f17e53388e
Handle errors when trying to map the IRQ for the DMA channels. The main motivation here is to be able to handle probe deferral. E.g. when using DT overlays it is possible that the DMA controller is probed before interrupt controller, depending on the order in the DT. In order to support this switch from irq_of_parse_and_map() to of_irq_get(), which internally does the same, but it will return EPROBE_DEFER when the interrupt controller is not yet available. As a result other errors, such as an invalid IRQ specification, or missing IRQ are also properly handled. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Reviewed-by: Radhey Shyam Pandey <radhey.shyam.pandey@xilinx.com> Link: https://lore.kernel.org/r/20211208114212.234130-1-lars@metafoo.de Signed-off-by: Vinod Koul <vkoul@kernel.org>
3345 lines
92 KiB
C
3345 lines
92 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* DMA driver for Xilinx Video DMA Engine
|
|
*
|
|
* Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved.
|
|
*
|
|
* Based on the Freescale DMA driver.
|
|
*
|
|
* Description:
|
|
* The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP
|
|
* core that provides high-bandwidth direct memory access between memory
|
|
* and AXI4-Stream type video target peripherals. The core provides efficient
|
|
* two dimensional DMA operations with independent asynchronous read (S2MM)
|
|
* and write (MM2S) channel operation. It can be configured to have either
|
|
* one channel or two channels. If configured as two channels, one is to
|
|
* transmit to the video device (MM2S) and another is to receive from the
|
|
* video device (S2MM). Initialization, status, interrupt and management
|
|
* registers are accessed through an AXI4-Lite slave interface.
|
|
*
|
|
* The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core that
|
|
* provides high-bandwidth one dimensional direct memory access between memory
|
|
* and AXI4-Stream target peripherals. It supports one receive and one
|
|
* transmit channel, both of them optional at synthesis time.
|
|
*
|
|
* The AXI CDMA, is a soft IP, which provides high-bandwidth Direct Memory
|
|
* Access (DMA) between a memory-mapped source address and a memory-mapped
|
|
* destination address.
|
|
*
|
|
* The AXI Multichannel Direct Memory Access (AXI MCDMA) core is a soft
|
|
* Xilinx IP that provides high-bandwidth direct memory access between
|
|
* memory and AXI4-Stream target peripherals. It provides scatter gather
|
|
* (SG) interface with multiple channels independent configuration support.
|
|
*
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/dma/xilinx_dma.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
|
|
#include "../dmaengine.h"
|
|
|
|
/* Register/Descriptor Offsets */
|
|
#define XILINX_DMA_MM2S_CTRL_OFFSET 0x0000
|
|
#define XILINX_DMA_S2MM_CTRL_OFFSET 0x0030
|
|
#define XILINX_VDMA_MM2S_DESC_OFFSET 0x0050
|
|
#define XILINX_VDMA_S2MM_DESC_OFFSET 0x00a0
|
|
|
|
/* Control Registers */
|
|
#define XILINX_DMA_REG_DMACR 0x0000
|
|
#define XILINX_DMA_DMACR_DELAY_MAX 0xff
|
|
#define XILINX_DMA_DMACR_DELAY_SHIFT 24
|
|
#define XILINX_DMA_DMACR_FRAME_COUNT_MAX 0xff
|
|
#define XILINX_DMA_DMACR_FRAME_COUNT_SHIFT 16
|
|
#define XILINX_DMA_DMACR_ERR_IRQ BIT(14)
|
|
#define XILINX_DMA_DMACR_DLY_CNT_IRQ BIT(13)
|
|
#define XILINX_DMA_DMACR_FRM_CNT_IRQ BIT(12)
|
|
#define XILINX_DMA_DMACR_MASTER_SHIFT 8
|
|
#define XILINX_DMA_DMACR_FSYNCSRC_SHIFT 5
|
|
#define XILINX_DMA_DMACR_FRAMECNT_EN BIT(4)
|
|
#define XILINX_DMA_DMACR_GENLOCK_EN BIT(3)
|
|
#define XILINX_DMA_DMACR_RESET BIT(2)
|
|
#define XILINX_DMA_DMACR_CIRC_EN BIT(1)
|
|
#define XILINX_DMA_DMACR_RUNSTOP BIT(0)
|
|
#define XILINX_DMA_DMACR_FSYNCSRC_MASK GENMASK(6, 5)
|
|
#define XILINX_DMA_DMACR_DELAY_MASK GENMASK(31, 24)
|
|
#define XILINX_DMA_DMACR_FRAME_COUNT_MASK GENMASK(23, 16)
|
|
#define XILINX_DMA_DMACR_MASTER_MASK GENMASK(11, 8)
|
|
|
|
#define XILINX_DMA_REG_DMASR 0x0004
|
|
#define XILINX_DMA_DMASR_EOL_LATE_ERR BIT(15)
|
|
#define XILINX_DMA_DMASR_ERR_IRQ BIT(14)
|
|
#define XILINX_DMA_DMASR_DLY_CNT_IRQ BIT(13)
|
|
#define XILINX_DMA_DMASR_FRM_CNT_IRQ BIT(12)
|
|
#define XILINX_DMA_DMASR_SOF_LATE_ERR BIT(11)
|
|
#define XILINX_DMA_DMASR_SG_DEC_ERR BIT(10)
|
|
#define XILINX_DMA_DMASR_SG_SLV_ERR BIT(9)
|
|
#define XILINX_DMA_DMASR_EOF_EARLY_ERR BIT(8)
|
|
#define XILINX_DMA_DMASR_SOF_EARLY_ERR BIT(7)
|
|
#define XILINX_DMA_DMASR_DMA_DEC_ERR BIT(6)
|
|
#define XILINX_DMA_DMASR_DMA_SLAVE_ERR BIT(5)
|
|
#define XILINX_DMA_DMASR_DMA_INT_ERR BIT(4)
|
|
#define XILINX_DMA_DMASR_SG_MASK BIT(3)
|
|
#define XILINX_DMA_DMASR_IDLE BIT(1)
|
|
#define XILINX_DMA_DMASR_HALTED BIT(0)
|
|
#define XILINX_DMA_DMASR_DELAY_MASK GENMASK(31, 24)
|
|
#define XILINX_DMA_DMASR_FRAME_COUNT_MASK GENMASK(23, 16)
|
|
|
|
#define XILINX_DMA_REG_CURDESC 0x0008
|
|
#define XILINX_DMA_REG_TAILDESC 0x0010
|
|
#define XILINX_DMA_REG_REG_INDEX 0x0014
|
|
#define XILINX_DMA_REG_FRMSTORE 0x0018
|
|
#define XILINX_DMA_REG_THRESHOLD 0x001c
|
|
#define XILINX_DMA_REG_FRMPTR_STS 0x0024
|
|
#define XILINX_DMA_REG_PARK_PTR 0x0028
|
|
#define XILINX_DMA_PARK_PTR_WR_REF_SHIFT 8
|
|
#define XILINX_DMA_PARK_PTR_WR_REF_MASK GENMASK(12, 8)
|
|
#define XILINX_DMA_PARK_PTR_RD_REF_SHIFT 0
|
|
#define XILINX_DMA_PARK_PTR_RD_REF_MASK GENMASK(4, 0)
|
|
#define XILINX_DMA_REG_VDMA_VERSION 0x002c
|
|
|
|
/* Register Direct Mode Registers */
|
|
#define XILINX_DMA_REG_VSIZE 0x0000
|
|
#define XILINX_DMA_REG_HSIZE 0x0004
|
|
|
|
#define XILINX_DMA_REG_FRMDLY_STRIDE 0x0008
|
|
#define XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT 24
|
|
#define XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT 0
|
|
|
|
#define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n))
|
|
#define XILINX_VDMA_REG_START_ADDRESS_64(n) (0x000c + 8 * (n))
|
|
|
|
#define XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP 0x00ec
|
|
#define XILINX_VDMA_ENABLE_VERTICAL_FLIP BIT(0)
|
|
|
|
/* HW specific definitions */
|
|
#define XILINX_MCDMA_MAX_CHANS_PER_DEVICE 0x20
|
|
#define XILINX_DMA_MAX_CHANS_PER_DEVICE 0x2
|
|
#define XILINX_CDMA_MAX_CHANS_PER_DEVICE 0x1
|
|
|
|
#define XILINX_DMA_DMAXR_ALL_IRQ_MASK \
|
|
(XILINX_DMA_DMASR_FRM_CNT_IRQ | \
|
|
XILINX_DMA_DMASR_DLY_CNT_IRQ | \
|
|
XILINX_DMA_DMASR_ERR_IRQ)
|
|
|
|
#define XILINX_DMA_DMASR_ALL_ERR_MASK \
|
|
(XILINX_DMA_DMASR_EOL_LATE_ERR | \
|
|
XILINX_DMA_DMASR_SOF_LATE_ERR | \
|
|
XILINX_DMA_DMASR_SG_DEC_ERR | \
|
|
XILINX_DMA_DMASR_SG_SLV_ERR | \
|
|
XILINX_DMA_DMASR_EOF_EARLY_ERR | \
|
|
XILINX_DMA_DMASR_SOF_EARLY_ERR | \
|
|
XILINX_DMA_DMASR_DMA_DEC_ERR | \
|
|
XILINX_DMA_DMASR_DMA_SLAVE_ERR | \
|
|
XILINX_DMA_DMASR_DMA_INT_ERR)
|
|
|
|
/*
|
|
* Recoverable errors are DMA Internal error, SOF Early, EOF Early
|
|
* and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC
|
|
* is enabled in the h/w system.
|
|
*/
|
|
#define XILINX_DMA_DMASR_ERR_RECOVER_MASK \
|
|
(XILINX_DMA_DMASR_SOF_LATE_ERR | \
|
|
XILINX_DMA_DMASR_EOF_EARLY_ERR | \
|
|
XILINX_DMA_DMASR_SOF_EARLY_ERR | \
|
|
XILINX_DMA_DMASR_DMA_INT_ERR)
|
|
|
|
/* Axi VDMA Flush on Fsync bits */
|
|
#define XILINX_DMA_FLUSH_S2MM 3
|
|
#define XILINX_DMA_FLUSH_MM2S 2
|
|
#define XILINX_DMA_FLUSH_BOTH 1
|
|
|
|
/* Delay loop counter to prevent hardware failure */
|
|
#define XILINX_DMA_LOOP_COUNT 1000000
|
|
|
|
/* AXI DMA Specific Registers/Offsets */
|
|
#define XILINX_DMA_REG_SRCDSTADDR 0x18
|
|
#define XILINX_DMA_REG_BTT 0x28
|
|
|
|
/* AXI DMA Specific Masks/Bit fields */
|
|
#define XILINX_DMA_MAX_TRANS_LEN_MIN 8
|
|
#define XILINX_DMA_MAX_TRANS_LEN_MAX 23
|
|
#define XILINX_DMA_V2_MAX_TRANS_LEN_MAX 26
|
|
#define XILINX_DMA_CR_COALESCE_MAX GENMASK(23, 16)
|
|
#define XILINX_DMA_CR_CYCLIC_BD_EN_MASK BIT(4)
|
|
#define XILINX_DMA_CR_COALESCE_SHIFT 16
|
|
#define XILINX_DMA_BD_SOP BIT(27)
|
|
#define XILINX_DMA_BD_EOP BIT(26)
|
|
#define XILINX_DMA_COALESCE_MAX 255
|
|
#define XILINX_DMA_NUM_DESCS 255
|
|
#define XILINX_DMA_NUM_APP_WORDS 5
|
|
|
|
/* AXI CDMA Specific Registers/Offsets */
|
|
#define XILINX_CDMA_REG_SRCADDR 0x18
|
|
#define XILINX_CDMA_REG_DSTADDR 0x20
|
|
|
|
/* AXI CDMA Specific Masks */
|
|
#define XILINX_CDMA_CR_SGMODE BIT(3)
|
|
|
|
#define xilinx_prep_dma_addr_t(addr) \
|
|
((dma_addr_t)((u64)addr##_##msb << 32 | (addr)))
|
|
|
|
/* AXI MCDMA Specific Registers/Offsets */
|
|
#define XILINX_MCDMA_MM2S_CTRL_OFFSET 0x0000
|
|
#define XILINX_MCDMA_S2MM_CTRL_OFFSET 0x0500
|
|
#define XILINX_MCDMA_CHEN_OFFSET 0x0008
|
|
#define XILINX_MCDMA_CH_ERR_OFFSET 0x0010
|
|
#define XILINX_MCDMA_RXINT_SER_OFFSET 0x0020
|
|
#define XILINX_MCDMA_TXINT_SER_OFFSET 0x0028
|
|
#define XILINX_MCDMA_CHAN_CR_OFFSET(x) (0x40 + (x) * 0x40)
|
|
#define XILINX_MCDMA_CHAN_SR_OFFSET(x) (0x44 + (x) * 0x40)
|
|
#define XILINX_MCDMA_CHAN_CDESC_OFFSET(x) (0x48 + (x) * 0x40)
|
|
#define XILINX_MCDMA_CHAN_TDESC_OFFSET(x) (0x50 + (x) * 0x40)
|
|
|
|
/* AXI MCDMA Specific Masks/Shifts */
|
|
#define XILINX_MCDMA_COALESCE_SHIFT 16
|
|
#define XILINX_MCDMA_COALESCE_MAX 24
|
|
#define XILINX_MCDMA_IRQ_ALL_MASK GENMASK(7, 5)
|
|
#define XILINX_MCDMA_COALESCE_MASK GENMASK(23, 16)
|
|
#define XILINX_MCDMA_CR_RUNSTOP_MASK BIT(0)
|
|
#define XILINX_MCDMA_IRQ_IOC_MASK BIT(5)
|
|
#define XILINX_MCDMA_IRQ_DELAY_MASK BIT(6)
|
|
#define XILINX_MCDMA_IRQ_ERR_MASK BIT(7)
|
|
#define XILINX_MCDMA_BD_EOP BIT(30)
|
|
#define XILINX_MCDMA_BD_SOP BIT(31)
|
|
|
|
/**
|
|
* struct xilinx_vdma_desc_hw - Hardware Descriptor
|
|
* @next_desc: Next Descriptor Pointer @0x00
|
|
* @pad1: Reserved @0x04
|
|
* @buf_addr: Buffer address @0x08
|
|
* @buf_addr_msb: MSB of Buffer address @0x0C
|
|
* @vsize: Vertical Size @0x10
|
|
* @hsize: Horizontal Size @0x14
|
|
* @stride: Number of bytes between the first
|
|
* pixels of each horizontal line @0x18
|
|
*/
|
|
struct xilinx_vdma_desc_hw {
|
|
u32 next_desc;
|
|
u32 pad1;
|
|
u32 buf_addr;
|
|
u32 buf_addr_msb;
|
|
u32 vsize;
|
|
u32 hsize;
|
|
u32 stride;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_axidma_desc_hw - Hardware Descriptor for AXI DMA
|
|
* @next_desc: Next Descriptor Pointer @0x00
|
|
* @next_desc_msb: MSB of Next Descriptor Pointer @0x04
|
|
* @buf_addr: Buffer address @0x08
|
|
* @buf_addr_msb: MSB of Buffer address @0x0C
|
|
* @reserved1: Reserved @0x10
|
|
* @reserved2: Reserved @0x14
|
|
