5cd213b0fe
It turns out that the log can consume nearly all the space in an AG, and when this happens this it's possible that there will be less free space in the AG than the reservation would try to hide. On a debug kernel this can trigger an ASSERT in xfs/250: XFS: Assertion failed: xfs_perag_resv(pag, XFS_AG_RESV_METADATA)->ar_reserved + xfs_perag_resv(pag, XFS_AG_RESV_RMAPBT)->ar_reserved <= pag->pagf_freeblks + pag->pagf_flcount, file: fs/xfs/libxfs/xfs_ag_resv.c, line: 319 The log is permanently allocated, so we know we're never going to have to expand the btrees to hold any records associated with the log space. We therefore can treat the space as if it doesn't exist. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com>
624 lines
15 KiB
C
624 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_cksum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_rmap.h"
|
|
|
|
|
|
STATIC int
|
|
xfs_inobt_get_minrecs(
|
|
struct xfs_btree_cur *cur,
|
|
int level)
|
|
{
|
|
return cur->bc_mp->m_inobt_mnr[level != 0];
|
|
}
|
|
|
|
STATIC struct xfs_btree_cur *
|
|
xfs_inobt_dup_cursor(
|
|
struct xfs_btree_cur *cur)
|
|
{
|
|
return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
|
|
cur->bc_private.a.agbp, cur->bc_private.a.agno,
|
|
cur->bc_btnum);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inobt_set_root(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *nptr,
|
|
int inc) /* level change */
|
|
{
|
|
struct xfs_buf *agbp = cur->bc_private.a.agbp;
|
|
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
|
|
|
|
agi->agi_root = nptr->s;
|
|
be32_add_cpu(&agi->agi_level, inc);
|
|
xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_finobt_set_root(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *nptr,
|
|
int inc) /* level change */
|
|
{
|
|
struct xfs_buf *agbp = cur->bc_private.a.agbp;
|
|
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
|
|
|
|
agi->agi_free_root = nptr->s;
|
|
be32_add_cpu(&agi->agi_free_level, inc);
|
|
xfs_ialloc_log_agi(cur->bc_tp, agbp,
|
|
XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
|
|
}
|
|
|
|
STATIC int
|
|
__xfs_inobt_alloc_block(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *start,
|
|
union xfs_btree_ptr *new,
|
|
int *stat,
|
|
enum xfs_ag_resv_type resv)
|
|
{
|
|
xfs_alloc_arg_t args; /* block allocation args */
|
|
int error; /* error return value */
|
|
xfs_agblock_t sbno = be32_to_cpu(start->s);
|
|
|
|
memset(&args, 0, sizeof(args));
|
|
args.tp = cur->bc_tp;
|
|
args.mp = cur->bc_mp;
|
|
args.oinfo = XFS_RMAP_OINFO_INOBT;
|
|
args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
|
|
args.minlen = 1;
|
|
args.maxlen = 1;
|
|
args.prod = 1;
|
|
args.type = XFS_ALLOCTYPE_NEAR_BNO;
|
|
args.resv = resv;
|
|
|
|
error = xfs_alloc_vextent(&args);
|
|
if (error)
|
|
return error;
|
|
|
|
if (args.fsbno == NULLFSBLOCK) {
|
|
*stat = 0;
|
|
return 0;
|
|
}
|
|
ASSERT(args.len == 1);
|
|
|
|
new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
|
|
*stat = 1;
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_inobt_alloc_block(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *start,
|
|
union xfs_btree_ptr *new,
|
|
int *stat)
|
|
{
|
|
return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_finobt_alloc_block(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *start,
|
|
union xfs_btree_ptr *new,
|
|
int *stat)
|
|
{
|
|
if (cur->bc_mp->m_finobt_nores)
|
|
return xfs_inobt_alloc_block(cur, start, new, stat);
|
|
return __xfs_inobt_alloc_block(cur, start, new, stat,
|
|
XFS_AG_RESV_METADATA);
|
|
}
|
|
|
|
STATIC int
|
|
__xfs_inobt_free_block(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp,
|
