dcadda146f
When modifying Stage-2 page tables, we perform cache maintenance to account for non-coherent page table walks. However, this is unnecessary, as page table walks are guaranteed to be coherent in the presence of the virtualization extensions. Per ARM DDI 0406C.c, section B1.7 ("The Virtualization Extensions"), the virtualization extensions mandate the multiprocessing extensions. Per ARM DDI 0406C.c, section B3.10.1 ("General TLB maintenance requirements"), as described in the sub-section titled "TLB maintenance operations and the memory order model", this maintenance is not required in the presence of the multiprocessing extensions. Hence, we need not perform this cache maintenance when modifying Stage-2 entries. This patch removes the logic for performing the redundant maintenance. To ensure visibility and ordering of updates, a dsb(ishst) that was otherwise implicit in the maintenance is folded into kvm_set_pmd() and kvm_set_pte(). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
1974 lines
52 KiB
C
1974 lines
52 KiB
C
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/mman.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/io.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <trace/events/kvm.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_mmio.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/virt.h>
|
|
|
|
#include "trace.h"
|
|
|
|
static pgd_t *boot_hyp_pgd;
|
|
static pgd_t *hyp_pgd;
|
|
static pgd_t *merged_hyp_pgd;
|
|
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
|
|
|
|
static unsigned long hyp_idmap_start;
|
|
static unsigned long hyp_idmap_end;
|
|
static phys_addr_t hyp_idmap_vector;
|
|
|
|
#define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
|
|
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
|
|
|
|
#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
|
|
#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
|
|
|
|
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
|
|
{
|
|
return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
|
|
}
|
|
|
|
/**
|
|
* kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
|
|
* @kvm: pointer to kvm structure.
|
|
*
|
|
* Interface to HYP function to flush all VM TLB entries
|
|
*/
|
|
void kvm_flush_remote_tlbs(struct kvm *kvm)
|
|
{
|
|
kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
|
|
}
|
|
|
|
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
|
{
|
|
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
|
|
}
|
|
|
|
/*
|
|
* D-Cache management functions. They take the page table entries by
|
|
* value, as they are flushing the cache using the kernel mapping (or
|
|
* kmap on 32bit).
|
|
*/
|
|
static void kvm_flush_dcache_pte(pte_t pte)
|
|
{
|
|
__kvm_flush_dcache_pte(pte);
|
|
}
|
|
|
|
static void kvm_flush_dcache_pmd(pmd_t pmd)
|
|
{
|
|
__kvm_flush_dcache_pmd(pmd);
|
|
}
|
|
|
|
static void kvm_flush_dcache_pud(pud_t pud)
|
|
{
|
|
__kvm_flush_dcache_pud(pud);
|
|
}
|
|
|
|
static bool kvm_is_device_pfn(unsigned long pfn)
|
|
{
|
|
return !pfn_valid(pfn);
|
|
}
|
|
|
|
/**
|
|
* stage2_dissolve_pmd() - clear and flush huge PMD entry
|
|
* @kvm: pointer to kvm structure.
|
|
* @addr: IPA
|
|
* @pmd: pmd pointer for IPA
|
|
*
|
|
* Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
|
|
* pages in the range dirty.
|
|
*/
|
|
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
|
|
{
|
|
if (!pmd_thp_or_huge(*pmd))
|
|
return;
|
|
|
|
pmd_clear(pmd);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
put_page(virt_to_page(pmd));
|
|
}
|
|
|
|
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
|
|
int min, int max)
|
|
{
|
|
void *page;
|
|
|
|
BUG_ON(max > KVM_NR_MEM_OBJS);
|
|
if (cache->nobjs >= min)
|
|
return 0;
|
|
while (cache->nobjs < max) {
|
|
page = (void *)__get_free_page(PGALLOC_GFP);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
cache->objects[cache->nobjs++] = page;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
while (mc->nobjs)
|
|
free_page((unsigned long)mc->objects[--mc->nobjs]);
|
|
}
|
|
|
|
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
void *p;
|
|
|
|
BUG_ON(!mc || !mc->nobjs);
|
|
p = mc->objects[--mc->nobjs];
|
|
return p;
|
|
}
|
|
|
|
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
|
|
{
|
|
pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
|
|
stage2_pgd_clear(pgd);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
stage2_pud_free(pud_table);
|
|
put_page(virt_to_page(pgd));
|
|
}
|
|
|
|
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
|
|
{
|
|
pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
|
|
VM_BUG_ON(stage2_pud_huge(*pud));
|
|
stage2_pud_clear(pud);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
stage2_pmd_free(pmd_table);
|
|
put_page(virt_to_page(pud));
|
|
}
|
|
|
|
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
|
|
{
|
|
pte_t *pte_table = pte_offset_kernel(pmd, 0);
|
|
VM_BUG_ON(pmd_thp_or_huge(*pmd));
|
|
pmd_clear(pmd);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
pte_free_kernel(NULL, pte_table);
|
|
put_page(virt_to_page(pmd));
|
|
}
|
|
|
|
/*
|
|
* Unmapping vs dcache management:
|
|
*
|
|
* If a guest maps certain memory pages as uncached, all writes will
|
|
* bypass the data cache and go directly to RAM. However, the CPUs
|
|
* can still speculate reads (not writes) and fill cache lines with
|
|
* data.
