX_RWTM
|
|
tristate "Turris Mox rWTM secure firmware driver"
|
|
depends on ARCH_MVEBU || COMPILE_TEST
|
|
depends on HAS_DMA && OF
|
|
depends on MAILBOX
|
|
select HW_RANDOM
|
|
select ARMADA_37XX_RWTM_MBOX
|
|
help
|
|
This driver communicates with the firmware on the Cortex-M3 secure
|
|
processor of the Turris Mox router. Enable if you are building for
|
|
Turris Mox, and you will be able to read the device serial number and
|
|
other manufacturing data and also utilize the Entropy Bit Generator
|
|
for hardware random number generation.
|
|
|
|
source "drivers/firmware/arm_ffa/Kconfig"
|
|
source "drivers/firmware/broadcom/Kconfig"
|
|
source "drivers/firmware/google/Kconfig"
|
|
source "drivers/firmware/efi/Kconfig"
|
|
source "drivers/firmware/imx/Kconfig"
|
|
source "drivers/firmware/meson/Kconfig"
|
|
source "drivers/firmware/psci/Kconfig"
|
|
source "drivers/firmware/smccc/Kconfig"
|
|
source "drivers/firmware/tegra/Kconfig"
|
|
source "drivers/firmware/xilinx/Kconfig"
|
|
|
|
endmenu
|