* @control: Control field @0x18
|
|
* @status: Status field @0x1C
|
|
* @app: APP Fields @0x20 - 0x30
|
|
*/
|
|
struct xilinx_axidma_desc_hw {
|
|
u32 next_desc;
|
|
u32 next_desc_msb;
|
|
u32 buf_addr;
|
|
u32 buf_addr_msb;
|
|
u32 reserved1;
|
|
u32 reserved2;
|
|
u32 control;
|
|
u32 status;
|
|
u32 app[XILINX_DMA_NUM_APP_WORDS];
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_aximcdma_desc_hw - Hardware Descriptor for AXI MCDMA
|
|
* @next_desc: Next Descriptor Pointer @0x00
|
|
* @next_desc_msb: MSB of Next Descriptor Pointer @0x04
|
|
* @buf_addr: Buffer address @0x08
|
|
* @buf_addr_msb: MSB of Buffer address @0x0C
|
|
* @rsvd: Reserved field @0x10
|
|
* @control: Control Information field @0x14
|
|
* @status: Status field @0x18
|
|
* @sideband_status: Status of sideband signals @0x1C
|
|
* @app: APP Fields @0x20 - 0x30
|
|
*/
|
|
struct xilinx_aximcdma_desc_hw {
|
|
u32 next_desc;
|
|
u32 next_desc_msb;
|
|
u32 buf_addr;
|
|
u32 buf_addr_msb;
|
|
u32 rsvd;
|
|
u32 control;
|
|
u32 status;
|
|
u32 sideband_status;
|
|
u32 app[XILINX_DMA_NUM_APP_WORDS];
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_cdma_desc_hw - Hardware Descriptor
|
|
* @next_desc: Next Descriptor Pointer @0x00
|
|
* @next_desc_msb: Next Descriptor Pointer MSB @0x04
|
|
* @src_addr: Source address @0x08
|
|
* @src_addr_msb: Source address MSB @0x0C
|
|
* @dest_addr: Destination address @0x10
|
|
* @dest_addr_msb: Destination address MSB @0x14
|
|
* @control: Control field @0x18
|
|
* @status: Status field @0x1C
|
|
*/
|
|
struct xilinx_cdma_desc_hw {
|
|
u32 next_desc;
|
|
u32 next_desc_msb;
|
|
u32 src_addr;
|
|
u32 src_addr_msb;
|
|
u32 dest_addr;
|
|
u32 dest_addr_msb;
|
|
u32 control;
|
|
u32 status;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_vdma_tx_segment - Descriptor segment
|
|
* @hw: Hardware descriptor
|
|
* @node: Node in the descriptor segments list
|
|
* @phys: Physical address of segment
|
|
*/
|
|
struct xilinx_vdma_tx_segment {
|
|
struct xilinx_vdma_desc_hw hw;
|
|
struct list_head node;
|
|
dma_addr_t phys;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_axidma_tx_segment - Descriptor segment
|
|
* @hw: Hardware descriptor
|
|
* @node: Node in the descriptor segments list
|
|
* @phys: Physical address of segment
|
|
*/
|
|
struct xilinx_axidma_tx_segment {
|
|
struct xilinx_axidma_desc_hw hw;
|
|
struct list_head node;
|
|
dma_addr_t phys;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_aximcdma_tx_segment - Descriptor segment
|
|
* @hw: Hardware descriptor
|
|
* @node: Node in the descriptor segments list
|
|
* @phys: Physical address of segment
|
|
*/
|
|
struct xilinx_aximcdma_tx_segment {
|
|
struct xilinx_aximcdma_desc_hw hw;
|
|
struct list_head node;
|
|
dma_addr_t phys;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_cdma_tx_segment - Descriptor segment
|
|
* @hw: Hardware descriptor
|
|
* @node: Node in the descriptor segments list
|
|
* @phys: Physical address of segment
|
|
*/
|
|
struct xilinx_cdma_tx_segment {
|
|
struct xilinx_cdma_desc_hw hw;
|
|
struct list_head node;
|
|
dma_addr_t phys;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_dma_tx_descriptor - Per Transaction structure
|
|
* @async_tx: Async transaction descriptor
|
|
* @segments: TX segments list
|
|
* @node: Node in the channel descriptors list
|
|
* @cyclic: Check for cyclic transfers.
|
|
* @err: Whether the descriptor has an error.
|
|
* @residue: Residue of the completed descriptor
|
|
*/
|
|
struct xilinx_dma_tx_descriptor {
|
|
struct dma_async_tx_descriptor async_tx;
|
|
struct list_head segments;
|
|
struct list_head node;
|
|
bool cyclic;
|
|
bool err;
|
|
u32 residue;
|
|
};
|
|
|
|
/**
|
|
* struct xilinx_dma_chan - Driver specific DMA channel structure
|
|
* @xdev: Driver specific device structure
|
|
* @ctrl_offset: Control registers offset
|
|
* @desc_offset: TX descriptor registers offset
|
|
* @lock: Descriptor operation lock
|
|
* @pending_list: Descriptors waiting
|
|
* @active_list: Descriptors ready to submit
|
|
* @done_list: Complete descriptors
|
|
* @free_seg_list: Free descriptors
|
|
* @common: DMA common channel
|
|
* @desc_pool: Descriptors pool
|
|
* @dev: The dma device
|
|
* @irq: Channel IRQ
|
|
* @id: Channel ID
|
|
* @direction: Transfer direction
|
|
* @num_frms: Number of frames
|
|
* @has_sg: Support scatter transfers
|
|
* @cyclic: Check for cyclic transfers.
|
|
* @genlock: Support genlock mode
|
|
* @err: Channel has errors
|
|
* @idle: Check for channel idle
|
|
* @terminating: Check for channel being synchronized by user
|
|
* @tasklet: Cleanup work after irq
|
|
* @config: Device configuration info
|
|
* @flush_on_fsync: Flush on Frame sync
|
|
* @desc_pendingcount: Descriptor pending count
|
|
* @ext_addr: Indicates 64 bit addressing is supported by dma channel
|
|
* @desc_submitcount: Descriptor h/w submitted count
|
|
* @seg_v: Statically allocated segments base
|
|
* @seg_mv: Statically allocated segments base for MCDMA
|
|
* @seg_p: Physical allocated segments base
|
|
* @cyclic_seg_v: Statically allocated segment base for cyclic transfers
|
|
* @cyclic_seg_p: Physical allocated segments base for cyclic dma
|
|
* @start_transfer: Differentiate b/w DMA IP's transfer
|
|
* @stop_transfer: Differentiate b/w DMA IP's quiesce
|
|
* @tdest: TDEST value for mcdma
|
|
* @has_vflip: S2MM vertical flip
|
|
*/
|
|
struct xilinx_dma_chan {
|
|
struct xilinx_dma_device *xdev;
|
|
u32 ctrl_offset;
|
|
u32 desc_offset;
|
|
spinlock_t lock;
|
|
struct list_head pending_list;
|
|
struct list_head active_list;
|
|
struct list_head done_list;
|
|
struct list_head free_seg_list;
|
|
struct dma_chan common;
|
|
struct dma_pool *desc_pool;
|
|
struct device *dev;
|
|
int irq;
|
|
int id;
|
|
enum dma_transfer_direction direction;
|
|
int num_frms;
|
|
bool has_sg;
|
|
bool cyclic;
|
|
bool genlock;
|
|
bool err;
|
|
bool idle;
|
|
bool terminating;
|
|
struct tasklet_struct tasklet;
|
|
struct xilinx_vdma_config config;
|
|
bool flush_on_fsync;
|
|
u32 desc_pendingcount;
|
|
bool ext_addr;
|
|
u32 desc_submitcount;
|
|
struct xilinx_axidma_tx_segment *seg_v;
|
|
struct xilinx_aximcdma_tx_segment *seg_mv;
|
|
dma_addr_t seg_p;
|
|
struct xilinx_axidma_tx_segment *cyclic_seg_v;
|
|
dma_addr_t cyclic_seg_p;
|
|
void (*start_transfer)(struct xilinx_dma_chan *chan);
|
|
int (*stop_transfer)(struct xilinx_dma_chan *chan);
|
|
u16 tdest;
|
|
bool has_vflip;
|
|
};
|
|
|
|
/**
|
|
* enum xdma_ip_type - DMA IP type.
|
|
*
|
|
* @XDMA_TYPE_AXIDMA: Axi dma ip.
|
|
* @XDMA_TYPE_CDMA: Axi cdma ip.
|
|
* @XDMA_TYPE_VDMA: Axi vdma ip.
|
|
* @XDMA_TYPE_AXIMCDMA: Axi MCDMA ip.
|
|
*
|
|
*/
|
|
enum xdma_ip_type {
|
|
XDMA_TYPE_AXIDMA = 0,
|
|
XDMA_TYPE_CDMA,
|
|
XDMA_TYPE_VDMA,
|
|
XDMA_TYPE_AXIMCDMA
|
|
};
|
|
|
|
struct xilinx_dma_config {
|
|
enum xdma_ip_type dmatype;
|
|
int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk,
|
|
struct clk **tx_clk, struct clk **txs_clk,
|
|
struct clk **rx_clk, struct clk **rxs_clk);
|
|
irqreturn_t (*irq_handler)(int irq, void *data);
|
|
const int max_channels;
|
|
};
|
|
|
|
/**
|
|
* struct xilinx_dma_device - DMA device structure
|
|
* @regs: I/O mapped base address
|
|
* @dev: Device Structure
|
|
* @common: DMA device structure
|
|
* @chan: Driver specific DMA channel
|
|
* @flush_on_fsync: Flush on frame sync
|
|
* @ext_addr: Indicates 64 bit addressing is supported by dma device
|
|
* @pdev: Platform device structure pointer
|
|
* @dma_config: DMA config structure
|
|
* @axi_clk: DMA Axi4-lite interace clock
|
|
* @tx_clk: DMA mm2s clock
|
|
* @txs_clk: DMA mm2s stream clock
|
|
* @rx_clk: DMA s2mm clock
|
|
* @rxs_clk: DMA s2mm stream clock
|
|
* @s2mm_chan_id: DMA s2mm channel identifier
|
|
* @mm2s_chan_id: DMA mm2s channel identifier
|
|
* @max_buffer_len: Max buffer length
|
|
*/
|
|
struct xilinx_dma_device {
|
|
void __iomem *regs;
|
|
struct device *dev;
|
|
struct dma_device common;
|
|
struct xilinx_dma_chan *chan[XILINX_MCDMA_MAX_CHANS_PER_DEVICE];
|
|
u32 flush_on_fsync;
|
|
bool ext_addr;
|
|
struct platform_device *pdev;
|
|
const struct xilinx_dma_config *dma_config;
|
|
struct clk *axi_clk;
|
|
struct clk *tx_clk;
|
|
struct clk *txs_clk;
|
|
struct clk *rx_clk;
|
|
struct clk *rxs_clk;
|
|
u32 s2mm_chan_id;
|
|
u32 mm2s_chan_id;
|
|
u32 max_buffer_len;
|
|
};
|
|
|
|
/* Macros */
|
|
#define to_xilinx_chan(chan) \
|
|
container_of(chan, struct xilinx_dma_chan, common)
|
|
#define to_dma_tx_descriptor(tx) \
|
|
container_of(tx, struct xilinx_dma_tx_descriptor, async_tx)
|
|
#define xilinx_dma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \
|
|
readl_poll_timeout_atomic(chan->xdev->regs + chan->ctrl_offset + reg, \
|
|
val, cond, delay_us, timeout_us)
|
|
|
|
/* IO accessors */
|
|
static inline u32 dma_read(struct xilinx_dma_chan *chan, u32 reg)
|
|
{
|
|
return ioread32(chan->xdev->regs + reg);
|
|
}
|
|
|
|
static inline void dma_write(struct xilinx_dma_chan *chan, u32 reg, u32 value)
|
|
{
|
|
iowrite32(value, chan->xdev->regs + reg);
|
|
}
|
|
|
|
static inline void vdma_desc_write(struct xilinx_dma_chan *chan, u32 reg,
|
|
u32 value)
|
|
{
|
|
dma_write(chan, chan->desc_offset + reg, value);
|
|
}
|
|
|
|
static inline u32 dma_ctrl_read(struct xilinx_dma_chan *chan, u32 reg)
|
|
{
|
|
return dma_read(chan, chan->ctrl_offset + reg);
|
|
}
|
|
|
|
static inline void dma_ctrl_write(struct xilinx_dma_chan *chan, u32 reg,
|
|
u32 value)
|
|
{
|
|
dma_write(chan, chan->ctrl_offset + reg, value);
|
|
}
|
|
|
|
static inline void dma_ctrl_clr(struct xilinx_dma_chan *chan, u32 reg,
|
|
u32 clr)
|
|
{
|
|
dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) & ~clr);
|
|
}
|
|
|
|
static inline void dma_ctrl_set(struct xilinx_dma_chan *chan, u32 reg,
|
|
u32 set)
|
|
{
|
|
dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) | set);
|
|
}
|
|
|
|
/**
|
|
* vdma_desc_write_64 - 64-bit descriptor write
|
|
* @chan: Driver specific VDMA channel
|
|
* @reg: Register to write
|
|
* @value_lsb: lower address of the descriptor.
|
|
* @value_msb: upper address of the descriptor.
|
|
*
|
|
* Since vdma driver is trying to write to a register offset which is not a
|
|
* multiple of 64 bits(ex : 0x5c), we are writing as two separate 32 bits
|
|
* instead of a single 64 bit register write.