|
|
*
|
|
* Those cache lines will be *clean* cache lines though, so a
|
|
* clean+invalidate operation is equivalent to an invalidate
|
|
* operation, because no cache lines are marked dirty.
|
|
*
|
|
* Those clean cache lines could be filled prior to an uncached write
|
|
* by the guest, and the cache coherent IO subsystem would therefore
|
|
* end up writing old data to disk.
|
|
*
|
|
* This is why right after unmapping a page/section and invalidating
|
|
* the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
|
|
* the IO subsystem will never hit in the cache.
|
|
*/
|
|
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
phys_addr_t start_addr = addr;
|
|
pte_t *pte, *start_pte;
|
|
|
|
start_pte = pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
if (!pte_none(*pte)) {
|
|
pte_t old_pte = *pte;
|
|
|
|
kvm_set_pte(pte, __pte(0));
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
|
|
/* No need to invalidate the cache for device mappings */
|
|
if (!kvm_is_device_pfn(pte_pfn(old_pte)))
|
|
kvm_flush_dcache_pte(old_pte);
|
|
|
|
put_page(virt_to_page(pte));
|
|
}
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
|
|
if (stage2_pte_table_empty(start_pte))
|
|
clear_stage2_pmd_entry(kvm, pmd, start_addr);
|
|
}
|
|
|
|
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
phys_addr_t next, start_addr = addr;
|
|
pmd_t *pmd, *start_pmd;
|
|
|
|
start_pmd = pmd = stage2_pmd_offset(pud, addr);
|
|
do {
|
|
next = stage2_pmd_addr_end(addr, end);
|
|
if (!pmd_none(*pmd)) {
|
|
if (pmd_thp_or_huge(*pmd)) {
|
|
pmd_t old_pmd = *pmd;
|
|
|
|
pmd_clear(pmd);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
|
|
kvm_flush_dcache_pmd(old_pmd);
|
|
|
|
put_page(virt_to_page(pmd));
|
|
} else {
|
|
unmap_stage2_ptes(kvm, pmd, addr, next);
|
|
}
|
|
}
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
if (stage2_pmd_table_empty(start_pmd))
|
|
clear_stage2_pud_entry(kvm, pud, start_addr);
|
|
}
|
|
|
|
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
phys_addr_t next, start_addr = addr;
|
|
pud_t *pud, *start_pud;
|
|
|
|
start_pud = pud = stage2_pud_offset(pgd, addr);
|
|
do {
|
|
next = stage2_pud_addr_end(addr, end);
|
|
if (!stage2_pud_none(*pud)) {
|
|
if (stage2_pud_huge(*pud)) {
|
|
pud_t old_pud = *pud;
|
|
|
|
stage2_pud_clear(pud);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
kvm_flush_dcache_pud(old_pud);
|
|
put_page(virt_to_page(pud));
|
|
} else {
|
|
unmap_stage2_pmds(kvm, pud, addr, next);
|
|
}
|
|
}
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
if (stage2_pud_table_empty(start_pud))
|
|
clear_stage2_pgd_entry(kvm, pgd, start_addr);
|
|
}
|
|
|
|
/**
|
|
* unmap_stage2_range -- Clear stage2 page table entries to unmap a range
|
|
* @kvm: The VM pointer
|
|
* @start: The intermediate physical base address of the range to unmap
|
|
* @size: The size of the area to unmap
|
|
*
|
|
* Clear a range of stage-2 mappings, lowering the various ref-counts. Must
|
|
* be called while holding mmu_lock (unless for freeing the stage2 pgd before
|
|
* destroying the VM), otherwise another faulting VCPU may come in and mess
|
|
* with things behind our backs.
|
|
*/
|
|
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
|
|
{
|
|
pgd_t *pgd;
|
|
phys_addr_t addr = start, end = start + size;
|
|
phys_addr_t next;
|
|
|
|
pgd = kvm->arch.pgd + stage2_pgd_index(addr);
|
|
do {
|
|
next = stage2_pgd_addr_end(addr, end);
|
|
if (!stage2_pgd_none(*pgd))
|
|
unmap_stage2_puds(kvm, pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
|
|
kvm_flush_dcache_pte(*pte);
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pmd_t *pmd;
|
|
phys_addr_t next;
|
|
|
|
pmd = stage2_pmd_offset(pud, addr);
|
|
do {
|
|
next = stage2_pmd_addr_end(addr, end);
|
|
if (!pmd_none(*pmd)) {
|
|
if (pmd_thp_or_huge(*pmd))
|
|
kvm_flush_dcache_pmd(*pmd);
|
|
else
|
|
stage2_flush_ptes(kvm, pmd, addr, next);
|
|
}
|
|
} while (pmd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pud_t *pud;
|
|
phys_addr_t next;
|
|
|
|
pud = stage2_pud_offset(pgd, addr);
|
|
do {
|
|
next = stage2_pud_addr_end(addr, end);
|
|
if (!stage2_pud_none(*pud)) {
|
|
if (stage2_pud_huge(*pud))
|
|
kvm_flush_dcache_pud(*pud);
|
|
else
|
|
stage2_flush_pmds(kvm, pud, addr, next);
|
|
}
|
|
} while (pud++, addr = next, addr != end);
|
|
}
|
|
|
|
static void stage2_flush_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
|
|
phys_addr_t next;
|
|
pgd_t *pgd;
|
|
|
|
pgd = kvm->arch.pgd + stage2_pgd_index(addr);
|
|
do {
|
|
next = stage2_pgd_addr_end(addr, end);
|
|
stage2_flush_puds(kvm, pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
/**
|
|
* stage2_flush_vm - Invalidate cache for pages mapped in stage 2
|
|
* @kvm: The struct kvm pointer
|
|
*
|
|
* Go through the stage 2 page tables and invalidate any cache lines
|
|
* backing memory already mapped to the VM.