|
enum xfs_ag_resv_type resv)
|
|
{
|
|
return xfs_free_extent(cur->bc_tp,
|
|
XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
|
|
&XFS_RMAP_OINFO_INOBT, resv);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_inobt_free_block(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp)
|
|
{
|
|
return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_finobt_free_block(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (cur->bc_mp->m_finobt_nores)
|
|
return xfs_inobt_free_block(cur, bp);
|
|
return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_inobt_get_maxrecs(
|
|
struct xfs_btree_cur *cur,
|
|
int level)
|
|
{
|
|
return cur->bc_mp->m_inobt_mxr[level != 0];
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inobt_init_key_from_rec(
|
|
union xfs_btree_key *key,
|
|
union xfs_btree_rec *rec)
|
|
{
|
|
key->inobt.ir_startino = rec->inobt.ir_startino;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inobt_init_high_key_from_rec(
|
|
union xfs_btree_key *key,
|
|
union xfs_btree_rec *rec)
|
|
{
|
|
__u32 x;
|
|
|
|
x = be32_to_cpu(rec->inobt.ir_startino);
|
|
x += XFS_INODES_PER_CHUNK - 1;
|
|
key->inobt.ir_startino = cpu_to_be32(x);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inobt_init_rec_from_cur(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_rec *rec)
|
|
{
|
|
rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
|
|
if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
|
|
rec->inobt.ir_u.sp.ir_holemask =
|
|
cpu_to_be16(cur->bc_rec.i.ir_holemask);
|
|
rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
|
|
rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
|
|
} else {
|
|
/* ir_holemask/ir_count not supported on-disk */
|
|
rec->inobt.ir_u.f.ir_freecount =
|
|
cpu_to_be32(cur->bc_rec.i.ir_freecount);
|
|
}
|
|
rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
|
|
}
|
|
|
|
/*
|
|
* initial value of ptr for lookup
|
|
*/
|
|
STATIC void
|
|
xfs_inobt_init_ptr_from_cur(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr)
|
|
{
|
|
struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
|
|
|
|
ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
|
|
|
|
ptr->s = agi->agi_root;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_finobt_init_ptr_from_cur(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr)
|
|
{
|
|
struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
|
|
|
|
ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
|
|
ptr->s = agi->agi_free_root;
|
|
}
|
|
|
|
STATIC int64_t
|
|
xfs_inobt_key_diff(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *key)
|
|
{
|
|
return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
|
|
cur->bc_rec.i.ir_startino;
|
|
}
|
|
|
|
STATIC int64_t
|
|
xfs_inobt_diff_two_keys(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *k1,
|
|
union xfs_btree_key *k2)
|
|
{
|
|
return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
|
|
be32_to_cpu(k2->inobt.ir_startino);
|
|
}
|
|
|
|
static xfs_failaddr_t
|
|
xfs_inobt_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
xfs_failaddr_t fa;
|
|
unsigned int level;
|
|
|
|
if (!xfs_verify_magic(bp, block->bb_magic))
|
|
return __this_address;
|
|
|
|
/*
|
|
* During growfs operations, we can't verify the exact owner as the
|
|
* perag is not fully initialised and hence not attached to the buffer.
|
|
*
|
|
* Similarly, during log recovery we will have a perag structure
|
|
* attached, but the agi information will not yet have been initialised
|
|
* from the on disk AGI. We don't currently use any of this information,
|
|
* but beware of the landmine (i.e. need to check pag->pagi_init) if we
|
|
* ever do.