|
|
*/
|
|
static inline void vdma_desc_write_64(struct xilinx_dma_chan *chan, u32 reg,
|
|
u32 value_lsb, u32 value_msb)
|
|
{
|
|
/* Write the lsb 32 bits*/
|
|
writel(value_lsb, chan->xdev->regs + chan->desc_offset + reg);
|
|
|
|
/* Write the msb 32 bits */
|
|
writel(value_msb, chan->xdev->regs + chan->desc_offset + reg + 4);
|
|
}
|
|
|
|
static inline void dma_writeq(struct xilinx_dma_chan *chan, u32 reg, u64 value)
|
|
{
|
|
lo_hi_writeq(value, chan->xdev->regs + chan->ctrl_offset + reg);
|
|
}
|
|
|
|
static inline void xilinx_write(struct xilinx_dma_chan *chan, u32 reg,
|
|
dma_addr_t addr)
|
|
{
|
|
if (chan->ext_addr)
|
|
dma_writeq(chan, reg, addr);
|
|
else
|
|
dma_ctrl_write(chan, reg, addr);
|
|
}
|
|
|
|
static inline void xilinx_axidma_buf(struct xilinx_dma_chan *chan,
|
|
struct xilinx_axidma_desc_hw *hw,
|
|
dma_addr_t buf_addr, size_t sg_used,
|
|
size_t period_len)
|
|
{
|
|
if (chan->ext_addr) {
|
|
hw->buf_addr = lower_32_bits(buf_addr + sg_used + period_len);
|
|
hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used +
|
|
period_len);
|
|
} else {
|
|
hw->buf_addr = buf_addr + sg_used + period_len;
|
|
}
|
|
}
|
|
|
|
static inline void xilinx_aximcdma_buf(struct xilinx_dma_chan *chan,
|
|
struct xilinx_aximcdma_desc_hw *hw,
|
|
dma_addr_t buf_addr, size_t sg_used)
|
|
{
|
|
if (chan->ext_addr) {
|
|
hw->buf_addr = lower_32_bits(buf_addr + sg_used);
|
|
hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used);
|
|
} else {
|
|
hw->buf_addr = buf_addr + sg_used;
|
|
}
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Descriptors and segments alloc and free
|
|
*/
|
|
|
|
/**
|
|
* xilinx_vdma_alloc_tx_segment - Allocate transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: The allocated segment on success and NULL on failure.
|
|
*/
|
|
static struct xilinx_vdma_tx_segment *
|
|
xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_vdma_tx_segment *segment;
|
|
dma_addr_t phys;
|
|
|
|
segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
|
|
if (!segment)
|
|
return NULL;
|
|
|
|
segment->phys = phys;
|
|
|
|
return segment;
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_alloc_tx_segment - Allocate transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: The allocated segment on success and NULL on failure.
|
|
*/
|
|
static struct xilinx_cdma_tx_segment *
|
|
xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_cdma_tx_segment *segment;
|
|
dma_addr_t phys;
|
|
|
|
segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
|
|
if (!segment)
|
|
return NULL;
|
|
|
|
segment->phys = phys;
|
|
|
|
return segment;
|
|
}
|
|
|
|
/**
|
|
* xilinx_axidma_alloc_tx_segment - Allocate transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: The allocated segment on success and NULL on failure.
|
|
*/
|
|
static struct xilinx_axidma_tx_segment *
|
|
xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_axidma_tx_segment *segment = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
if (!list_empty(&chan->free_seg_list)) {
|
|
segment = list_first_entry(&chan->free_seg_list,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
list_del(&segment->node);
|
|
}
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
if (!segment)
|
|
dev_dbg(chan->dev, "Could not find free tx segment\n");
|
|
|
|
return segment;
|
|
}
|
|
|
|
/**
|
|
* xilinx_aximcdma_alloc_tx_segment - Allocate transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: The allocated segment on success and NULL on failure.
|
|
*/
|
|
static struct xilinx_aximcdma_tx_segment *
|
|
xilinx_aximcdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_aximcdma_tx_segment *segment = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
if (!list_empty(&chan->free_seg_list)) {
|
|
segment = list_first_entry(&chan->free_seg_list,
|
|
struct xilinx_aximcdma_tx_segment,
|
|
node);
|
|
list_del(&segment->node);
|
|
}
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
return segment;
|
|
}
|
|
|
|
static void xilinx_dma_clean_hw_desc(struct xilinx_axidma_desc_hw *hw)
|
|
{
|
|
u32 next_desc = hw->next_desc;
|
|
u32 next_desc_msb = hw->next_desc_msb;
|
|
|
|
memset(hw, 0, sizeof(struct xilinx_axidma_desc_hw));
|
|
|
|
hw->next_desc = next_desc;
|
|
hw->next_desc_msb = next_desc_msb;
|
|
}
|
|
|
|
static void xilinx_mcdma_clean_hw_desc(struct xilinx_aximcdma_desc_hw *hw)
|
|
{
|
|
u32 next_desc = hw->next_desc;
|
|
u32 next_desc_msb = hw->next_desc_msb;
|
|
|
|
memset(hw, 0, sizeof(struct xilinx_aximcdma_desc_hw));
|
|
|
|
hw->next_desc = next_desc;
|
|
hw->next_desc_msb = next_desc_msb;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_free_tx_segment - Free transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
* @segment: DMA transaction segment
|
|
*/
|
|
static void xilinx_dma_free_tx_segment(struct xilinx_dma_chan *chan,
|
|
struct xilinx_axidma_tx_segment *segment)
|
|
{
|
|
xilinx_dma_clean_hw_desc(&segment->hw);
|
|
|
|
list_add_tail(&segment->node, &chan->free_seg_list);
|
|
}
|
|
|
|
/**
|
|
* xilinx_mcdma_free_tx_segment - Free transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
* @segment: DMA transaction segment
|
|
*/
|
|
static void xilinx_mcdma_free_tx_segment(struct xilinx_dma_chan *chan,
|
|
struct xilinx_aximcdma_tx_segment *
|
|
segment)
|
|
{
|
|
xilinx_mcdma_clean_hw_desc(&segment->hw);
|
|
|
|
list_add_tail(&segment->node, &chan->free_seg_list);
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_free_tx_segment - Free transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
* @segment: DMA transaction segment
|
|
*/
|
|
static void xilinx_cdma_free_tx_segment(struct xilinx_dma_chan *chan,
|
|
struct xilinx_cdma_tx_segment *segment)
|
|
{
|
|
dma_pool_free(chan->desc_pool, segment, segment->phys);
|
|
}
|
|
|
|
/**
|
|
* xilinx_vdma_free_tx_segment - Free transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
* @segment: DMA transaction segment
|
|
*/
|
|
static void xilinx_vdma_free_tx_segment(struct xilinx_dma_chan *chan,
|
|
struct xilinx_vdma_tx_segment *segment)
|
|
{
|
|
dma_pool_free(chan->desc_pool, segment, segment->phys);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_alloc_tx_descriptor - Allocate transaction descriptor
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: The allocated descriptor on success and NULL on failure.
|
|
*/
|
|
static struct xilinx_dma_tx_descriptor *
|
|
xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
|
|
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&desc->segments);
|
|
|
|
return desc;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_free_tx_descriptor - Free transaction descriptor
|
|
* @chan: Driver specific DMA channel
|
|
* @desc: DMA transaction descriptor
|
|
*/
|
|
static void
|
|
xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan *chan,
|
|
struct xilinx_dma_tx_descriptor *desc)
|
|
{
|
|
struct xilinx_vdma_tx_segment *segment, *next;
|
|
struct xilinx_cdma_tx_segment *cdma_segment, *cdma_next;
|
|
struct xilinx_axidma_tx_segment *axidma_segment, *axidma_next;
|
|
struct xilinx_aximcdma_tx_segment *aximcdma_segment, *aximcdma_next;
|
|
|
|
if (!desc)
|
|
return;
|
|
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
list_for_each_entry_safe(segment, next, &desc->segments, node) {
|
|
list_del(&segment->node);
|
|
xilinx_vdma_free_tx_segment(chan, segment);
|
|
}
|
|
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
list_for_each_entry_safe(cdma_segment, cdma_next,
|
|
&desc->segments, node) {
|
|
list_del(&cdma_segment->node);
|
|
xilinx_cdma_free_tx_segment(chan, cdma_segment);
|
|
}
|
|
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
list_for_each_entry_safe(axidma_segment, axidma_next,
|
|
&desc->segments, node) {
|
|
list_del(&axidma_segment->node);
|
|
xilinx_dma_free_tx_segment(chan, axidma_segment);
|
|
}
|
|
} else {
|
|
list_for_each_entry_safe(aximcdma_segment, aximcdma_next,
|
|
&desc->segments, node) {
|
|
list_del(&aximcdma_segment->node);
|
|
xilinx_mcdma_free_tx_segment(chan, aximcdma_segment);
|
|
}
|
|
}
|
|
|
|
kfree(desc);
|
|
}
|
|
|
|
/* Required functions */
|
|
|
|
/**
|
|
* xilinx_dma_free_desc_list - Free descriptors list
|
|
* @chan: Driver specific DMA channel
|
|
* @list: List to parse and delete the descriptor
|
|
*/
|
|
static void xilinx_dma_free_desc_list(struct xilinx_dma_chan *chan,
|
|
struct list_head *list)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *desc, *next;
|
|
|
|
list_for_each_entry_safe(desc, next, list, node) {
|
|
list_del(&desc->node);
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_free_descriptors - Free channel descriptors
|
|
* @chan: Driver specific DMA channel
|
|
*/
|
|
static void xilinx_dma_free_descriptors(struct xilinx_dma_chan *chan)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
|
|
xilinx_dma_free_desc_list(chan, &chan->pending_list);
|
|
xilinx_dma_free_desc_list(chan, &chan->done_list);
|
|
xilinx_dma_free_desc_list(chan, &chan->active_list);
|
|
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_free_chan_resources - Free channel resources
|
|
* @dchan: DMA channel
|
|
*/
|
|
static void xilinx_dma_free_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(chan->dev, "Free all channel resources.\n");
|
|
|
|
xilinx_dma_free_descriptors(chan);
|
|
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
INIT_LIST_HEAD(&chan->free_seg_list);
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
/* Free memory that is allocated for BD */
|
|
dma_free_coherent(chan->dev, sizeof(*chan->seg_v) *
|
|
XILINX_DMA_NUM_DESCS, chan->seg_v,
|
|
chan->seg_p);
|
|
|
|
/* Free Memory that is allocated for cyclic DMA Mode */
|
|
dma_free_coherent(chan->dev, sizeof(*chan->cyclic_seg_v),
|
|
chan->cyclic_seg_v, chan->cyclic_seg_p);
|
|
}
|
|
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) {
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
INIT_LIST_HEAD(&chan->free_seg_list);
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
/* Free memory that is allocated for BD */
|
|
dma_free_coherent(chan->dev, sizeof(*chan->seg_mv) *
|
|
XILINX_DMA_NUM_DESCS, chan->seg_mv,
|
|
chan->seg_p);
|
|
}
|
|
|
|
if (chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA &&
|
|
chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIMCDMA) {
|
|
dma_pool_destroy(chan->desc_pool);
|
|
chan->desc_pool = NULL;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_get_residue - Compute residue for a given descriptor
|
|
* @chan: Driver specific dma channel
|
|
* @desc: dma transaction descriptor
|
|
*
|
|
* Return: The number of residue bytes for the descriptor.
|
|
*/
|
|
static u32 xilinx_dma_get_residue(struct xilinx_dma_chan *chan,
|
|
struct xilinx_dma_tx_descriptor *desc)
|
|
{
|
|
struct xilinx_cdma_tx_segment *cdma_seg;
|
|
struct xilinx_axidma_tx_segment *axidma_seg;
|
|
struct xilinx_aximcdma_tx_segment *aximcdma_seg;
|
|
struct xilinx_cdma_desc_hw *cdma_hw;
|
|
struct xilinx_axidma_desc_hw *axidma_hw;
|
|
struct xilinx_aximcdma_desc_hw *aximcdma_hw;
|
|
struct list_head *entry;
|
|
u32 residue = 0;
|
|
|
|
list_for_each(entry, &desc->segments) {
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
cdma_seg = list_entry(entry,
|
|
struct xilinx_cdma_tx_segment,
|
|
node);
|
|
cdma_hw = &cdma_seg->hw;
|
|
residue += (cdma_hw->control - cdma_hw->status) &
|
|
chan->xdev->max_buffer_len;
|
|
} else if (chan->xdev->dma_config->dmatype ==
|
|
XDMA_TYPE_AXIDMA) {
|
|
axidma_seg = list_entry(entry,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
axidma_hw = &axidma_seg->hw;
|
|
residue += (axidma_hw->control - axidma_hw->status) &
|
|
chan->xdev->max_buffer_len;
|
|
} else {
|
|
aximcdma_seg =
|
|
list_entry(entry,
|
|
struct xilinx_aximcdma_tx_segment,
|
|
node);
|
|
aximcdma_hw = &aximcdma_seg->hw;
|
|
residue +=
|
|
(aximcdma_hw->control - aximcdma_hw->status) &
|
|
chan->xdev->max_buffer_len;
|
|
}
|
|
}
|
|
|
|
return residue;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_chan_handle_cyclic - Cyclic dma callback
|
|
* @chan: Driver specific dma channel
|
|
* @desc: dma transaction descriptor
|
|
* @flags: flags for spin lock
|
|
*/
|
|
static void xilinx_dma_chan_handle_cyclic(struct xilinx_dma_chan *chan,
|
|
struct xilinx_dma_tx_descriptor *desc,
|
|
unsigned long *flags)
|
|
{
|
|
struct dmaengine_desc_callback cb;
|
|
|
|
dmaengine_desc_get_callback(&desc->async_tx, &cb);
|
|
if (dmaengine_desc_callback_valid(&cb)) {
|
|
spin_unlock_irqrestore(&chan->lock, *flags);
|
|
dmaengine_desc_callback_invoke(&cb, NULL);
|
|
spin_lock_irqsave(&chan->lock, *flags);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_chan_desc_cleanup - Clean channel descriptors
|
|
* @chan: Driver specific DMA channel
|
|
*/
|
|
static void xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *desc, *next;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
|
|
list_for_each_entry_safe(desc, next, &chan->done_list, node) {
|
|
struct dmaengine_result result;
|
|
|
|
if (desc->cyclic) {
|
|
xilinx_dma_chan_handle_cyclic(chan, desc, &flags);
|
|
break;
|
|
}
|
|
|
|
/* Remove from the list of running transactions */
|
|
list_del(&desc->node);
|
|
|
|
if (unlikely(desc->err)) {
|
|
if (chan->direction == DMA_DEV_TO_MEM)
|
|
result.result = DMA_TRANS_READ_FAILED;
|
|
else
|
|
result.result = DMA_TRANS_WRITE_FAILED;
|
|
} else {
|
|
result.result = DMA_TRANS_NOERROR;
|
|
}
|
|
|
|
result.residue = desc->residue;
|
|
|
|
/* Run the link descriptor callback function */
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
dmaengine_desc_get_callback_invoke(&desc->async_tx, &result);
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
|
|
/* Run any dependencies, then free the descriptor */
|
|
dma_run_dependencies(&desc->async_tx);
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
|
|
/*
|
|
* While we ran a callback the user called a terminate function,
|
|
* which takes care of cleaning up any remaining descriptors
|
|
*/
|
|
if (chan->terminating)
|
|
break;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_do_tasklet - Schedule completion tasklet
|
|
* @t: Pointer to the Xilinx DMA channel structure
|
|
*/
|
|
static void xilinx_dma_do_tasklet(struct tasklet_struct *t)
|
|
{
|
|
struct xilinx_dma_chan *chan = from_tasklet(chan, t, tasklet);
|
|
|
|
xilinx_dma_chan_desc_cleanup(chan);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_alloc_chan_resources - Allocate channel resources
|
|
* @dchan: DMA channel
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
int i;
|
|
|
|
/* Has this channel already been allocated? */
|
|
if (chan->desc_pool)
|
|
return 0;
|
|
|
|
/*
|
|
* We need the descriptor to be aligned to 64bytes
|
|
* for meeting Xilinx VDMA specification requirement.