|
|
*/
|
|
static void stage2_flush_vm(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, slots)
|
|
stage2_flush_memslot(kvm, memslot);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static void clear_hyp_pgd_entry(pgd_t *pgd)
|
|
{
|
|
pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
|
|
pgd_clear(pgd);
|
|
pud_free(NULL, pud_table);
|
|
put_page(virt_to_page(pgd));
|
|
}
|
|
|
|
static void clear_hyp_pud_entry(pud_t *pud)
|
|
{
|
|
pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
|
|
VM_BUG_ON(pud_huge(*pud));
|
|
pud_clear(pud);
|
|
pmd_free(NULL, pmd_table);
|
|
put_page(virt_to_page(pud));
|
|
}
|
|
|
|
static void clear_hyp_pmd_entry(pmd_t *pmd)
|
|
{
|
|
pte_t *pte_table = pte_offset_kernel(pmd, 0);
|
|
VM_BUG_ON(pmd_thp_or_huge(*pmd));
|
|
pmd_clear(pmd);
|
|
pte_free_kernel(NULL, pte_table);
|
|
put_page(virt_to_page(pmd));
|
|
}
|
|
|
|
static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pte_t *pte, *start_pte;
|
|
|
|
start_pte = pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
if (!pte_none(*pte)) {
|
|
kvm_set_pte(pte, __pte(0));
|
|
put_page(virt_to_page(pte));
|
|
}
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
|
|
if (hyp_pte_table_empty(start_pte))
|
|
clear_hyp_pmd_entry(pmd);
|
|
}
|
|
|
|
static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
phys_addr_t next;
|
|
pmd_t *pmd, *start_pmd;
|
|
|
|
start_pmd = pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
/* Hyp doesn't use huge pmds */
|
|
if (!pmd_none(*pmd))
|
|
unmap_hyp_ptes(pmd, addr, next);
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
if (hyp_pmd_table_empty(start_pmd))
|
|
clear_hyp_pud_entry(pud);
|
|
}
|
|
|
|
static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
phys_addr_t next;
|
|
pud_t *pud, *start_pud;
|
|
|
|
start_pud = pud = pud_offset(pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
/* Hyp doesn't use huge puds */
|
|
if (!pud_none(*pud))
|
|
unmap_hyp_pmds(pud, addr, next);
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
if (hyp_pud_table_empty(start_pud))
|
|
clear_hyp_pgd_entry(pgd);
|
|
}
|
|
|
|
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
|
|
{
|
|
pgd_t *pgd;
|
|
phys_addr_t addr = start, end = start + size;
|
|
phys_addr_t next;
|
|
|
|
/*
|
|
* We don't unmap anything from HYP, except at the hyp tear down.
|
|
* Hence, we don't have to invalidate the TLBs here.
|
|
*/
|
|
pgd = pgdp + pgd_index(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (!pgd_none(*pgd))
|
|
unmap_hyp_puds(pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
/**
|
|
* free_hyp_pgds - free Hyp-mode page tables
|
|
*
|
|
* Assumes hyp_pgd is a page table used strictly in Hyp-mode and
|
|
* therefore contains either mappings in the kernel memory area (above
|
|
* PAGE_OFFSET), or device mappings in the vmalloc range (from
|
|
* VMALLOC_START to VMALLOC_END).
|
|
*
|
|
* boot_hyp_pgd should only map two pages for the init code.