|
|
*/
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
fa = xfs_btree_sblock_v5hdr_verify(bp);
|
|
if (fa)
|
|
return fa;
|
|
}
|
|
|
|
/* level verification */
|
|
level = be16_to_cpu(block->bb_level);
|
|
if (level >= mp->m_in_maxlevels)
|
|
return __this_address;
|
|
|
|
return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
|
|
}
|
|
|
|
static void
|
|
xfs_inobt_read_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
xfs_failaddr_t fa;
|
|
|
|
if (!xfs_btree_sblock_verify_crc(bp))
|
|
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
|
|
else {
|
|
fa = xfs_inobt_verify(bp);
|
|
if (fa)
|
|
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
|
|
}
|
|
|
|
if (bp->b_error)
|
|
trace_xfs_btree_corrupt(bp, _RET_IP_);
|
|
}
|
|
|
|
static void
|
|
xfs_inobt_write_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
xfs_failaddr_t fa;
|
|
|
|
fa = xfs_inobt_verify(bp);
|
|
if (fa) {
|
|
trace_xfs_btree_corrupt(bp, _RET_IP_);
|
|
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
|
|
return;
|
|
}
|
|
xfs_btree_sblock_calc_crc(bp);
|
|
|
|
}
|
|
|
|
const struct xfs_buf_ops xfs_inobt_buf_ops = {
|
|
.name = "xfs_inobt",
|
|
.magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
|
|
.verify_read = xfs_inobt_read_verify,
|
|
.verify_write = xfs_inobt_write_verify,
|
|
.verify_struct = xfs_inobt_verify,
|
|
};
|
|
|
|
const struct xfs_buf_ops xfs_finobt_buf_ops = {
|
|
.name = "xfs_finobt",
|
|
.magic = { cpu_to_be32(XFS_FIBT_MAGIC),
|
|
cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
|
|
.verify_read = xfs_inobt_read_verify,
|
|
.verify_write = xfs_inobt_write_verify,
|
|
.verify_struct = xfs_inobt_verify,
|
|
};
|
|
|
|
STATIC int
|
|
xfs_inobt_keys_inorder(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *k1,
|
|
union xfs_btree_key *k2)
|
|
{
|
|
return be32_to_cpu(k1->inobt.ir_startino) <
|
|
be32_to_cpu(k2->inobt.ir_startino);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_inobt_recs_inorder(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_rec *r1,
|
|
union xfs_btree_rec *r2)
|
|
{
|
|
return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
|
|
be32_to_cpu(r2->inobt.ir_startino);
|
|
}
|
|
|
|
static const struct xfs_btree_ops xfs_inobt_ops = {
|
|
.rec_len = sizeof(xfs_inobt_rec_t),
|
|
.key_len = sizeof(xfs_inobt_key_t),
|
|
|
|
.dup_cursor = xfs_inobt_dup_cursor,
|
|
.set_root = xfs_inobt_set_root,
|
|
.alloc_block = xfs_inobt_alloc_block,
|
|
.free_block = xfs_inobt_free_block,
|
|
.get_minrecs = xfs_inobt_get_minrecs,
|
|
.get_maxrecs = xfs_inobt_get_maxrecs,
|
|
.init_key_from_rec = xfs_inobt_init_key_from_rec,
|
|
.init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
|
|
.init_rec_from_cur = xfs_inobt_init_rec_from_cur,
|
|
.init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
|
|
.key_diff = xfs_inobt_key_diff,
|
|
.buf_ops = &xfs_inobt_buf_ops,
|
|
.diff_two_keys = xfs_inobt_diff_two_keys,
|
|
.keys_inorder = xfs_inobt_keys_inorder,
|
|
.recs_inorder = xfs_inobt_recs_inorder,
|
|
};
|
|
|
|
static const struct xfs_btree_ops xfs_finobt_ops = {
|
|
.rec_len = sizeof(xfs_inobt_rec_t),
|
|
.key_len = sizeof(xfs_inobt_key_t),
|
|
|
|
.dup_cursor = xfs_inobt_dup_cursor,
|
|
.set_root = xfs_finobt_set_root,
|
|
.alloc_block = xfs_finobt_alloc_block,
|
|
.free_block = xfs_finobt_free_block,
|
|
.get_minrecs = xfs_inobt_get_minrecs,
|
|
.get_maxrecs = xfs_inobt_get_maxrecs,
|
|
.init_key_from_rec = xfs_inobt_init_key_from_rec,
|
|
.init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
|
|
.init_rec_from_cur = xfs_inobt_init_rec_from_cur,
|
|
.init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
|
|
.key_diff = xfs_inobt_key_diff,
|
|
.buf_ops = &xfs_finobt_buf_ops,
|
|
.diff_two_keys = xfs_inobt_diff_two_keys,
|
|
.keys_inorder = xfs_inobt_keys_inorder,
|
|
.recs_inorder = xfs_inobt_recs_inorder,
|
|
};
|
|
|
|
/*
|
|
* Allocate a new inode btree cursor.
