linux/arch/sparc/crypto/sha512_glue.c
Kees Cook 5d26a105b5 crypto: prefix module autoloading with "crypto-"
This prefixes all crypto module loading with "crypto-" so we never run
the risk of exposing module auto-loading to userspace via a crypto API,
as demonstrated by Mathias Krause:

https://lkml.org/lkml/2013/3/4/70

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-11-24 22:43:57 +08:00

229 lines
5.7 KiB
C

/* Glue code for SHA512 hashing optimized for sparc64 crypto opcodes.
*
* This is based largely upon crypto/sha512_generic.c
*
* Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
* Copyright (c) 2003 Kyle McMartin <kyle@debian.org>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <crypto/sha.h>
#include <asm/pstate.h>
#include <asm/elf.h>
#include "opcodes.h"
asmlinkage void sha512_sparc64_transform(u64 *digest, const char *data,
unsigned int rounds);
static int sha512_sparc64_init(struct shash_desc *desc)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
sctx->state[0] = SHA512_H0;
sctx->state[1] = SHA512_H1;
sctx->state[2] = SHA512_H2;
sctx->state[3] = SHA512_H3;
sctx->state[4] = SHA512_H4;
sctx->state[5] = SHA512_H5;
sctx->state[6] = SHA512_H6;
sctx->state[7] = SHA512_H7;
sctx->count[0] = sctx->count[1] = 0;
return 0;
}
static int sha384_sparc64_init(struct shash_desc *desc)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
sctx->state[0] = SHA384_H0;
sctx->state[1] = SHA384_H1;
sctx->state[2] = SHA384_H2;
sctx->state[3] = SHA384_H3;
sctx->state[4] = SHA384_H4;
sctx->state[5] = SHA384_H5;
sctx->state[6] = SHA384_H6;
sctx->state[7] = SHA384_H7;
sctx->count[0] = sctx->count[1] = 0;
return 0;
}
static void __sha512_sparc64_update(struct sha512_state *sctx, const u8 *data,
unsigned int len, unsigned int partial)
{
unsigned int done = 0;
if ((sctx->count[0] += len) < len)
sctx->count[1]++;
if (partial) {
done = SHA512_BLOCK_SIZE - partial;
memcpy(sctx->buf + partial, data, done);
sha512_sparc64_transform(sctx->state, sctx->buf, 1);
}
if (len - done >= SHA512_BLOCK_SIZE) {
const unsigned int rounds = (len - done) / SHA512_BLOCK_SIZE;
sha512_sparc64_transform(sctx->state, data + done, rounds);
done += rounds * SHA512_BLOCK_SIZE;
}
memcpy(sctx->buf, data + done, len - done);
}
static int sha512_sparc64_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
/* Handle the fast case right here */
if (partial + len < SHA512_BLOCK_SIZE) {
if ((sctx->count[0] += len) < len)
sctx->count[1]++;
memcpy(sctx->buf + partial, data, len);
} else
__sha512_sparc64_update(sctx, data, len, partial);
return 0;
}
static int sha512_sparc64_final(struct shash_desc *desc, u8 *out)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
unsigned int i, index, padlen;
__be64 *dst = (__be64 *)out;
__be64 bits[2];
static const u8 padding[SHA512_BLOCK_SIZE] = { 0x80, };
/* Save number of bits */
bits[1] = cpu_to_be64(sctx->count[0] << 3);
bits[0] = cpu_to_be64(sctx->count[1] << 3 | sctx->count[0] >> 61);
/* Pad out to 112 mod 128 and append length */
index = sctx->count[0] % SHA512_BLOCK_SIZE;
padlen = (index < 112) ? (112 - index) : ((SHA512_BLOCK_SIZE+112) - index);
/* We need to fill a whole block for __sha512_sparc64_update() */
if (padlen <= 112) {
if ((sctx->count[0] += padlen) < padlen)
sctx->count[1]++;
memcpy(sctx->buf + index, padding, padlen);
} else {
__sha512_sparc64_update(sctx, padding, padlen, index);
}
__sha512_sparc64_update(sctx, (const u8 *)&bits, sizeof(bits), 112);
/* Store state in digest */
for (i = 0; i < 8; i++)
dst[i] = cpu_to_be64(sctx->state[i]);
/* Wipe context */
memset(sctx, 0, sizeof(*sctx));
return 0;
}
static int sha384_sparc64_final(struct shash_desc *desc, u8 *hash)
{
u8 D[64];
sha512_sparc64_final(desc, D);
memcpy(hash, D, 48);
memset(D, 0, 64);
return 0;
}
static struct shash_alg sha512 = {
.digestsize = SHA512_DIGEST_SIZE,
.init = sha512_sparc64_init,
.update = sha512_sparc64_update,
.final = sha512_sparc64_final,
.descsize = sizeof(struct sha512_state),
.base = {
.cra_name = "sha512",
.cra_driver_name= "sha512-sparc64",
.cra_priority = SPARC_CR_OPCODE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static struct shash_alg sha384 = {
.digestsize = SHA384_DIGEST_SIZE,
.init = sha384_sparc64_init,
.update = sha512_sparc64_update,
.final = sha384_sparc64_final,
.descsize = sizeof(struct sha512_state),
.base = {
.cra_name = "sha384",
.cra_driver_name= "sha384-sparc64",
.cra_priority = SPARC_CR_OPCODE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static bool __init sparc64_has_sha512_opcode(void)
{
unsigned long cfr;
if (!(sparc64_elf_hwcap & HWCAP_SPARC_CRYPTO))
return false;
__asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr));
if (!(cfr & CFR_SHA512))
return false;
return true;
}
static int __init sha512_sparc64_mod_init(void)
{
if (sparc64_has_sha512_opcode()) {
int ret = crypto_register_shash(&sha384);
if (ret < 0)
return ret;
ret = crypto_register_shash(&sha512);
if (ret < 0) {
crypto_unregister_shash(&sha384);
return ret;
}
pr_info("Using sparc64 sha512 opcode optimized SHA-512/SHA-384 implementation\n");
return 0;
}
pr_info("sparc64 sha512 opcode not available.\n");
return -ENODEV;
}
static void __exit sha512_sparc64_mod_fini(void)
{
crypto_unregister_shash(&sha384);
crypto_unregister_shash(&sha512);
}
module_init(sha512_sparc64_mod_init);
module_exit(sha512_sparc64_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA-384 and SHA-512 Secure Hash Algorithm, sparc64 sha512 opcode accelerated");
MODULE_ALIAS_CRYPTO("sha384");
MODULE_ALIAS_CRYPTO("sha512");
#include "crop_devid.c"