|
|
*/
|
|
void free_hyp_pgds(void)
|
|
{
|
|
unsigned long addr;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
|
|
if (boot_hyp_pgd) {
|
|
unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
|
|
free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
|
|
boot_hyp_pgd = NULL;
|
|
}
|
|
|
|
if (hyp_pgd) {
|
|
unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
|
|
for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
|
|
unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
|
|
for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
|
|
unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
|
|
|
|
free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
|
|
hyp_pgd = NULL;
|
|
}
|
|
if (merged_hyp_pgd) {
|
|
clear_page(merged_hyp_pgd);
|
|
free_page((unsigned long)merged_hyp_pgd);
|
|
merged_hyp_pgd = NULL;
|
|
}
|
|
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
}
|
|
|
|
static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
|
|
unsigned long end, unsigned long pfn,
|
|
pgprot_t prot)
|
|
{
|
|
pte_t *pte;
|
|
unsigned long addr;
|
|
|
|
addr = start;
|
|
do {
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
kvm_set_pte(pte, pfn_pte(pfn, prot));
|
|
get_page(virt_to_page(pte));
|
|
kvm_flush_dcache_to_poc(pte, sizeof(*pte));
|
|
pfn++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
|
|
unsigned long end, unsigned long pfn,
|
|
pgprot_t prot)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long addr, next;
|
|
|
|
addr = start;
|
|
do {
|
|
pmd = pmd_offset(pud, addr);
|
|
|
|
BUG_ON(pmd_sect(*pmd));
|
|
|
|
if (pmd_none(*pmd)) {
|
|
pte = pte_alloc_one_kernel(NULL, addr);
|
|
if (!pte) {
|
|
kvm_err("Cannot allocate Hyp pte\n");
|
|
return -ENOMEM;
|
|
}
|
|
pmd_populate_kernel(NULL, pmd, pte);
|
|
get_page(virt_to_page(pmd));
|
|
kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
|
|
}
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
|
|
pfn += (next - addr) >> PAGE_SHIFT;
|
|
} while (addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
|
|
unsigned long end, unsigned long pfn,
|
|
pgprot_t prot)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
unsigned long addr, next;
|
|
int ret;
|
|
|
|
addr = start;
|
|
do {
|
|
pud = pud_offset(pgd, addr);
|
|
|
|
if (pud_none_or_clear_bad(pud)) {
|
|
pmd = pmd_alloc_one(NULL, addr);
|
|
if (!pmd) {
|
|
kvm_err("Cannot allocate Hyp pmd\n");
|
|
return -ENOMEM;
|
|
}
|
|
pud_populate(NULL, pud, pmd);
|
|
get_page(virt_to_page(pud));
|
|
kvm_flush_dcache_to_poc(pud, sizeof(*pud));
|
|
}
|
|
|
|
next = pud_addr_end(addr, end);
|
|
ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
|
|
if (ret)
|
|
return ret;
|
|
pfn += (next - addr) >> PAGE_SHIFT;
|
|
} while (addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __create_hyp_mappings(pgd_t *pgdp,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long pfn, pgprot_t prot)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
unsigned long addr, next;
|
|
int err = 0;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
addr = start & PAGE_MASK;
|
|
end = PAGE_ALIGN(end);
|
|
do {
|
|
pgd = pgdp + pgd_index(addr);
|
|
|
|
if (pgd_none(*pgd)) {
|
|
pud = pud_alloc_one(NULL, addr);
|
|
if (!pud) {
|
|
kvm_err("Cannot allocate Hyp pud\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
pgd_populate(NULL, pgd, pud);
|
|
get_page(virt_to_page(pgd));
|
|
kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
|
|
}
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
|
|
if (err)
|
|
goto out;
|
|
pfn += (next - addr) >> PAGE_SHIFT;
|
|
} while (addr = next, addr != end);
|
|
out:
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
return err;
|
|
}
|
|
|
|
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
|
|
{
|
|
if (!is_vmalloc_addr(kaddr)) {
|
|
BUG_ON(!virt_addr_valid(kaddr));
|
|
return __pa(kaddr);
|
|
} else {
|
|
return page_to_phys(vmalloc_to_page(kaddr)) +
|
|
offset_in_page(kaddr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
|
|
* @from: The virtual kernel start address of the range
|
|
* @to: The virtual kernel end address of the range (exclusive)
|
|
* @prot: The protection to be applied to this range
|
|
*
|
|
* The same virtual address as the kernel virtual address is also used
|
|
* in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
|
|
* physical pages.
|
|
*/
|
|
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
|
|
{
|
|
phys_addr_t phys_addr;
|
|
unsigned long virt_addr;
|
|
unsigned long start = kern_hyp_va((unsigned long)from);
|
|
unsigned long end = kern_hyp_va((unsigned long)to);
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
return 0;
|
|
|
|
start = start & PAGE_MASK;
|
|
end = PAGE_ALIGN(end);
|
|
|
|
for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
|
|
int err;
|
|
|
|
phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
|
|
err = __create_hyp_mappings(hyp_pgd, virt_addr,
|
|
virt_addr + PAGE_SIZE,
|
|
__phys_to_pfn(phys_addr),
|
|
prot);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
|
|
* @from: The kernel start VA of the range
|
|
* @to: The kernel end VA of the range (exclusive)
|
|
* @phys_addr: The physical start address which gets mapped
|
|
*
|
|
* The resulting HYP VA is the same as the kernel VA, modulo
|
|
* HYP_PAGE_OFFSET.
|
|
*/
|
|
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
|
|
{
|
|
unsigned long start = kern_hyp_va((unsigned long)from);
|
|
unsigned long end = kern_hyp_va((unsigned long)to);
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
return 0;
|
|
|
|
/* Check for a valid kernel IO mapping */
|
|
if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
|
|
return -EINVAL;
|
|
|
|
return __create_hyp_mappings(hyp_pgd, start, end,
|
|
__phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
|
|
}
|
|
|
|
/**
|
|
* kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
|
|
* @kvm: The KVM struct pointer for the VM.
|
|
*
|
|
* Allocates only the stage-2 HW PGD level table(s) (can support either full
|
|
* 40-bit input addresses or limited to 32-bit input addresses). Clears the
|
|
* allocated pages.
|
|
*
|
|
* Note we don't need locking here as this is only called when the VM is
|
|
* created, which can only be done once.
|
|
*/
|
|
int kvm_alloc_stage2_pgd(struct kvm *kvm)
|
|
{
|
|
pgd_t *pgd;
|
|
|
|
if (kvm->arch.pgd != NULL) {
|
|
kvm_err("kvm_arch already initialized?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allocate the HW PGD, making sure that each page gets its own refcount */
|
|
pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
kvm->arch.pgd = pgd;
|
|
return 0;
|
|
}
|
|
|
|
static void stage2_unmap_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
hva_t hva = memslot->userspace_addr;
|
|
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t size = PAGE_SIZE * memslot->npages;
|
|
hva_t reg_end = hva + size;
|
|
|
|
/*
|
|
* A memory region could potentially cover multiple VMAs, and any holes
|
|
* between them, so iterate over all of them to find out if we should
|
|
* unmap any of them.