|
|
*/
|
|
struct xfs_btree_cur * /* new inode btree cursor */
|
|
xfs_inobt_init_cursor(
|
|
struct xfs_mount *mp, /* file system mount point */
|
|
struct xfs_trans *tp, /* transaction pointer */
|
|
struct xfs_buf *agbp, /* buffer for agi structure */
|
|
xfs_agnumber_t agno, /* allocation group number */
|
|
xfs_btnum_t btnum) /* ialloc or free ino btree */
|
|
{
|
|
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
|
|
struct xfs_btree_cur *cur;
|
|
|
|
cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
|
|
|
|
cur->bc_tp = tp;
|
|
cur->bc_mp = mp;
|
|
cur->bc_btnum = btnum;
|
|
if (btnum == XFS_BTNUM_INO) {
|
|
cur->bc_nlevels = be32_to_cpu(agi->agi_level);
|
|
cur->bc_ops = &xfs_inobt_ops;
|
|
cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
|
|
} else {
|
|
cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
|
|
cur->bc_ops = &xfs_finobt_ops;
|
|
cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
|
|
}
|
|
|
|
cur->bc_blocklog = mp->m_sb.sb_blocklog;
|
|
|
|
if (xfs_sb_version_hascrc(&mp->m_sb))
|
|
cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
|
|
|
|
cur->bc_private.a.agbp = agbp;
|
|
cur->bc_private.a.agno = agno;
|
|
|
|
return cur;
|
|
}
|
|
|
|
/*
|
|
* Calculate number of records in an inobt btree block.
|
|
*/
|
|
int
|
|
xfs_inobt_maxrecs(
|
|
struct xfs_mount *mp,
|
|
int blocklen,
|
|
int leaf)
|
|
{
|
|
blocklen -= XFS_INOBT_BLOCK_LEN(mp);
|
|
|
|
if (leaf)
|
|
return blocklen / sizeof(xfs_inobt_rec_t);
|
|
return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
|
|
}
|
|
|
|
/*
|
|
* Convert the inode record holemask to an inode allocation bitmap. The inode
|
|
* allocation bitmap is inode granularity and specifies whether an inode is
|
|
* physically allocated on disk (not whether the inode is considered allocated
|
|
* or free by the fs).
|
|
*
|
|
* A bit value of 1 means the inode is allocated, a value of 0 means it is free.
|
|
*/
|
|
uint64_t
|
|
xfs_inobt_irec_to_allocmask(
|
|
struct xfs_inobt_rec_incore *rec)
|
|
{
|
|
uint64_t bitmap = 0;
|
|
uint64_t inodespbit;
|
|
int nextbit;
|
|
uint allocbitmap;
|
|
|
|
/*
|
|
* The holemask has 16-bits for a 64 inode record. Therefore each
|
|
* holemask bit represents multiple inodes. Create a mask of bits to set
|
|
* in the allocmask for each holemask bit.
|
|
*/
|
|
inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
|
|
|
|
/*
|
|
* Allocated inodes are represented by 0 bits in holemask. Invert the 0
|
|
* bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
|
|
* anything beyond the 16 holemask bits since this casts to a larger
|
|
* type.
|
|
*/
|
|
allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
|
|
|
|
/*
|
|
* allocbitmap is the inverted holemask so every set bit represents
|
|
* allocated inodes. To expand from 16-bit holemask granularity to
|
|
* 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
|
|
* bitmap for every holemask bit.