|
|
*/
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
/* Allocate the buffer descriptors. */
|
|
chan->seg_v = dma_alloc_coherent(chan->dev,
|
|
sizeof(*chan->seg_v) * XILINX_DMA_NUM_DESCS,
|
|
&chan->seg_p, GFP_KERNEL);
|
|
if (!chan->seg_v) {
|
|
dev_err(chan->dev,
|
|
"unable to allocate channel %d descriptors\n",
|
|
chan->id);
|
|
return -ENOMEM;
|
|
}
|
|
/*
|
|
* For cyclic DMA mode we need to program the tail Descriptor
|
|
* register with a value which is not a part of the BD chain
|
|
* so allocating a desc segment during channel allocation for
|
|
* programming tail descriptor.
|
|
*/
|
|
chan->cyclic_seg_v = dma_alloc_coherent(chan->dev,
|
|
sizeof(*chan->cyclic_seg_v),
|
|
&chan->cyclic_seg_p,
|
|
GFP_KERNEL);
|
|
if (!chan->cyclic_seg_v) {
|
|
dev_err(chan->dev,
|
|
"unable to allocate desc segment for cyclic DMA\n");
|
|
dma_free_coherent(chan->dev, sizeof(*chan->seg_v) *
|
|
XILINX_DMA_NUM_DESCS, chan->seg_v,
|
|
chan->seg_p);
|
|
return -ENOMEM;
|
|
}
|
|
chan->cyclic_seg_v->phys = chan->cyclic_seg_p;
|
|
|
|
for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) {
|
|
chan->seg_v[i].hw.next_desc =
|
|
lower_32_bits(chan->seg_p + sizeof(*chan->seg_v) *
|
|
((i + 1) % XILINX_DMA_NUM_DESCS));
|
|
chan->seg_v[i].hw.next_desc_msb =
|
|
upper_32_bits(chan->seg_p + sizeof(*chan->seg_v) *
|
|
((i + 1) % XILINX_DMA_NUM_DESCS));
|
|
chan->seg_v[i].phys = chan->seg_p +
|
|
sizeof(*chan->seg_v) * i;
|
|
list_add_tail(&chan->seg_v[i].node,
|
|
&chan->free_seg_list);
|
|
}
|
|
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) {
|
|
/* Allocate the buffer descriptors. */
|
|
chan->seg_mv = dma_alloc_coherent(chan->dev,
|
|
sizeof(*chan->seg_mv) *
|
|
XILINX_DMA_NUM_DESCS,
|
|
&chan->seg_p, GFP_KERNEL);
|
|
if (!chan->seg_mv) {
|
|
dev_err(chan->dev,
|
|
"unable to allocate channel %d descriptors\n",
|
|
chan->id);
|
|
return -ENOMEM;
|
|
}
|
|
for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) {
|
|
chan->seg_mv[i].hw.next_desc =
|
|
lower_32_bits(chan->seg_p + sizeof(*chan->seg_mv) *
|
|
((i + 1) % XILINX_DMA_NUM_DESCS));
|
|
chan->seg_mv[i].hw.next_desc_msb =
|
|
upper_32_bits(chan->seg_p + sizeof(*chan->seg_mv) *
|
|
((i + 1) % XILINX_DMA_NUM_DESCS));
|
|
chan->seg_mv[i].phys = chan->seg_p +
|
|
sizeof(*chan->seg_mv) * i;
|
|
list_add_tail(&chan->seg_mv[i].node,
|
|
&chan->free_seg_list);
|
|
}
|
|
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
chan->desc_pool = dma_pool_create("xilinx_cdma_desc_pool",
|
|
chan->dev,
|
|
sizeof(struct xilinx_cdma_tx_segment),
|
|
__alignof__(struct xilinx_cdma_tx_segment),
|
|
0);
|
|
} else {
|
|
chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool",
|
|
chan->dev,
|
|
sizeof(struct xilinx_vdma_tx_segment),
|
|
__alignof__(struct xilinx_vdma_tx_segment),
|
|
0);
|
|
}
|
|
|
|
if (!chan->desc_pool &&
|
|
((chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA) &&
|
|
chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIMCDMA)) {
|
|
dev_err(chan->dev,
|
|
"unable to allocate channel %d descriptor pool\n",
|
|
chan->id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dma_cookie_init(dchan);
|
|
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
/* For AXI DMA resetting once channel will reset the
|
|
* other channel as well so enable the interrupts here.
|
|
*/
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_DMA_DMAXR_ALL_IRQ_MASK);
|
|
}
|
|
|
|
if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg)
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_CDMA_CR_SGMODE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_calc_copysize - Calculate the amount of data to copy
|
|
* @chan: Driver specific DMA channel
|
|
* @size: Total data that needs to be copied
|
|
* @done: Amount of data that has been already copied
|
|
*
|
|
* Return: Amount of data that has to be copied
|
|
*/
|
|
static int xilinx_dma_calc_copysize(struct xilinx_dma_chan *chan,
|
|
int size, int done)
|
|
{
|
|
size_t copy;
|
|
|
|
copy = min_t(size_t, size - done,
|
|
chan->xdev->max_buffer_len);
|
|
|
|
if ((copy + done < size) &&
|
|
chan->xdev->common.copy_align) {
|
|
/*
|
|
* If this is not the last descriptor, make sure
|
|
* the next one will be properly aligned
|
|
*/
|
|
copy = rounddown(copy,
|
|
(1 << chan->xdev->common.copy_align));
|
|
}
|
|
return copy;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_tx_status - Get DMA transaction status
|
|
* @dchan: DMA channel
|
|
* @cookie: Transaction identifier
|
|
* @txstate: Transaction state
|
|
*
|
|
* Return: DMA transaction status
|
|
*/
|
|
static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
enum dma_status ret;
|
|
unsigned long flags;
|
|
u32 residue = 0;
|
|
|
|
ret = dma_cookie_status(dchan, cookie, txstate);
|
|
if (ret == DMA_COMPLETE || !txstate)
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
if (!list_empty(&chan->active_list)) {
|
|
desc = list_last_entry(&chan->active_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
/*
|
|
* VDMA and simple mode do not support residue reporting, so the
|
|
* residue field will always be 0.
|
|
*/
|
|
if (chan->has_sg && chan->xdev->dma_config->dmatype != XDMA_TYPE_VDMA)
|
|
residue = xilinx_dma_get_residue(chan, desc);
|
|
}
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
dma_set_residue(txstate, residue);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_stop_transfer - Halt DMA channel
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_stop_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
u32 val;
|
|
|
|
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
|
|
|
|
/* Wait for the hardware to halt */
|
|
return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
|
|
val & XILINX_DMA_DMASR_HALTED, 0,
|
|
XILINX_DMA_LOOP_COUNT);
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_stop_transfer - Wait for the current transfer to complete
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_cdma_stop_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
u32 val;
|
|
|
|
return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
|
|
val & XILINX_DMA_DMASR_IDLE, 0,
|
|
XILINX_DMA_LOOP_COUNT);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_start - Start DMA channel
|
|
* @chan: Driver specific DMA channel
|
|
*/
|
|
static void xilinx_dma_start(struct xilinx_dma_chan *chan)
|
|
{
|
|
int err;
|
|
u32 val;
|
|
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
|
|
|
|
/* Wait for the hardware to start */
|
|
err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
|
|
!(val & XILINX_DMA_DMASR_HALTED), 0,
|
|
XILINX_DMA_LOOP_COUNT);
|
|
|
|
if (err) {
|
|
dev_err(chan->dev, "Cannot start channel %p: %x\n",
|
|
chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
|
|
|
|
chan->err = true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_vdma_start_transfer - Starts VDMA transfer
|
|
* @chan: Driver specific channel struct pointer
|
|
*/
|
|
static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_vdma_config *config = &chan->config;
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
u32 reg, j;
|
|
struct xilinx_vdma_tx_segment *segment, *last = NULL;
|
|
int i = 0;
|
|
|
|
/* This function was invoked with lock held */
|
|
if (chan->err)
|
|
return;
|
|
|
|
if (!chan->idle)
|
|
return;
|
|
|
|
if (list_empty(&chan->pending_list))
|
|
return;
|
|
|
|
desc = list_first_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
|
|
/* Configure the hardware using info in the config structure */
|
|
if (chan->has_vflip) {
|
|
reg = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP);
|
|
reg &= ~XILINX_VDMA_ENABLE_VERTICAL_FLIP;
|
|
reg |= config->vflip_en;
|
|
dma_write(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP,
|
|
reg);
|
|
}
|
|
|
|
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
|
|
|
|
if (config->frm_cnt_en)
|
|
reg |= XILINX_DMA_DMACR_FRAMECNT_EN;
|
|
else
|
|
reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN;
|
|
|
|
/* If not parking, enable circular mode */
|
|
if (config->park)
|
|
reg &= ~XILINX_DMA_DMACR_CIRC_EN;
|
|
else
|
|
reg |= XILINX_DMA_DMACR_CIRC_EN;
|
|
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
|
|
|
|
j = chan->desc_submitcount;
|
|
reg = dma_read(chan, XILINX_DMA_REG_PARK_PTR);
|
|
if (chan->direction == DMA_MEM_TO_DEV) {
|
|
reg &= ~XILINX_DMA_PARK_PTR_RD_REF_MASK;
|
|
reg |= j << XILINX_DMA_PARK_PTR_RD_REF_SHIFT;
|
|
} else {
|
|
reg &= ~XILINX_DMA_PARK_PTR_WR_REF_MASK;
|
|
reg |= j << XILINX_DMA_PARK_PTR_WR_REF_SHIFT;
|
|
}
|
|
dma_write(chan, XILINX_DMA_REG_PARK_PTR, reg);
|
|
|
|
/* Start the hardware */
|
|
xilinx_dma_start(chan);
|
|
|
|
if (chan->err)
|
|
return;
|
|
|
|
/* Start the transfer */
|
|
if (chan->desc_submitcount < chan->num_frms)
|
|
i = chan->desc_submitcount;
|
|
|
|
list_for_each_entry(segment, &desc->segments, node) {
|
|
if (chan->ext_addr)
|
|
vdma_desc_write_64(chan,
|
|
XILINX_VDMA_REG_START_ADDRESS_64(i++),
|
|
segment->hw.buf_addr,
|
|
segment->hw.buf_addr_msb);
|
|
else
|
|
vdma_desc_write(chan,
|
|
XILINX_VDMA_REG_START_ADDRESS(i++),
|
|
segment->hw.buf_addr);
|
|
|
|
last = segment;
|
|
}
|
|
|
|
if (!last)
|
|
return;
|
|
|
|
/* HW expects these parameters to be same for one transaction */
|
|
vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize);
|
|
vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE,
|
|
last->hw.stride);
|
|
vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize);
|
|
|
|
chan->desc_submitcount++;
|
|
chan->desc_pendingcount--;
|
|
list_move_tail(&desc->node, &chan->active_list);
|
|
if (chan->desc_submitcount == chan->num_frms)
|
|
chan->desc_submitcount = 0;
|
|
|
|
chan->idle = false;
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_start_transfer - Starts cdma transfer
|
|
* @chan: Driver specific channel struct pointer
|
|
*/
|
|
static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
|
|
struct xilinx_cdma_tx_segment *tail_segment;
|
|
u32 ctrl_reg = dma_read(chan, XILINX_DMA_REG_DMACR);
|
|
|
|
if (chan->err)
|
|
return;
|
|
|
|
if (!chan->idle)
|
|
return;
|
|
|
|
if (list_empty(&chan->pending_list))
|
|
return;
|
|
|
|
head_desc = list_first_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_desc = list_last_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_cdma_tx_segment, node);
|
|
|
|
if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
|
|
ctrl_reg &= ~XILINX_DMA_CR_COALESCE_MAX;
|
|
ctrl_reg |= chan->desc_pendingcount <<
|
|
XILINX_DMA_CR_COALESCE_SHIFT;
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, ctrl_reg);
|
|
}
|
|
|
|
if (chan->has_sg) {
|
|
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_CDMA_CR_SGMODE);
|
|
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_CDMA_CR_SGMODE);
|
|
|
|
xilinx_write(chan, XILINX_DMA_REG_CURDESC,
|
|
head_desc->async_tx.phys);
|
|
|
|
/* Update tail ptr register which will start the transfer */
|
|
xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
|
|
tail_segment->phys);
|
|
} else {
|
|
/* In simple mode */
|
|
struct xilinx_cdma_tx_segment *segment;
|
|
struct xilinx_cdma_desc_hw *hw;
|
|
|
|
segment = list_first_entry(&head_desc->segments,
|
|
struct xilinx_cdma_tx_segment,
|
|
node);
|
|
|
|
hw = &segment->hw;
|
|
|
|
xilinx_write(chan, XILINX_CDMA_REG_SRCADDR,
|
|
xilinx_prep_dma_addr_t(hw->src_addr));
|
|
xilinx_write(chan, XILINX_CDMA_REG_DSTADDR,
|
|
xilinx_prep_dma_addr_t(hw->dest_addr));
|
|
|
|
/* Start the transfer */
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
|
|
hw->control & chan->xdev->max_buffer_len);
|
|
}
|
|
|
|
list_splice_tail_init(&chan->pending_list, &chan->active_list);
|
|
chan->desc_pendingcount = 0;
|
|
chan->idle = false;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_start_transfer - Starts DMA transfer
|
|
* @chan: Driver specific channel struct pointer
|
|
*/
|
|
static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
|
|
struct xilinx_axidma_tx_segment *tail_segment;
|
|
u32 reg;
|
|
|
|
if (chan->err)
|
|
return;
|
|
|
|
if (list_empty(&chan->pending_list))
|
|
return;
|
|
|
|
if (!chan->idle)
|
|
return;
|
|
|
|
head_desc = list_first_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_desc = list_last_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_axidma_tx_segment, node);
|
|
|
|
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
|
|
|
|
if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
|
|
reg &= ~XILINX_DMA_CR_COALESCE_MAX;
|
|
reg |= chan->desc_pendingcount <<
|
|
XILINX_DMA_CR_COALESCE_SHIFT;
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
|
|
}
|
|
|
|
if (chan->has_sg)
|
|
xilinx_write(chan, XILINX_DMA_REG_CURDESC,
|
|
head_desc->async_tx.phys);
|
|
|
|
xilinx_dma_start(chan);
|
|
|
|
if (chan->err)
|
|
return;
|
|
|
|
/* Start the transfer */
|
|
if (chan->has_sg) {
|
|
if (chan->cyclic)
|
|
xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
|
|
chan->cyclic_seg_v->phys);
|
|
else
|
|
xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
|
|
tail_segment->phys);
|
|
} else {
|
|
struct xilinx_axidma_tx_segment *segment;
|
|
struct xilinx_axidma_desc_hw *hw;
|
|
|
|
segment = list_first_entry(&head_desc->segments,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
hw = &segment->hw;
|
|
|
|
xilinx_write(chan, XILINX_DMA_REG_SRCDSTADDR,
|
|
xilinx_prep_dma_addr_t(hw->buf_addr));
|
|
|
|
/* Start the transfer */
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
|
|
hw->control & chan->xdev->max_buffer_len);
|
|
}
|
|
|
|
list_splice_tail_init(&chan->pending_list, &chan->active_list);
|
|
chan->desc_pendingcount = 0;
|
|
chan->idle = false;
|
|
}
|
|
|
|
/**
|
|
* xilinx_mcdma_start_transfer - Starts MCDMA transfer
|
|
* @chan: Driver specific channel struct pointer
|
|
*/
|
|
static void xilinx_mcdma_start_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
|
|
struct xilinx_aximcdma_tx_segment *tail_segment;
|
|
u32 reg;
|
|
|
|
/*
|
|
* lock has been held by calling functions, so we don't need it
|
|
* to take it here again.