|
|
*
|
|
* +--------------------------------------------+
|
|
* +---------------+----------------+ +----------------+
|
|
* | : VMA 1 | VMA 2 | | VMA 3 : |
|
|
* +---------------+----------------+ +----------------+
|
|
* | memory region |
|
|
* +--------------------------------------------+
|
|
*/
|
|
do {
|
|
struct vm_area_struct *vma = find_vma(current->mm, hva);
|
|
hva_t vm_start, vm_end;
|
|
|
|
if (!vma || vma->vm_start >= reg_end)
|
|
break;
|
|
|
|
/*
|
|
* Take the intersection of this VMA with the memory region
|
|
*/
|
|
vm_start = max(hva, vma->vm_start);
|
|
vm_end = min(reg_end, vma->vm_end);
|
|
|
|
if (!(vma->vm_flags & VM_PFNMAP)) {
|
|
gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
|
|
unmap_stage2_range(kvm, gpa, vm_end - vm_start);
|
|
}
|
|
hva = vm_end;
|
|
} while (hva < reg_end);
|
|
}
|
|
|
|
/**
|
|
* stage2_unmap_vm - Unmap Stage-2 RAM mappings
|
|
* @kvm: The struct kvm pointer
|
|
*
|
|
* Go through the memregions and unmap any reguler RAM
|
|
* backing memory already mapped to the VM.
|
|
*/
|
|
void stage2_unmap_vm(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, slots)
|
|
stage2_unmap_memslot(kvm, memslot);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
/**
|
|
* kvm_free_stage2_pgd - free all stage-2 tables
|
|
* @kvm: The KVM struct pointer for the VM.
|
|
*
|
|
* Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
|
|
* underlying level-2 and level-3 tables before freeing the actual level-1 table
|
|
* and setting the struct pointer to NULL.
|
|
*
|
|
* Note we don't need locking here as this is only called when the VM is
|
|
* destroyed, which can only be done once.
|
|
*/
|
|
void kvm_free_stage2_pgd(struct kvm *kvm)
|
|
{
|
|
if (kvm->arch.pgd == NULL)
|
|
return;
|
|
|
|
unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
|
|
/* Free the HW pgd, one page at a time */
|
|
free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
|
|
kvm->arch.pgd = NULL;
|
|
}
|
|
|
|
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
|
|
pgd = kvm->arch.pgd + stage2_pgd_index(addr);
|
|
if (WARN_ON(stage2_pgd_none(*pgd))) {
|
|
if (!cache)
|
|
return NULL;
|
|
pud = mmu_memory_cache_alloc(cache);
|
|
stage2_pgd_populate(pgd, pud);
|
|
get_page(virt_to_page(pgd));
|
|
}
|
|
|
|
return stage2_pud_offset(pgd, addr);
|
|
}
|
|
|
|
static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pud = stage2_get_pud(kvm, cache, addr);
|
|
if (stage2_pud_none(*pud)) {
|
|
if (!cache)
|
|
return NULL;
|
|
pmd = mmu_memory_cache_alloc(cache);
|
|
stage2_pud_populate(pud, pmd);
|
|
get_page(virt_to_page(pud));
|
|
}
|
|
|
|
return stage2_pmd_offset(pud, addr);
|
|
}
|
|
|
|
static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
|
|
*cache, phys_addr_t addr, const pmd_t *new_pmd)
|
|
{
|
|
pmd_t *pmd, old_pmd;
|
|
|
|
pmd = stage2_get_pmd(kvm, cache, addr);
|
|
VM_BUG_ON(!pmd);
|
|
|
|
/*
|
|
* Mapping in huge pages should only happen through a fault. If a
|
|
* page is merged into a transparent huge page, the individual
|
|
* subpages of that huge page should be unmapped through MMU
|
|
* notifiers before we get here.
|
|
*
|
|
* Merging of CompoundPages is not supported; they should become
|
|
* splitting first, unmapped, merged, and mapped back in on-demand.
|
|
*/
|
|
VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
|
|
|
|
old_pmd = *pmd;
|
|
if (pmd_present(old_pmd)) {
|
|
pmd_clear(pmd);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
} else {
|
|
get_page(virt_to_page(pmd));
|
|
}
|
|
|
|
kvm_set_pmd(pmd, *new_pmd);
|
|
return 0;
|
|
}
|
|
|
|
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr, const pte_t *new_pte,
|
|
unsigned long flags)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte, old_pte;
|
|
bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
|
|
bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
|
|
|
|
VM_BUG_ON(logging_active && !cache);
|
|
|
|
/* Create stage-2 page table mapping - Levels 0 and 1 */
|
|
pmd = stage2_get_pmd(kvm, cache, addr);
|
|
if (!pmd) {
|
|
/*
|
|
* Ignore calls from kvm_set_spte_hva for unallocated
|
|
* address ranges.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* While dirty page logging - dissolve huge PMD, then continue on to
|
|
* allocate page.