|
|
*/
|
|
nextbit = xfs_next_bit(&allocbitmap, 1, 0);
|
|
while (nextbit != -1) {
|
|
ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
|
|
|
|
bitmap |= (inodespbit <<
|
|
(nextbit * XFS_INODES_PER_HOLEMASK_BIT));
|
|
|
|
nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
|
|
}
|
|
|
|
return bitmap;
|
|
}
|
|
|
|
#if defined(DEBUG) || defined(XFS_WARN)
|
|
/*
|
|
* Verify that an in-core inode record has a valid inode count.
|
|
*/
|
|
int
|
|
xfs_inobt_rec_check_count(
|
|
struct xfs_mount *mp,
|
|
struct xfs_inobt_rec_incore *rec)
|
|
{
|
|
int inocount = 0;
|
|
int nextbit = 0;
|
|
uint64_t allocbmap;
|
|
int wordsz;
|
|
|
|
wordsz = sizeof(allocbmap) / sizeof(unsigned int);
|
|
allocbmap = xfs_inobt_irec_to_allocmask(rec);
|
|
|
|
nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
|
|
while (nextbit != -1) {
|
|
inocount++;
|
|
nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
|
|
nextbit + 1);
|
|
}
|
|
|
|
if (inocount != rec->ir_count)
|
|
return -EFSCORRUPTED;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
static xfs_extlen_t
|
|
xfs_inobt_max_size(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agno)
|
|
{
|
|
xfs_agblock_t agblocks = xfs_ag_block_count(mp, agno);
|
|
|
|
/* Bail out if we're uninitialized, which can happen in mkfs. */
|
|
if (mp->m_inobt_mxr[0] == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* The log is permanently allocated, so the space it occupies will
|
|
* never be available for the kinds of things that would require btree
|
|
* expansion. We therefore can pretend the space isn't there.
|
|
*/
|
|
if (mp->m_sb.sb_logstart &&
|
|
XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == agno)
|
|
agblocks -= mp->m_sb.sb_logblocks;
|
|
|
|
return xfs_btree_calc_size(mp->m_inobt_mnr,
|
|
(uint64_t)agblocks * mp->m_sb.sb_inopblock /
|
|
XFS_INODES_PER_CHUNK);
|
|
}
|
|
|
|
static int
|
|
xfs_inobt_count_blocks(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
xfs_btnum_t btnum,
|
|
xfs_extlen_t *tree_blocks)
|
|
{
|
|
struct xfs_buf *agbp;
|
|
struct xfs_btree_cur *cur;
|
|
int error;
|
|
|
|
error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
|
|
if (error)
|
|
return error;
|
|
|
|
cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
|
|
error = xfs_btree_count_blocks(cur, tree_blocks);
|
|
xfs_btree_del_cursor(cur, error);
|
|
xfs_trans_brelse(tp, agbp);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Figure out how many blocks to reserve and how many are used by this btree.
|
|
*/
|
|
int
|
|
xfs_finobt_calc_reserves(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
xfs_extlen_t *ask,
|
|
xfs_extlen_t *used)
|
|
{
|
|
xfs_extlen_t tree_len = 0;
|
|
int error;
|
|
|
|
if (!xfs_sb_version_hasfinobt(&mp->m_sb))
|
|
return 0;
|
|
|
|
error = xfs_inobt_count_blocks(mp, tp, agno, XFS_BTNUM_FINO, &tree_len);
|
|
if (error)
|
|
return error;
|
|
|
|
*ask += xfs_inobt_max_size(mp, agno);
|
|
*used += tree_len;
|
|
return 0;
|
|
}
|
|
|
|
/* Calculate the inobt btree size for some records. */
|
|
xfs_extlen_t
|
|
xfs_iallocbt_calc_size(
|
|
struct xfs_mount *mp,
|
|
unsigned long long len)
|
|
{
|
|
return xfs_btree_calc_size(mp->m_inobt_mnr, len);
|
|
}
|