|
|
*/
|
|
|
|
if (chan->err)
|
|
return;
|
|
|
|
if (!chan->idle)
|
|
return;
|
|
|
|
if (list_empty(&chan->pending_list))
|
|
return;
|
|
|
|
head_desc = list_first_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_desc = list_last_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_aximcdma_tx_segment, node);
|
|
|
|
reg = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest));
|
|
|
|
if (chan->desc_pendingcount <= XILINX_MCDMA_COALESCE_MAX) {
|
|
reg &= ~XILINX_MCDMA_COALESCE_MASK;
|
|
reg |= chan->desc_pendingcount <<
|
|
XILINX_MCDMA_COALESCE_SHIFT;
|
|
}
|
|
|
|
reg |= XILINX_MCDMA_IRQ_ALL_MASK;
|
|
dma_ctrl_write(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest), reg);
|
|
|
|
/* Program current descriptor */
|
|
xilinx_write(chan, XILINX_MCDMA_CHAN_CDESC_OFFSET(chan->tdest),
|
|
head_desc->async_tx.phys);
|
|
|
|
/* Program channel enable register */
|
|
reg = dma_ctrl_read(chan, XILINX_MCDMA_CHEN_OFFSET);
|
|
reg |= BIT(chan->tdest);
|
|
dma_ctrl_write(chan, XILINX_MCDMA_CHEN_OFFSET, reg);
|
|
|
|
/* Start the fetch of BDs for the channel */
|
|
reg = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest));
|
|
reg |= XILINX_MCDMA_CR_RUNSTOP_MASK;
|
|
dma_ctrl_write(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest), reg);
|
|
|
|
xilinx_dma_start(chan);
|
|
|
|
if (chan->err)
|
|
return;
|
|
|
|
/* Start the transfer */
|
|
xilinx_write(chan, XILINX_MCDMA_CHAN_TDESC_OFFSET(chan->tdest),
|
|
tail_segment->phys);
|
|
|
|
list_splice_tail_init(&chan->pending_list, &chan->active_list);
|
|
chan->desc_pendingcount = 0;
|
|
chan->idle = false;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_issue_pending - Issue pending transactions
|
|
* @dchan: DMA channel
|
|
*/
|
|
static void xilinx_dma_issue_pending(struct dma_chan *dchan)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
chan->start_transfer(chan);
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_device_config - Configure the DMA channel
|
|
* @dchan: DMA channel
|
|
* @config: channel configuration
|
|
*/
|
|
static int xilinx_dma_device_config(struct dma_chan *dchan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_complete_descriptor - Mark the active descriptor as complete
|
|
* @chan : xilinx DMA channel
|
|
*
|
|
* CONTEXT: hardirq
|
|
*/
|
|
static void xilinx_dma_complete_descriptor(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *desc, *next;
|
|
|
|
/* This function was invoked with lock held */
|
|
if (list_empty(&chan->active_list))
|
|
return;
|
|
|
|
list_for_each_entry_safe(desc, next, &chan->active_list, node) {
|
|
if (chan->has_sg && chan->xdev->dma_config->dmatype !=
|
|
XDMA_TYPE_VDMA)
|
|
desc->residue = xilinx_dma_get_residue(chan, desc);
|
|
else
|
|
desc->residue = 0;
|
|
desc->err = chan->err;
|
|
|
|
list_del(&desc->node);
|
|
if (!desc->cyclic)
|
|
dma_cookie_complete(&desc->async_tx);
|
|
list_add_tail(&desc->node, &chan->done_list);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_reset - Reset DMA channel
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_reset(struct xilinx_dma_chan *chan)
|
|
{
|
|
int err;
|
|
u32 tmp;
|
|
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RESET);
|
|
|
|
/* Wait for the hardware to finish reset */
|
|
err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMACR, tmp,
|
|
!(tmp & XILINX_DMA_DMACR_RESET), 0,
|
|
XILINX_DMA_LOOP_COUNT);
|
|
|
|
if (err) {
|
|
dev_err(chan->dev, "reset timeout, cr %x, sr %x\n",
|
|
dma_ctrl_read(chan, XILINX_DMA_REG_DMACR),
|
|
dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
chan->err = false;
|
|
chan->idle = true;
|
|
chan->desc_pendingcount = 0;
|
|
chan->desc_submitcount = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_chan_reset - Reset DMA channel and enable interrupts
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_chan_reset(struct xilinx_dma_chan *chan)
|
|
{
|
|
int err;
|
|
|
|
/* Reset VDMA */
|
|
err = xilinx_dma_reset(chan);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Enable interrupts */
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_DMA_DMAXR_ALL_IRQ_MASK);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xilinx_mcdma_irq_handler - MCDMA Interrupt handler
|
|
* @irq: IRQ number
|
|
* @data: Pointer to the Xilinx MCDMA channel structure
|
|
*
|
|
* Return: IRQ_HANDLED/IRQ_NONE
|
|
*/
|
|
static irqreturn_t xilinx_mcdma_irq_handler(int irq, void *data)
|
|
{
|
|
struct xilinx_dma_chan *chan = data;
|
|
u32 status, ser_offset, chan_sermask, chan_offset = 0, chan_id;
|
|
|
|
if (chan->direction == DMA_DEV_TO_MEM)
|
|
ser_offset = XILINX_MCDMA_RXINT_SER_OFFSET;
|
|
else
|
|
ser_offset = XILINX_MCDMA_TXINT_SER_OFFSET;
|
|
|
|
/* Read the channel id raising the interrupt*/
|
|
chan_sermask = dma_ctrl_read(chan, ser_offset);
|
|
chan_id = ffs(chan_sermask);
|
|
|
|
if (!chan_id)
|
|
return IRQ_NONE;
|
|
|
|
if (chan->direction == DMA_DEV_TO_MEM)
|
|
chan_offset = chan->xdev->dma_config->max_channels / 2;
|
|
|
|
chan_offset = chan_offset + (chan_id - 1);
|
|
chan = chan->xdev->chan[chan_offset];
|
|
/* Read the status and ack the interrupts. */
|
|
status = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_SR_OFFSET(chan->tdest));
|
|
if (!(status & XILINX_MCDMA_IRQ_ALL_MASK))
|
|
return IRQ_NONE;
|
|
|
|
dma_ctrl_write(chan, XILINX_MCDMA_CHAN_SR_OFFSET(chan->tdest),
|
|
status & XILINX_MCDMA_IRQ_ALL_MASK);
|
|
|
|
if (status & XILINX_MCDMA_IRQ_ERR_MASK) {
|
|
dev_err(chan->dev, "Channel %p has errors %x cdr %x tdr %x\n",
|
|
chan,
|
|
dma_ctrl_read(chan, XILINX_MCDMA_CH_ERR_OFFSET),
|
|
dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CDESC_OFFSET
|
|
(chan->tdest)),
|
|
dma_ctrl_read(chan, XILINX_MCDMA_CHAN_TDESC_OFFSET
|
|
(chan->tdest)));
|
|
chan->err = true;
|
|
}
|
|
|
|
if (status & XILINX_MCDMA_IRQ_DELAY_MASK) {
|
|
/*
|
|
* Device takes too long to do the transfer when user requires
|
|
* responsiveness.
|
|
*/
|
|
dev_dbg(chan->dev, "Inter-packet latency too long\n");
|
|
}
|
|
|
|
if (status & XILINX_MCDMA_IRQ_IOC_MASK) {
|
|
spin_lock(&chan->lock);
|
|
xilinx_dma_complete_descriptor(chan);
|
|
chan->idle = true;
|
|
chan->start_transfer(chan);
|
|
spin_unlock(&chan->lock);
|
|
}
|
|
|
|
tasklet_schedule(&chan->tasklet);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_irq_handler - DMA Interrupt handler
|
|
* @irq: IRQ number
|
|
* @data: Pointer to the Xilinx DMA channel structure
|
|
*
|
|
* Return: IRQ_HANDLED/IRQ_NONE
|
|
*/
|
|
static irqreturn_t xilinx_dma_irq_handler(int irq, void *data)
|
|
{
|
|
struct xilinx_dma_chan *chan = data;
|
|
u32 status;
|
|
|
|
/* Read the status and ack the interrupts. */
|
|
status = dma_ctrl_read(chan, XILINX_DMA_REG_DMASR);
|
|
if (!(status & XILINX_DMA_DMAXR_ALL_IRQ_MASK))
|
|
return IRQ_NONE;
|
|
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
|
|
status & XILINX_DMA_DMAXR_ALL_IRQ_MASK);
|
|
|
|
if (status & XILINX_DMA_DMASR_ERR_IRQ) {
|
|
/*
|
|
* An error occurred. If C_FLUSH_ON_FSYNC is enabled and the
|
|
* error is recoverable, ignore it. Otherwise flag the error.
|
|
*
|
|
* Only recoverable errors can be cleared in the DMASR register,
|
|
* make sure not to write to other error bits to 1.
|
|
*/
|
|
u32 errors = status & XILINX_DMA_DMASR_ALL_ERR_MASK;
|
|
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
|
|
errors & XILINX_DMA_DMASR_ERR_RECOVER_MASK);
|
|
|
|
if (!chan->flush_on_fsync ||
|
|
(errors & ~XILINX_DMA_DMASR_ERR_RECOVER_MASK)) {
|
|
dev_err(chan->dev,
|
|
"Channel %p has errors %x, cdr %x tdr %x\n",
|
|
chan, errors,
|
|
dma_ctrl_read(chan, XILINX_DMA_REG_CURDESC),
|
|
dma_ctrl_read(chan, XILINX_DMA_REG_TAILDESC));
|
|
chan->err = true;
|
|
}
|
|
}
|
|
|
|
if (status & XILINX_DMA_DMASR_DLY_CNT_IRQ) {
|
|
/*
|
|
* Device takes too long to do the transfer when user requires
|
|
* responsiveness.
|
|
*/
|
|
dev_dbg(chan->dev, "Inter-packet latency too long\n");
|
|
}
|
|
|
|
if (status & XILINX_DMA_DMASR_FRM_CNT_IRQ) {
|
|
spin_lock(&chan->lock);
|
|
xilinx_dma_complete_descriptor(chan);
|
|
chan->idle = true;
|
|
chan->start_transfer(chan);
|
|
spin_unlock(&chan->lock);
|
|
}
|
|
|
|
tasklet_schedule(&chan->tasklet);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* append_desc_queue - Queuing descriptor
|
|
* @chan: Driver specific dma channel
|
|
* @desc: dma transaction descriptor
|
|
*/
|
|
static void append_desc_queue(struct xilinx_dma_chan *chan,
|
|
struct xilinx_dma_tx_descriptor *desc)
|
|
{
|
|
struct xilinx_vdma_tx_segment *tail_segment;
|
|
struct xilinx_dma_tx_descriptor *tail_desc;
|
|
struct xilinx_axidma_tx_segment *axidma_tail_segment;
|
|
struct xilinx_aximcdma_tx_segment *aximcdma_tail_segment;
|
|
struct xilinx_cdma_tx_segment *cdma_tail_segment;
|
|
|
|
if (list_empty(&chan->pending_list))
|
|
goto append;
|
|
|
|
/*
|
|
* Add the hardware descriptor to the chain of hardware descriptors
|
|
* that already exists in memory.
|
|
*/
|
|
tail_desc = list_last_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_vdma_tx_segment,
|
|
node);
|
|
tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
|
|
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
cdma_tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_cdma_tx_segment,
|
|
node);
|
|
cdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
|
|
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
axidma_tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
axidma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
|
|
} else {
|
|
aximcdma_tail_segment =
|
|
list_last_entry(&tail_desc->segments,
|
|
struct xilinx_aximcdma_tx_segment,
|
|
node);
|
|
aximcdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
|
|
}
|
|
|
|
/*
|
|
* Add the software descriptor and all children to the list
|
|
* of pending transactions
|
|
*/
|
|
append:
|
|
list_add_tail(&desc->node, &chan->pending_list);
|
|
chan->desc_pendingcount++;
|
|
|
|
if (chan->has_sg && (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA)
|
|
&& unlikely(chan->desc_pendingcount > chan->num_frms)) {
|
|
dev_dbg(chan->dev, "desc pendingcount is too high\n");
|
|
chan->desc_pendingcount = chan->num_frms;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_tx_submit - Submit DMA transaction
|
|
* @tx: Async transaction descriptor
|
|
*
|
|
* Return: cookie value on success and failure value on error
|
|
*/
|
|
static dma_cookie_t xilinx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *desc = to_dma_tx_descriptor(tx);
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(tx->chan);
|
|
dma_cookie_t cookie;
|
|
unsigned long flags;
|
|
int err;
|
|
|
|
if (chan->cyclic) {
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (chan->err) {
|
|
/*
|
|
* If reset fails, need to hard reset the system.