|
|
*/
|
|
if (logging_active)
|
|
stage2_dissolve_pmd(kvm, addr, pmd);
|
|
|
|
/* Create stage-2 page mappings - Level 2 */
|
|
if (pmd_none(*pmd)) {
|
|
if (!cache)
|
|
return 0; /* ignore calls from kvm_set_spte_hva */
|
|
pte = mmu_memory_cache_alloc(cache);
|
|
pmd_populate_kernel(NULL, pmd, pte);
|
|
get_page(virt_to_page(pmd));
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
|
|
if (iomap && pte_present(*pte))
|
|
return -EFAULT;
|
|
|
|
/* Create 2nd stage page table mapping - Level 3 */
|
|
old_pte = *pte;
|
|
if (pte_present(old_pte)) {
|
|
kvm_set_pte(pte, __pte(0));
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
} else {
|
|
get_page(virt_to_page(pte));
|
|
}
|
|
|
|
kvm_set_pte(pte, *new_pte);
|
|
return 0;
|
|
}
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
static int stage2_ptep_test_and_clear_young(pte_t *pte)
|
|
{
|
|
if (pte_young(*pte)) {
|
|
*pte = pte_mkold(*pte);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
static int stage2_ptep_test_and_clear_young(pte_t *pte)
|
|
{
|
|
return __ptep_test_and_clear_young(pte);
|
|
}
|
|
#endif
|
|
|
|
static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
|
|
{
|
|
return stage2_ptep_test_and_clear_young((pte_t *)pmd);
|
|
}
|
|
|
|
/**
|
|
* kvm_phys_addr_ioremap - map a device range to guest IPA
|
|
*
|
|
* @kvm: The KVM pointer
|
|
* @guest_ipa: The IPA at which to insert the mapping
|
|
* @pa: The physical address of the device
|
|
* @size: The size of the mapping
|
|
*/
|
|
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
|
|
phys_addr_t pa, unsigned long size, bool writable)
|
|
{
|
|
phys_addr_t addr, end;
|
|
int ret = 0;
|
|
unsigned long pfn;
|
|
struct kvm_mmu_memory_cache cache = { 0, };
|
|
|
|
end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
|
|
pfn = __phys_to_pfn(pa);
|
|
|
|
for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
|
|
pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
|
|
|
|
if (writable)
|
|
pte = kvm_s2pte_mkwrite(pte);
|
|
|
|
ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
|
|
KVM_NR_MEM_OBJS);
|
|
if (ret)
|
|
goto out;
|
|
spin_lock(&kvm->mmu_lock);
|
|
ret = stage2_set_pte(kvm, &cache, addr, &pte,
|
|
KVM_S2PTE_FLAG_IS_IOMAP);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pfn++;
|
|
}
|
|
|
|
out:
|
|
mmu_free_memory_cache(&cache);
|
|
return ret;
|
|
}
|
|
|
|
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
|
|
{
|
|
kvm_pfn_t pfn = *pfnp;
|
|
gfn_t gfn = *ipap >> PAGE_SHIFT;
|
|
|
|
if (PageTransCompoundMap(pfn_to_page(pfn))) {
|
|
unsigned long mask;
|
|
/*
|
|
* The address we faulted on is backed by a transparent huge
|
|
* page. However, because we map the compound huge page and
|
|
* not the individual tail page, we need to transfer the
|
|
* refcount to the head page. We have to be careful that the
|
|
* THP doesn't start to split while we are adjusting the
|
|
* refcounts.
|
|
*
|
|
* We are sure this doesn't happen, because mmu_notifier_retry
|
|
* was successful and we are holding the mmu_lock, so if this
|
|
* THP is trying to split, it will be blocked in the mmu
|
|
* notifier before touching any of the pages, specifically
|
|
* before being able to call __split_huge_page_refcount().
|
|
*
|
|
* We can therefore safely transfer the refcount from PG_tail
|
|
* to PG_head and switch the pfn from a tail page to the head
|
|
* page accordingly.
|
|
*/
|
|
mask = PTRS_PER_PMD - 1;
|
|
VM_BUG_ON((gfn & mask) != (pfn & mask));
|
|
if (pfn & mask) {
|
|
*ipap &= PMD_MASK;
|
|
kvm_release_pfn_clean(pfn);
|
|
pfn &= ~mask;
|
|
kvm_get_pfn(pfn);
|
|
*pfnp = pfn;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_vcpu_trap_is_iabt(vcpu))
|
|
return false;
|
|
|
|
return kvm_vcpu_dabt_iswrite(vcpu);
|
|
}
|
|
|
|
/**
|
|
* stage2_wp_ptes - write protect PMD range
|
|
* @pmd: pointer to pmd entry
|
|
* @addr: range start address
|
|
* @end: range end address
|
|
*/
|
|
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
if (!pte_none(*pte)) {
|
|
if (!kvm_s2pte_readonly(pte))
|
|
kvm_set_s2pte_readonly(pte);
|
|
}
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
/**
|
|
* stage2_wp_pmds - write protect PUD range
|
|
* @pud: pointer to pud entry
|
|
* @addr: range start address
|
|
* @end: range end address
|
|
*/
|
|
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pmd_t *pmd;
|
|
phys_addr_t next;
|
|
|
|
pmd = stage2_pmd_offset(pud, addr);
|
|
|
|
do {
|
|
next = stage2_pmd_addr_end(addr, end);
|
|
if (!pmd_none(*pmd)) {
|
|
if (pmd_thp_or_huge(*pmd)) {
|
|
if (!kvm_s2pmd_readonly(pmd))
|
|
kvm_set_s2pmd_readonly(pmd);
|
|
} else {
|
|
stage2_wp_ptes(pmd, addr, next);
|
|
}
|
|
}
|
|
} while (pmd++, addr = next, addr != end);
|
|
}
|
|
|
|
/**
|
|
* stage2_wp_puds - write protect PGD range
|
|
* @pgd: pointer to pgd entry
|
|
* @addr: range start address
|
|
* @end: range end address
|
|
*
|
|
* Process PUD entries, for a huge PUD we cause a panic.
|
|
*/
|
|
static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pud_t *pud;
|
|
phys_addr_t next;
|
|
|
|
pud = stage2_pud_offset(pgd, addr);
|
|
do {
|
|
next = stage2_pud_addr_end(addr, end);
|
|
if (!stage2_pud_none(*pud)) {
|
|
/* TODO:PUD not supported, revisit later if supported */
|
|
BUG_ON(stage2_pud_huge(*pud));
|
|
stage2_wp_pmds(pud, addr, next);
|
|
}
|
|
} while (pud++, addr = next, addr != end);
|
|
}
|
|
|
|
/**
|
|
* stage2_wp_range() - write protect stage2 memory region range
|
|
* @kvm: The KVM pointer
|
|
* @addr: Start address of range
|
|
* @end: End address of range
|
|
*/
|
|
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pgd_t *pgd;
|
|
phys_addr_t next;
|
|
|
|
pgd = kvm->arch.pgd + stage2_pgd_index(addr);
|
|
do {
|
|
/*
|
|
* Release kvm_mmu_lock periodically if the memory region is
|
|
* large. Otherwise, we may see kernel panics with
|
|
* CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
|
|
* CONFIG_LOCKDEP. Additionally, holding the lock too long
|
|
* will also starve other vCPUs.
|
|
*/
|
|
if (need_resched() || spin_needbreak(&kvm->mmu_lock))
|
|
cond_resched_lock(&kvm->mmu_lock);
|
|
|
|
next = stage2_pgd_addr_end(addr, end);
|
|
if (stage2_pgd_present(*pgd))
|
|
stage2_wp_puds(pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
/**
|
|
* kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
|
|
* @kvm: The KVM pointer
|
|
* @slot: The memory slot to write protect
|
|
*
|
|
* Called to start logging dirty pages after memory region
|
|
* KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
|
|
* all present PMD and PTEs are write protected in the memory region.
|
|
* Afterwards read of dirty page log can be called.
|
|
*
|
|
* Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
|
|
* serializing operations for VM memory regions.
|
|
*/
|
|
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
|
|
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
stage2_wp_range(kvm, start, end);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_flush_remote_tlbs(kvm);
|
|
}
|
|
|
|
/**
|
|
* kvm_mmu_write_protect_pt_masked() - write protect dirty pages
|
|
* @kvm: The KVM pointer
|
|
* @slot: The memory slot associated with mask
|
|
* @gfn_offset: The gfn offset in memory slot
|
|
* @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
|
|
* slot to be write protected
|
|
*
|
|
* Walks bits set in mask write protects the associated pte's. Caller must
|
|
* acquire kvm_mmu_lock.
|
|
*/
|
|
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn_offset, unsigned long mask)
|
|
{
|
|
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
|
|
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
|
|
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
|
|
|
|
stage2_wp_range(kvm, start, end);
|
|
}
|
|
|
|
/*
|
|
* kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
|
|
* dirty pages.
|
|
*
|
|
* It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
|
|
* enable dirty logging for them.
|
|
*/
|
|
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn_offset, unsigned long mask)
|
|
{
|
|
kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
|
|
}
|
|
|
|
static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
|
|
unsigned long size, bool uncached)
|
|
{
|
|
__coherent_cache_guest_page(vcpu, pfn, size, uncached);
|
|
}
|
|
|
|
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
|
struct kvm_memory_slot *memslot, unsigned long hva,
|
|
unsigned long fault_status)
|
|
{
|
|
int ret;
|
|
bool write_fault, writable, hugetlb = false, force_pte = false;
|
|
unsigned long mmu_seq;
|
|
gfn_t gfn = fault_ipa >> PAGE_SHIFT;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
struct vm_area_struct *vma;
|
|
kvm_pfn_t pfn;
|
|
pgprot_t mem_type = PAGE_S2;
|
|
bool fault_ipa_uncached;
|
|
bool logging_active = memslot_is_logging(memslot);
|
|
unsigned long flags = 0;
|
|
|
|
write_fault = kvm_is_write_fault(vcpu);
|
|
if (fault_status == FSC_PERM && !write_fault) {
|
|
kvm_err("Unexpected L2 read permission error\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Let's check if we will get back a huge page backed by hugetlbfs */
|
|
down_read(¤t->mm->mmap_sem);
|
|
vma = find_vma_intersection(current->mm, hva, hva + 1);
|
|
if (unlikely(!vma)) {
|
|
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
|
|
up_read(¤t->mm->mmap_sem);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (is_vm_hugetlb_page(vma) && !logging_active) {
|
|
hugetlb = true;
|
|
gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
|
|
} else {
|
|
/*
|
|
* Pages belonging to memslots that don't have the same
|
|
* alignment for userspace and IPA cannot be mapped using
|
|
* block descriptors even if the pages belong to a THP for
|
|
* the process, because the stage-2 block descriptor will
|
|
* cover more than a single THP and we loose atomicity for
|
|
* unmapping, updates, and splits of the THP or other pages
|
|
* in the stage-2 block range.