|
|
* Channel is no longer functional
|
|
*/
|
|
err = xilinx_dma_chan_reset(chan);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
|
|
cookie = dma_cookie_assign(tx);
|
|
|
|
/* Put this transaction onto the tail of the pending queue */
|
|
append_desc_queue(chan, desc);
|
|
|
|
if (desc->cyclic)
|
|
chan->cyclic = true;
|
|
|
|
chan->terminating = false;
|
|
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
return cookie;
|
|
}
|
|
|
|
/**
|
|
* xilinx_vdma_dma_prep_interleaved - prepare a descriptor for a
|
|
* DMA_SLAVE transaction
|
|
* @dchan: DMA channel
|
|
* @xt: Interleaved template pointer
|
|
* @flags: transfer ack flags
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan,
|
|
struct dma_interleaved_template *xt,
|
|
unsigned long flags)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_vdma_tx_segment *segment;
|
|
struct xilinx_vdma_desc_hw *hw;
|
|
|
|
if (!is_slave_direction(xt->dir))
|
|
return NULL;
|
|
|
|
if (!xt->numf || !xt->sgl[0].size)
|
|
return NULL;
|
|
|
|
if (xt->frame_size != 1)
|
|
return NULL;
|
|
|
|
/* Allocate a transaction descriptor. */
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
async_tx_ack(&desc->async_tx);
|
|
|
|
/* Allocate the link descriptor from DMA pool */
|
|
segment = xilinx_vdma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
/* Fill in the hardware descriptor */
|
|
hw = &segment->hw;
|
|
hw->vsize = xt->numf;
|
|
hw->hsize = xt->sgl[0].size;
|
|
hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) <<
|
|
XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT;
|
|
hw->stride |= chan->config.frm_dly <<
|
|
XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT;
|
|
|
|
if (xt->dir != DMA_MEM_TO_DEV) {
|
|
if (chan->ext_addr) {
|
|
hw->buf_addr = lower_32_bits(xt->dst_start);
|
|
hw->buf_addr_msb = upper_32_bits(xt->dst_start);
|
|
} else {
|
|
hw->buf_addr = xt->dst_start;
|
|
}
|
|
} else {
|
|
if (chan->ext_addr) {
|
|
hw->buf_addr = lower_32_bits(xt->src_start);
|
|
hw->buf_addr_msb = upper_32_bits(xt->src_start);
|
|
} else {
|
|
hw->buf_addr = xt->src_start;
|
|
}
|
|
}
|
|
|
|
/* Insert the segment into the descriptor segments list. */
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
|
|
/* Link the last hardware descriptor with the first. */
|
|
segment = list_first_entry(&desc->segments,
|
|
struct xilinx_vdma_tx_segment, node);
|
|
desc->async_tx.phys = segment->phys;
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_prep_memcpy - prepare descriptors for a memcpy transaction
|
|
* @dchan: DMA channel
|
|
* @dma_dst: destination address
|
|
* @dma_src: source address
|
|
* @len: transfer length
|
|
* @flags: transfer ack flags
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst,
|
|
dma_addr_t dma_src, size_t len, unsigned long flags)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_cdma_tx_segment *segment;
|
|
struct xilinx_cdma_desc_hw *hw;
|
|
|
|
if (!len || len > chan->xdev->max_buffer_len)
|
|
return NULL;
|
|
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
|
|
/* Allocate the link descriptor from DMA pool */
|
|
segment = xilinx_cdma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
hw = &segment->hw;
|
|
hw->control = len;
|
|
hw->src_addr = dma_src;
|
|
hw->dest_addr = dma_dst;
|
|
if (chan->ext_addr) {
|
|
hw->src_addr_msb = upper_32_bits(dma_src);
|
|
hw->dest_addr_msb = upper_32_bits(dma_dst);
|
|
}
|
|
|
|
/* Insert the segment into the descriptor segments list. */
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
|
|
desc->async_tx.phys = segment->phys;
|
|
hw->next_desc = segment->phys;
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_prep_memcpy_sg - prepare descriptors for a memcpy_sg transaction
|
|
* @dchan: DMA channel
|
|
* @dst_sg: Destination scatter list
|
|
* @dst_sg_len: Number of entries in destination scatter list
|
|
* @src_sg: Source scatter list
|
|
* @src_sg_len: Number of entries in source scatter list
|
|
* @flags: transfer ack flags
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *xilinx_cdma_prep_memcpy_sg(
|
|
struct dma_chan *dchan, struct scatterlist *dst_sg,
|
|
unsigned int dst_sg_len, struct scatterlist *src_sg,
|
|
unsigned int src_sg_len, unsigned long flags)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_cdma_tx_segment *segment, *prev = NULL;
|
|
struct xilinx_cdma_desc_hw *hw;
|
|
size_t len, dst_avail, src_avail;
|
|
dma_addr_t dma_dst, dma_src;
|
|
|
|
if (unlikely(dst_sg_len == 0 || src_sg_len == 0))
|
|
return NULL;
|
|
|
|
if (unlikely(!dst_sg || !src_sg))
|
|
return NULL;
|
|
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
|
|
dst_avail = sg_dma_len(dst_sg);
|
|
src_avail = sg_dma_len(src_sg);
|
|
/*
|
|
* loop until there is either no more source or no more destination
|
|
* scatterlist entry
|
|
*/
|
|
while (true) {
|
|
len = min_t(size_t, src_avail, dst_avail);
|
|
len = min_t(size_t, len, chan->xdev->max_buffer_len);
|
|
if (len == 0)
|
|
goto fetch;
|
|
|
|
/* Allocate the link descriptor from DMA pool */
|
|
segment = xilinx_cdma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
dma_dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) -
|
|
dst_avail;
|
|
dma_src = sg_dma_address(src_sg) + sg_dma_len(src_sg) -
|
|
src_avail;
|
|
hw = &segment->hw;
|
|
hw->control = len;
|
|
hw->src_addr = dma_src;
|
|
hw->dest_addr = dma_dst;
|
|
if (chan->ext_addr) {
|
|
hw->src_addr_msb = upper_32_bits(dma_src);
|
|
hw->dest_addr_msb = upper_32_bits(dma_dst);
|
|
}
|
|
|
|
if (prev) {
|
|
prev->hw.next_desc = segment->phys;
|
|
if (chan->ext_addr)
|
|
prev->hw.next_desc_msb =
|
|
upper_32_bits(segment->phys);
|
|
}
|
|
|
|
prev = segment;
|
|
dst_avail -= len;
|
|
src_avail -= len;
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
|
|
fetch:
|
|
/* Fetch the next dst scatterlist entry */
|
|
if (dst_avail == 0) {
|
|
if (dst_sg_len == 0)
|
|
break;
|
|
dst_sg = sg_next(dst_sg);
|
|
if (dst_sg == NULL)
|
|
break;
|
|
dst_sg_len--;
|
|
dst_avail = sg_dma_len(dst_sg);
|
|
}
|
|
/* Fetch the next src scatterlist entry */
|
|
if (src_avail == 0) {
|
|
if (src_sg_len == 0)
|
|
break;
|
|
src_sg = sg_next(src_sg);
|
|
if (src_sg == NULL)
|
|
break;
|
|
src_sg_len--;
|
|
src_avail = sg_dma_len(src_sg);
|
|
}
|
|
}
|
|
|
|
if (list_empty(&desc->segments)) {
|
|
dev_err(chan->xdev->dev,
|
|
"%s: Zero-size SG transfer requested\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
/* Link the last hardware descriptor with the first. */
|
|
segment = list_first_entry(&desc->segments,
|
|
struct xilinx_cdma_tx_segment, node);
|
|
desc->async_tx.phys = segment->phys;
|
|
prev->hw.next_desc = segment->phys;
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
|
|
* @dchan: DMA channel
|
|
* @sgl: scatterlist to transfer to/from
|
|
* @sg_len: number of entries in @scatterlist
|
|
* @direction: DMA direction
|
|
* @flags: transfer ack flags
|
|
* @context: APP words of the descriptor
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg(
|
|
struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
|
|
enum dma_transfer_direction direction, unsigned long flags,
|
|
void *context)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_axidma_tx_segment *segment = NULL;
|
|
u32 *app_w = (u32 *)context;
|
|
struct scatterlist *sg;
|
|
size_t copy;
|
|
size_t sg_used;
|
|
unsigned int i;
|
|
|
|
if (!is_slave_direction(direction))
|
|
return NULL;
|
|
|
|
/* Allocate a transaction descriptor. */
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
|
|
/* Build transactions using information in the scatter gather list */
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
sg_used = 0;
|
|
|
|
/* Loop until the entire scatterlist entry is used */
|
|
while (sg_used < sg_dma_len(sg)) {
|
|
struct xilinx_axidma_desc_hw *hw;
|
|
|
|
/* Get a free segment */
|
|
segment = xilinx_axidma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
/*
|
|
* Calculate the maximum number of bytes to transfer,
|
|
* making sure it is less than the hw limit
|
|
*/
|
|
copy = xilinx_dma_calc_copysize(chan, sg_dma_len(sg),
|
|
sg_used);
|
|
hw = &segment->hw;
|
|
|
|
/* Fill in the descriptor */
|
|
xilinx_axidma_buf(chan, hw, sg_dma_address(sg),
|
|
sg_used, 0);
|
|
|
|
hw->control = copy;
|
|
|
|
if (chan->direction == DMA_MEM_TO_DEV) {
|
|
if (app_w)
|
|
memcpy(hw->app, app_w, sizeof(u32) *
|
|
XILINX_DMA_NUM_APP_WORDS);
|
|
}
|
|
|
|
sg_used += copy;
|
|
|
|
/*
|
|
* Insert the segment into the descriptor segments
|
|
* list.
|
|
*/
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
}
|
|
}
|
|
|
|
segment = list_first_entry(&desc->segments,
|
|
struct xilinx_axidma_tx_segment, node);
|
|
desc->async_tx.phys = segment->phys;
|
|
|
|
/* For the last DMA_MEM_TO_DEV transfer, set EOP */
|
|
if (chan->direction == DMA_MEM_TO_DEV) {
|
|
segment->hw.control |= XILINX_DMA_BD_SOP;
|
|
segment = list_last_entry(&desc->segments,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
segment->hw.control |= XILINX_DMA_BD_EOP;
|
|
}
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_prep_dma_cyclic - prepare descriptors for a DMA_SLAVE transaction
|
|
* @dchan: DMA channel
|
|
* @buf_addr: Physical address of the buffer
|
|
* @buf_len: Total length of the cyclic buffers
|
|
* @period_len: length of individual cyclic buffer
|
|
* @direction: DMA direction
|
|
* @flags: transfer ack flags
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *xilinx_dma_prep_dma_cyclic(
|
|
struct dma_chan *dchan, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_axidma_tx_segment *segment, *head_segment, *prev = NULL;
|
|
size_t copy, sg_used;
|
|
unsigned int num_periods;
|
|
int i;
|
|
u32 reg;
|
|
|
|
if (!period_len)
|
|
return NULL;
|
|
|
|
num_periods = buf_len / period_len;
|
|
|
|
if (!num_periods)
|
|
return NULL;
|
|
|
|
if (!is_slave_direction(direction))
|
|
return NULL;
|
|
|
|
/* Allocate a transaction descriptor. */
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
chan->direction = direction;
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
|
|
for (i = 0; i < num_periods; ++i) {
|
|
sg_used = 0;
|
|
|
|
while (sg_used < period_len) {
|
|
struct xilinx_axidma_desc_hw *hw;
|
|
|
|
/* Get a free segment */
|
|
segment = xilinx_axidma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
/*
|
|
* Calculate the maximum number of bytes to transfer,
|
|
* making sure it is less than the hw limit
|
|
*/
|
|
copy = xilinx_dma_calc_copysize(chan, period_len,
|
|
sg_used);
|
|
hw = &segment->hw;
|
|
xilinx_axidma_buf(chan, hw, buf_addr, sg_used,
|
|
period_len * i);
|
|
hw->control = copy;
|
|
|
|
if (prev)
|
|
prev->hw.next_desc = segment->phys;
|
|
|
|
prev = segment;
|
|
sg_used += copy;
|
|
|
|
/*
|
|
* Insert the segment into the descriptor segments
|
|
* list.
|
|
*/
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
}
|
|
}
|
|
|
|
head_segment = list_first_entry(&desc->segments,
|
|
struct xilinx_axidma_tx_segment, node);
|
|
desc->async_tx.phys = head_segment->phys;
|
|
|
|
desc->cyclic = true;
|
|
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
|
|
reg |= XILINX_DMA_CR_CYCLIC_BD_EN_MASK;
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
|
|
|
|
segment = list_last_entry(&desc->segments,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
segment->hw.next_desc = (u32) head_segment->phys;
|
|
|
|
/* For the last DMA_MEM_TO_DEV transfer, set EOP */
|
|
if (direction == DMA_MEM_TO_DEV) {
|
|
head_segment->hw.control |= XILINX_DMA_BD_SOP;
|
|
segment->hw.control |= XILINX_DMA_BD_EOP;
|
|
}
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_mcdma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
|
|
* @dchan: DMA channel
|
|
* @sgl: scatterlist to transfer to/from
|
|
* @sg_len: number of entries in @scatterlist
|
|
* @direction: DMA direction
|
|
* @flags: transfer ack flags
|
|
* @context: APP words of the descriptor
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
xilinx_mcdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
|
|
unsigned int sg_len,
|
|
enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_aximcdma_tx_segment *segment = NULL;
|
|
u32 *app_w = (u32 *)context;
|
|
struct scatterlist *sg;
|
|
size_t copy;
|
|
size_t sg_used;
|
|
unsigned int i;
|
|
|
|
if (!is_slave_direction(direction))
|
|
return NULL;
|
|
|
|
/* Allocate a transaction descriptor. */
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
|
|
/* Build transactions using information in the scatter gather list */
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
sg_used = 0;
|
|
|
|
/* Loop until the entire scatterlist entry is used */
|
|
while (sg_used < sg_dma_len(sg)) {
|
|
struct xilinx_aximcdma_desc_hw *hw;
|
|
|
|
/* Get a free segment */
|
|
segment = xilinx_aximcdma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
/*
|
|
* Calculate the maximum number of bytes to transfer,
|
|
* making sure it is less than the hw limit
|
|
*/
|
|
copy = min_t(size_t, sg_dma_len(sg) - sg_used,
|
|
chan->xdev->max_buffer_len);
|
|
hw = &segment->hw;
|
|
|
|
/* Fill in the descriptor */
|
|
xilinx_aximcdma_buf(chan, hw, sg_dma_address(sg),
|
|
sg_used);
|
|
hw->control = copy;
|
|
|
|
if (chan->direction == DMA_MEM_TO_DEV && app_w) {
|
|
memcpy(hw->app, app_w, sizeof(u32) *
|
|
XILINX_DMA_NUM_APP_WORDS);
|
|
}
|
|
|
|
sg_used += copy;
|
|
/*
|
|
* Insert the segment into the descriptor segments
|
|
* list.
|
|
*/
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
}
|
|
}
|
|
|
|
segment = list_first_entry(&desc->segments,
|
|
struct xilinx_aximcdma_tx_segment, node);
|
|
desc->async_tx.phys = segment->phys;
|
|
|
|
/* For the last DMA_MEM_TO_DEV transfer, set EOP */
|
|
if (chan->direction == DMA_MEM_TO_DEV) {
|
|
segment->hw.control |= XILINX_MCDMA_BD_SOP;
|
|
segment = list_last_entry(&desc->segments,
|
|
struct xilinx_aximcdma_tx_segment,
|
|
node);
|
|
segment->hw.control |= XILINX_MCDMA_BD_EOP;
|
|
}
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_terminate_all - Halt the channel and free descriptors
|
|
* @dchan: Driver specific DMA Channel pointer
|
|
*
|
|
* Return: '0' always.
|
|
*/
|
|
static int xilinx_dma_terminate_all(struct dma_chan *dchan)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
u32 reg;
|
|
int err;
|
|
|
|
if (!chan->cyclic) {
|
|
err = chan->stop_transfer(chan);
|
|
if (err) {
|
|
dev_err(chan->dev, "Cannot stop channel %p: %x\n",
|
|
chan, dma_ctrl_read(chan,
|
|
XILINX_DMA_REG_DMASR));
|
|
chan->err = true;
|
|
}
|
|
}
|
|
|
|
xilinx_dma_chan_reset(chan);
|
|
/* Remove and free all of the descriptors in the lists */
|
|
chan->terminating = true;
|
|
xilinx_dma_free_descriptors(chan);
|
|
chan->idle = true;
|
|
|
|
if (chan->cyclic) {
|
|
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
|
|
reg &= ~XILINX_DMA_CR_CYCLIC_BD_EN_MASK;
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
|
|
chan->cyclic = false;
|
|
}
|
|
|
|
if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg)
|
|
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_CDMA_CR_SGMODE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void xilinx_dma_synchronize(struct dma_chan *dchan)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
|
|
tasklet_kill(&chan->tasklet);
|
|
}
|
|
|
|
/**
|
|
* xilinx_vdma_channel_set_config - Configure VDMA channel
|
|
* Run-time configuration for Axi VDMA, supports:
|
|
* . halt the channel
|
|
* . configure interrupt coalescing and inter-packet delay threshold
|
|
* . start/stop parking
|
|
* . enable genlock
|
|
*
|
|
* @dchan: DMA channel
|
|
* @cfg: VDMA device configuration pointer
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
|
|
struct xilinx_vdma_config *cfg)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
u32 dmacr;
|
|
|
|
if (cfg->reset)
|
|
return xilinx_dma_chan_reset(chan);
|
|
|
|
dmacr = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
|
|
|
|
chan->config.frm_dly = cfg->frm_dly;
|
|
chan->config.park = cfg->park;
|
|
|
|
/* genlock settings */
|
|
chan->config.gen_lock = cfg->gen_lock;
|
|
chan->config.master = cfg->master;
|
|
|
|
dmacr &= ~XILINX_DMA_DMACR_GENLOCK_EN;
|
|
if (cfg->gen_lock && chan->genlock) {
|
|
dmacr |= XILINX_DMA_DMACR_GENLOCK_EN;
|
|
dmacr &= ~XILINX_DMA_DMACR_MASTER_MASK;
|
|
dmacr |= cfg->master << XILINX_DMA_DMACR_MASTER_SHIFT;
|
|
}
|
|
|
|
chan->config.frm_cnt_en = cfg->frm_cnt_en;
|
|
chan->config.vflip_en = cfg->vflip_en;
|
|
|
|
if (cfg->park)
|
|
chan->config.park_frm = cfg->park_frm;
|
|
else
|
|
chan->config.park_frm = -1;
|
|
|
|
chan->config.coalesc = cfg->coalesc;
|
|
chan->config.delay = cfg->delay;
|
|
|
|
if (cfg->coalesc <= XILINX_DMA_DMACR_FRAME_COUNT_MAX) {
|
|
dmacr &= ~XILINX_DMA_DMACR_FRAME_COUNT_MASK;
|
|
dmacr |= cfg->coalesc << XILINX_DMA_DMACR_FRAME_COUNT_SHIFT;
|
|
chan->config.coalesc = cfg->coalesc;
|
|
}
|
|
|
|
if (cfg->delay <= XILINX_DMA_DMACR_DELAY_MAX) {
|
|
dmacr &= ~XILINX_DMA_DMACR_DELAY_MASK;
|
|
dmacr |= cfg->delay << XILINX_DMA_DMACR_DELAY_SHIFT;
|
|
chan->config.delay = cfg->delay;
|
|
}
|
|
|
|
/* FSync Source selection */
|
|
dmacr &= ~XILINX_DMA_DMACR_FSYNCSRC_MASK;
|
|
dmacr |= cfg->ext_fsync << XILINX_DMA_DMACR_FSYNCSRC_SHIFT;
|
|
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, dmacr);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(xilinx_vdma_channel_set_config);
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Probe and remove
|
|
*/
|
|
|
|
/**
|
|
* xilinx_dma_chan_remove - Per Channel remove function
|
|
* @chan: Driver specific DMA channel
|
|
*/
|
|
static void xilinx_dma_chan_remove(struct xilinx_dma_chan *chan)
|
|
{
|
|
/* Disable all interrupts */
|
|
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_DMA_DMAXR_ALL_IRQ_MASK);
|
|
|
|
if (chan->irq > 0)
|
|
free_irq(chan->irq, chan);
|
|
|
|
tasklet_kill(&chan->tasklet);
|
|
|
|
list_del(&chan->common.device_node);
|
|
}
|
|
|
|
static int axidma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
|
|
struct clk **tx_clk, struct clk **rx_clk,
|
|
struct clk **sg_clk, struct clk **tmp_clk)
|
|
{
|
|
int err;
|
|
|
|
*tmp_clk = NULL;
|
|
|
|
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
|
|
if (IS_ERR(*axi_clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n");
|
|
|
|
*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
|
|
if (IS_ERR(*tx_clk))
|
|
*tx_clk = NULL;
|
|
|
|
*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
|
|
if (IS_ERR(*rx_clk))
|
|
*rx_clk = NULL;
|
|
|
|
*sg_clk = devm_clk_get(&pdev->dev, "m_axi_sg_aclk");
|
|
if (IS_ERR(*sg_clk))
|
|
*sg_clk = NULL;
|
|
|
|
err = clk_prepare_enable(*axi_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
err = clk_prepare_enable(*tx_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
|
|
goto err_disable_axiclk;
|
|
}
|
|
|
|
err = clk_prepare_enable(*rx_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
|
|
goto err_disable_txclk;
|
|
}
|
|
|
|
err = clk_prepare_enable(*sg_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable sg_clk (%d)\n", err);
|
|
goto err_disable_rxclk;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_disable_rxclk:
|
|
clk_disable_unprepare(*rx_clk);
|
|
err_disable_txclk:
|
|
clk_disable_unprepare(*tx_clk);
|
|
err_disable_axiclk:
|
|
clk_disable_unprepare(*axi_clk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int axicdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
|
|
struct clk **dev_clk, struct clk **tmp_clk,
|
|
struct clk **tmp1_clk, struct clk **tmp2_clk)
|
|
{
|
|
int err;
|
|
|
|
*tmp_clk = NULL;
|
|
*tmp1_clk = NULL;
|
|
*tmp2_clk = NULL;
|
|
|
|
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
|
|
if (IS_ERR(*axi_clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n");
|
|
|
|
*dev_clk = devm_clk_get(&pdev->dev, "m_axi_aclk");
|
|
if (IS_ERR(*dev_clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(*dev_clk), "failed to get dev_clk\n");
|
|
|
|
err = clk_prepare_enable(*axi_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
err = clk_prepare_enable(*dev_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable dev_clk (%d)\n", err);
|
|
goto err_disable_axiclk;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_disable_axiclk:
|
|
clk_disable_unprepare(*axi_clk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int axivdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
|
|
struct clk **tx_clk, struct clk **txs_clk,
|
|
struct clk **rx_clk, struct clk **rxs_clk)
|
|
{
|
|
int err;
|
|
|
|
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
|
|
if (IS_ERR(*axi_clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n");
|
|
|
|
*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
|
|
if (IS_ERR(*tx_clk))
|
|
*tx_clk = NULL;
|
|
|
|
*txs_clk = devm_clk_get(&pdev->dev, "m_axis_mm2s_aclk");
|
|
if (IS_ERR(*txs_clk))
|
|
*txs_clk = NULL;
|
|
|
|
*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
|
|
if (IS_ERR(*rx_clk))
|
|
*rx_clk = NULL;
|
|
|
|
*rxs_clk = devm_clk_get(&pdev->dev, "s_axis_s2mm_aclk");
|
|
if (IS_ERR(*rxs_clk))
|
|
*rxs_clk = NULL;
|
|
|
|
err = clk_prepare_enable(*axi_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
err = clk_prepare_enable(*tx_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
|
|
goto err_disable_axiclk;
|
|
}
|
|
|
|
err = clk_prepare_enable(*txs_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable txs_clk (%d)\n", err);
|
|
goto err_disable_txclk;
|
|
}
|
|
|
|
err = clk_prepare_enable(*rx_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
|
|
goto err_disable_txsclk;
|
|
}
|
|
|
|
err = clk_prepare_enable(*rxs_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable rxs_clk (%d)\n", err);
|
|
goto err_disable_rxclk;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_disable_rxclk:
|
|
clk_disable_unprepare(*rx_clk);
|
|
err_disable_txsclk:
|
|
clk_disable_unprepare(*txs_clk);
|
|
err_disable_txclk:
|
|
clk_disable_unprepare(*tx_clk);
|
|
err_disable_axiclk:
|
|
clk_disable_unprepare(*axi_clk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void xdma_disable_allclks(struct xilinx_dma_device *xdev)
|
|
{
|
|
clk_disable_unprepare(xdev->rxs_clk);
|
|
clk_disable_unprepare(xdev->rx_clk);
|
|
clk_disable_unprepare(xdev->txs_clk);
|
|
clk_disable_unprepare(xdev->tx_clk);
|
|
clk_disable_unprepare(xdev->axi_clk);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_chan_probe - Per Channel Probing
|
|
* It get channel features from the device tree entry and
|
|
* initialize special channel handling routines
|
|
*
|
|
* @xdev: Driver specific device structure
|
|
* @node: Device node
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev,
|
|
struct device_node *node)
|
|
{
|
|
struct xilinx_dma_chan *chan;
|
|
bool has_dre = false;
|
|
u32 value, width;
|
|
int err;
|
|
|
|
/* Allocate and initialize the channel structure */
|
|
chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL);
|
|
if (!chan)
|
|
return -ENOMEM;
|
|
|
|
chan->dev = xdev->dev;
|
|
chan->xdev = xdev;
|
|
chan->desc_pendingcount = 0x0;
|
|
chan->ext_addr = xdev->ext_addr;
|
|
/* This variable ensures that descriptors are not
|
|
* Submitted when dma engine is in progress. This variable is
|
|
* Added to avoid polling for a bit in the status register to
|
|
* Know dma state in the driver hot path.
|
|
*/
|
|
chan->idle = true;
|
|
|
|
spin_lock_init(&chan->lock);
|
|
INIT_LIST_HEAD(&chan->pending_list);
|
|
INIT_LIST_HEAD(&chan->done_list);
|
|
INIT_LIST_HEAD(&chan->active_list);
|
|
INIT_LIST_HEAD(&chan->free_seg_list);
|
|
|
|
/* Retrieve the channel properties from the device tree */
|
|
has_dre = of_property_read_bool(node, "xlnx,include-dre");
|
|
|
|
chan->genlock = of_property_read_bool(node, "xlnx,genlock-mode");
|
|
|
|
err = of_property_read_u32(node, "xlnx,datawidth", &value);
|
|
if (err) {
|
|
dev_err(xdev->dev, "missing xlnx,datawidth property\n");
|
|
return err;
|
|
}
|
|
width = value >> 3; /* Convert bits to bytes */
|
|
|
|
/* If data width is greater than 8 bytes, DRE is not in hw */
|
|
if (width > 8)
|
|
has_dre = false;
|
|
|
|
if (!has_dre)
|
|
xdev->common.copy_align = (enum dmaengine_alignment)fls(width - 1);
|
|
|
|
if (of_device_is_compatible(node, "xlnx,axi-vdma-mm2s-channel") ||
|
|
of_device_is_compatible(node, "xlnx,axi-dma-mm2s-channel") ||
|
|
of_device_is_compatible(node, "xlnx,axi-cdma-channel")) {
|
|
chan->direction = DMA_MEM_TO_DEV;
|
|
chan->id = xdev->mm2s_chan_id++;
|
|
chan->tdest = chan->id;
|
|
|
|
chan->ctrl_offset = XILINX_DMA_MM2S_CTRL_OFFSET;
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET;
|
|
chan->config.park = 1;
|
|
|
|
if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
|
|
xdev->flush_on_fsync == XILINX_DMA_FLUSH_MM2S)
|
|
chan->flush_on_fsync = true;
|
|
}
|
|
} else if (of_device_is_compatible(node,
|
|
"xlnx,axi-vdma-s2mm-channel") ||
|
|
of_device_is_compatible(node,
|
|
"xlnx,axi-dma-s2mm-channel")) {
|
|
chan->direction = DMA_DEV_TO_MEM;
|
|
chan->id = xdev->s2mm_chan_id++;
|
|
chan->tdest = chan->id - xdev->dma_config->max_channels / 2;
|
|
chan->has_vflip = of_property_read_bool(node,
|
|
"xlnx,enable-vert-flip");
|
|
if (chan->has_vflip) {
|
|
chan->config.vflip_en = dma_read(chan,
|
|
XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP) &
|
|
XILINX_VDMA_ENABLE_VERTICAL_FLIP;
|
|
}
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA)
|
|
chan->ctrl_offset = XILINX_MCDMA_S2MM_CTRL_OFFSET;
|
|
else
|
|
chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET;
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET;
|
|
chan->config.park = 1;
|
|
|
|
if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
|
|
xdev->flush_on_fsync == XILINX_DMA_FLUSH_S2MM)
|
|
chan->flush_on_fsync = true;
|
|
}
|
|
} else {
|
|
dev_err(xdev->dev, "Invalid channel compatible node\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Request the interrupt */
|
|
chan->irq = of_irq_get(node, chan->tdest);
|
|
if (chan->irq < 0)
|
|
return dev_err_probe(xdev->dev, chan->irq, "failed to get irq\n");
|
|
err = request_irq(chan->irq, xdev->dma_config->irq_handler,
|
|
IRQF_SHARED, "xilinx-dma-controller", chan);
|
|
if (err) {
|
|
dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq);
|
|
return err;
|
|
}
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
chan->start_transfer = xilinx_dma_start_transfer;
|
|
chan->stop_transfer = xilinx_dma_stop_transfer;
|
|
} else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) {
|
|
chan->start_transfer = xilinx_mcdma_start_transfer;
|
|
chan->stop_transfer = xilinx_dma_stop_transfer;
|
|
} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
chan->start_transfer = xilinx_cdma_start_transfer;
|
|
chan->stop_transfer = xilinx_cdma_stop_transfer;
|
|
} else {
|
|
chan->start_transfer = xilinx_vdma_start_transfer;
|
|
chan->stop_transfer = xilinx_dma_stop_transfer;
|
|
}
|
|
|
|
/* check if SG is enabled (only for AXIDMA, AXIMCDMA, and CDMA) */
|
|
if (xdev->dma_config->dmatype != XDMA_TYPE_VDMA) {
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA ||
|
|
dma_ctrl_read(chan, XILINX_DMA_REG_DMASR) &
|
|
XILINX_DMA_DMASR_SG_MASK)
|
|
chan->has_sg = true;
|
|
dev_dbg(chan->dev, "ch %d: SG %s\n", chan->id,
|
|
chan->has_sg ? "enabled" : "disabled");
|
|
}
|
|
|
|
/* Initialize the tasklet */
|
|
tasklet_setup(&chan->tasklet, xilinx_dma_do_tasklet);
|
|
|
|
/*
|
|
* Initialize the DMA channel and add it to the DMA engine channels
|
|
* list.
|
|
*/
|
|
chan->common.device = &xdev->common;
|
|
|
|
list_add_tail(&chan->common.device_node, &xdev->common.channels);
|
|
xdev->chan[chan->id] = chan;
|
|
|
|
/* Reset the channel */
|
|
err = xilinx_dma_chan_reset(chan);
|
|
if (err < 0) {
|
|
dev_err(xdev->dev, "Reset channel failed\n");
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_child_probe - Per child node probe
|
|
* It get number of dma-channels per child node from
|
|
* device-tree and initializes all the channels.
|
|
*
|
|
* @xdev: Driver specific device structure
|
|
* @node: Device node
|
|
*
|
|
* Return: 0 always.
|
|
*/
|
|
static int xilinx_dma_child_probe(struct xilinx_dma_device *xdev,
|
|
struct device_node *node)
|
|
{
|
|
int ret, i;
|
|
u32 nr_channels = 1;
|
|
|
|
ret = of_property_read_u32(node, "dma-channels", &nr_channels);
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA && ret < 0)
|
|
dev_warn(xdev->dev, "missing dma-channels property\n");
|
|
|
|
for (i = 0; i < nr_channels; i++) {
|
|
ret = xilinx_dma_chan_probe(xdev, node);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* of_dma_xilinx_xlate - Translation function
|
|
* @dma_spec: Pointer to DMA specifier as found in the device tree
|
|
* @ofdma: Pointer to DMA controller data
|
|
*
|
|
* Return: DMA channel pointer on success and NULL on error
|
|
*/
|
|
static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *ofdma)
|
|
{
|
|
struct xilinx_dma_device *xdev = ofdma->of_dma_data;
|
|
int chan_id = dma_spec->args[0];
|
|
|
|
if (chan_id >= xdev->dma_config->max_channels || !xdev->chan[chan_id])
|
|
return NULL;
|
|
|
|
return dma_get_slave_channel(&xdev->chan[chan_id]->common);
|
|
}
|
|
|
|
static const struct xilinx_dma_config axidma_config = {
|
|
.dmatype = XDMA_TYPE_AXIDMA,
|
|
.clk_init = axidma_clk_init,
|
|
.irq_handler = xilinx_dma_irq_handler,
|
|
.max_channels = XILINX_DMA_MAX_CHANS_PER_DEVICE,
|
|
};
|
|
|
|
static const struct xilinx_dma_config aximcdma_config = {
|
|
.dmatype = XDMA_TYPE_AXIMCDMA,
|
|
.clk_init = axidma_clk_init,
|
|
.irq_handler = xilinx_mcdma_irq_handler,
|
|
.max_channels = XILINX_MCDMA_MAX_CHANS_PER_DEVICE,
|
|
};
|
|
static const struct xilinx_dma_config axicdma_config = {
|
|
.dmatype = XDMA_TYPE_CDMA,
|
|
.clk_init = axicdma_clk_init,
|
|
.irq_handler = xilinx_dma_irq_handler,
|
|
.max_channels = XILINX_CDMA_MAX_CHANS_PER_DEVICE,
|
|
};
|
|
|
|
static const struct xilinx_dma_config axivdma_config = {
|
|
.dmatype = XDMA_TYPE_VDMA,
|
|
.clk_init = axivdma_clk_init,
|
|
.irq_handler = xilinx_dma_irq_handler,
|
|
.max_channels = XILINX_DMA_MAX_CHANS_PER_DEVICE,
|
|
};
|
|
|
|
static const struct of_device_id xilinx_dma_of_ids[] = {
|
|
{ .compatible = "xlnx,axi-dma-1.00.a", .data = &axidma_config },
|
|
{ .compatible = "xlnx,axi-cdma-1.00.a", .data = &axicdma_config },
|
|
{ .compatible = "xlnx,axi-vdma-1.00.a", .data = &axivdma_config },
|
|
{ .compatible = "xlnx,axi-mcdma-1.00.a", .data = &aximcdma_config },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, xilinx_dma_of_ids);
|
|
|
|
/**
|
|
* xilinx_dma_probe - Driver probe function
|
|
* @pdev: Pointer to the platform_device structure
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_probe(struct platform_device *pdev)
|
|
{
|
|
int (*clk_init)(struct platform_device *, struct clk **, struct clk **,
|
|
struct clk **, struct clk **, struct clk **)
|
|
= axivdma_clk_init;
|
|
struct device_node *node = pdev->dev.of_node;
|
|
struct xilinx_dma_device *xdev;
|
|
struct device_node *child, *np = pdev->dev.of_node;
|
|
u32 num_frames, addr_width, len_width;
|
|
int i, err;
|
|
|
|
/* Allocate and initialize the DMA engine structure */
|
|
xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
|
|
if (!xdev)
|
|
return -ENOMEM;
|
|
|
|
xdev->dev = &pdev->dev;
|
|
if (np) {
|
|
const struct of_device_id *match;
|
|
|
|
match = of_match_node(xilinx_dma_of_ids, np);
|
|
if (match && match->data) {
|
|
xdev->dma_config = match->data;
|
|
clk_init = xdev->dma_config->clk_init;
|
|
}
|
|
}
|
|
|
|
err = clk_init(pdev, &xdev->axi_clk, &xdev->tx_clk, &xdev->txs_clk,
|
|
&xdev->rx_clk, &xdev->rxs_clk);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Request and map I/O memory */
|
|
xdev->regs = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(xdev->regs))
|
|
return PTR_ERR(xdev->regs);
|
|
|
|
/* Retrieve the DMA engine properties from the device tree */
|
|
xdev->max_buffer_len = GENMASK(XILINX_DMA_MAX_TRANS_LEN_MAX - 1, 0);
|
|
xdev->s2mm_chan_id = xdev->dma_config->max_channels / 2;
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA ||
|
|
xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) {
|
|
if (!of_property_read_u32(node, "xlnx,sg-length-width",
|
|
&len_width)) {
|
|
if (len_width < XILINX_DMA_MAX_TRANS_LEN_MIN ||
|
|
len_width > XILINX_DMA_V2_MAX_TRANS_LEN_MAX) {
|
|
dev_warn(xdev->dev,
|
|
"invalid xlnx,sg-length-width property value. Using default width\n");
|
|
} else {
|
|
if (len_width > XILINX_DMA_MAX_TRANS_LEN_MAX)
|
|
dev_warn(xdev->dev, "Please ensure that IP supports buffer length > 23 bits\n");
|
|
xdev->max_buffer_len =
|
|
GENMASK(len_width - 1, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
err = of_property_read_u32(node, "xlnx,num-fstores",
|
|
&num_frames);
|
|
if (err < 0) {
|
|
dev_err(xdev->dev,
|
|
"missing xlnx,num-fstores property\n");
|
|
return err;
|
|
}
|
|
|
|
err = of_property_read_u32(node, "xlnx,flush-fsync",
|
|
&xdev->flush_on_fsync);
|
|
if (err < 0)
|
|
dev_warn(xdev->dev,
|
|
"missing xlnx,flush-fsync property\n");
|
|
}
|
|
|
|
err = of_property_read_u32(node, "xlnx,addrwidth", &addr_width);
|
|
if (err < 0)
|
|
dev_warn(xdev->dev, "missing xlnx,addrwidth property\n");
|
|
|
|
if (addr_width > 32)
|
|
xdev->ext_addr = true;
|
|
else
|
|
xdev->ext_addr = false;
|
|
|
|
/* Set the dma mask bits */
|
|
dma_set_mask_and_coherent(xdev->dev, DMA_BIT_MASK(addr_width));
|
|
|
|
/* Initialize the DMA engine */
|
|
xdev->common.dev = &pdev->dev;
|
|
|
|
INIT_LIST_HEAD(&xdev->common.channels);
|
|
if (!(xdev->dma_config->dmatype == XDMA_TYPE_CDMA)) {
|
|
dma_cap_set(DMA_SLAVE, xdev->common.cap_mask);
|
|
dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask);
|
|
}
|
|
|
|
xdev->common.device_alloc_chan_resources =
|
|
xilinx_dma_alloc_chan_resources;
|
|
xdev->common.device_free_chan_resources =
|
|
xilinx_dma_free_chan_resources;
|
|
xdev->common.device_terminate_all = xilinx_dma_terminate_all;
|
|
xdev->common.device_synchronize = xilinx_dma_synchronize;
|
|
xdev->common.device_tx_status = xilinx_dma_tx_status;
|
|
xdev->common.device_issue_pending = xilinx_dma_issue_pending;
|
|
xdev->common.device_config = xilinx_dma_device_config;
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
dma_cap_set(DMA_CYCLIC, xdev->common.cap_mask);
|
|
xdev->common.device_prep_slave_sg = xilinx_dma_prep_slave_sg;
|
|
xdev->common.device_prep_dma_cyclic =
|
|
xilinx_dma_prep_dma_cyclic;
|
|
/* Residue calculation is supported by only AXI DMA and CDMA */
|
|
xdev->common.residue_granularity =
|
|
DMA_RESIDUE_GRANULARITY_SEGMENT;
|
|
} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask);
|
|
dma_cap_set(DMA_MEMCPY_SG, xdev->common.cap_mask);
|
|
xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy;
|
|
xdev->common.device_prep_dma_memcpy_sg = xilinx_cdma_prep_memcpy_sg;
|
|
/* Residue calculation is supported by only AXI DMA and CDMA */
|
|
xdev->common.residue_granularity =
|
|
DMA_RESIDUE_GRANULARITY_SEGMENT;
|
|
} else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) {
|
|
xdev->common.device_prep_slave_sg = xilinx_mcdma_prep_slave_sg;
|
|
} else {
|
|
xdev->common.device_prep_interleaved_dma =
|
|
xilinx_vdma_dma_prep_interleaved;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, xdev);
|
|
|
|
/* Initialize the channels */
|
|
for_each_child_of_node(node, child) {
|
|
err = xilinx_dma_child_probe(xdev, child);
|
|
if (err < 0)
|
|
goto disable_clks;
|
|
}
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
for (i = 0; i < xdev->dma_config->max_channels; i++)
|
|
if (xdev->chan[i])
|
|
xdev->chan[i]->num_frms = num_frames;
|
|
}
|
|
|
|
/* Register the DMA engine with the core */
|
|
err = dma_async_device_register(&xdev->common);
|
|
if (err) {
|
|
dev_err(xdev->dev, "failed to register the dma device\n");
|
|
goto error;
|
|
}
|
|
|
|
err = of_dma_controller_register(node, of_dma_xilinx_xlate,
|
|
xdev);
|
|
if (err < 0) {
|
|
dev_err(&pdev->dev, "Unable to register DMA to DT\n");
|
|
dma_async_device_unregister(&xdev->common);
|
|
goto error;
|
|
}
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA)
|
|
dev_info(&pdev->dev, "Xilinx AXI DMA Engine Driver Probed!!\n");
|
|
else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA)
|
|
dev_info(&pdev->dev, "Xilinx AXI CDMA Engine Driver Probed!!\n");
|
|
else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA)
|
|
dev_info(&pdev->dev, "Xilinx AXI MCDMA Engine Driver Probed!!\n");
|
|
else
|
|
dev_info(&pdev->dev, "Xilinx AXI VDMA Engine Driver Probed!!\n");
|
|
|
|
return 0;
|
|
|
|
disable_clks:
|
|
xdma_disable_allclks(xdev);
|
|
error:
|
|
for (i = 0; i < xdev->dma_config->max_channels; i++)
|
|
if (xdev->chan[i])
|
|
xilinx_dma_chan_remove(xdev->chan[i]);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_remove - Driver remove function
|
|
* @pdev: Pointer to the platform_device structure
|
|
*
|
|
* Return: Always '0'
|
|
*/
|
|
static int xilinx_dma_remove(struct platform_device *pdev)
|
|
{
|
|
struct xilinx_dma_device *xdev = platform_get_drvdata(pdev);
|
|
int i;
|
|
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
|
|
dma_async_device_unregister(&xdev->common);
|
|
|
|
for (i = 0; i < xdev->dma_config->max_channels; i++)
|
|
if (xdev->chan[i])
|
|
xilinx_dma_chan_remove(xdev->chan[i]);
|
|
|
|
xdma_disable_allclks(xdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver xilinx_vdma_driver = {
|
|
.driver = {
|
|
.name = "xilinx-vdma",
|
|
.of_match_table = xilinx_dma_of_ids,
|
|
},
|
|
.probe = xilinx_dma_probe,
|
|
.remove = xilinx_dma_remove,
|
|
};
|
|
|
|
module_platform_driver(xilinx_vdma_driver);
|
|
|
|
MODULE_AUTHOR("Xilinx, Inc.");
|
|
MODULE_DESCRIPTION("Xilinx VDMA driver");
|
|
MODULE_LICENSE("GPL v2");
|