|
|
*/
|
|
if ((memslot->userspace_addr & ~PMD_MASK) !=
|
|
((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
|
|
force_pte = true;
|
|
}
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
/* We need minimum second+third level pages */
|
|
ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
|
|
KVM_NR_MEM_OBJS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mmu_seq = vcpu->kvm->mmu_notifier_seq;
|
|
/*
|
|
* Ensure the read of mmu_notifier_seq happens before we call
|
|
* gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
|
|
* the page we just got a reference to gets unmapped before we have a
|
|
* chance to grab the mmu_lock, which ensure that if the page gets
|
|
* unmapped afterwards, the call to kvm_unmap_hva will take it away
|
|
* from us again properly. This smp_rmb() interacts with the smp_wmb()
|
|
* in kvm_mmu_notifier_invalidate_<page|range_end>.
|
|
*/
|
|
smp_rmb();
|
|
|
|
pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
|
|
if (is_error_noslot_pfn(pfn))
|
|
return -EFAULT;
|
|
|
|
if (kvm_is_device_pfn(pfn)) {
|
|
mem_type = PAGE_S2_DEVICE;
|
|
flags |= KVM_S2PTE_FLAG_IS_IOMAP;
|
|
} else if (logging_active) {
|
|
/*
|
|
* Faults on pages in a memslot with logging enabled
|
|
* should not be mapped with huge pages (it introduces churn
|
|
* and performance degradation), so force a pte mapping.
|
|
*/
|
|
force_pte = true;
|
|
flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
|
|
|
|
/*
|
|
* Only actually map the page as writable if this was a write
|
|
* fault.
|
|
*/
|
|
if (!write_fault)
|
|
writable = false;
|
|
}
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (mmu_notifier_retry(kvm, mmu_seq))
|
|
goto out_unlock;
|
|
|
|
if (!hugetlb && !force_pte)
|
|
hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
|
|
|
|
fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
|
|
|
|
if (hugetlb) {
|
|
pmd_t new_pmd = pfn_pmd(pfn, mem_type);
|
|
new_pmd = pmd_mkhuge(new_pmd);
|
|
if (writable) {
|
|
new_pmd = kvm_s2pmd_mkwrite(new_pmd);
|
|
kvm_set_pfn_dirty(pfn);
|
|
}
|
|
coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
|
|
ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
|
|
} else {
|
|
pte_t new_pte = pfn_pte(pfn, mem_type);
|
|
|
|
if (writable) {
|
|
new_pte = kvm_s2pte_mkwrite(new_pte);
|
|
kvm_set_pfn_dirty(pfn);
|
|
mark_page_dirty(kvm, gfn);
|
|
}
|
|
coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
|
|
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_set_pfn_accessed(pfn);
|
|
kvm_release_pfn_clean(pfn);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Resolve the access fault by making the page young again.
|
|
* Note that because the faulting entry is guaranteed not to be
|
|
* cached in the TLB, we don't need to invalidate anything.
|
|
* Only the HW Access Flag updates are supported for Stage 2 (no DBM),
|
|
* so there is no need for atomic (pte|pmd)_mkyoung operations.
|
|
*/
|
|
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
kvm_pfn_t pfn;
|
|
bool pfn_valid = false;
|
|
|
|
trace_kvm_access_fault(fault_ipa);
|
|
|
|
spin_lock(&vcpu->kvm->mmu_lock);
|
|
|
|
pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
|
|
if (!pmd || pmd_none(*pmd)) /* Nothing there */
|
|
goto out;
|
|
|
|
if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
|
|
*pmd = pmd_mkyoung(*pmd);
|
|
pfn = pmd_pfn(*pmd);
|
|
pfn_valid = true;
|
|
goto out;
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, fault_ipa);
|
|
if (pte_none(*pte)) /* Nothing there either */
|
|
goto out;
|
|
|
|
*pte = pte_mkyoung(*pte); /* Just a page... */
|
|
pfn = pte_pfn(*pte);
|
|
pfn_valid = true;
|
|
out:
|
|
spin_unlock(&vcpu->kvm->mmu_lock);
|
|
if (pfn_valid)
|
|
kvm_set_pfn_accessed(pfn);
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_guest_abort - handles all 2nd stage aborts
|
|
* @vcpu: the VCPU pointer
|
|
* @run: the kvm_run structure
|
|
*
|
|
* Any abort that gets to the host is almost guaranteed to be caused by a
|
|
* missing second stage translation table entry, which can mean that either the
|
|
* guest simply needs more memory and we must allocate an appropriate page or it
|
|
* can mean that the guest tried to access I/O memory, which is emulated by user
|
|
* space. The distinction is based on the IPA causing the fault and whether this
|
|
* memory region has been registered as standard RAM by user space.
|
|
*/
|
|
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
unsigned long fault_status;
|
|
phys_addr_t fault_ipa;
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long hva;
|
|
bool is_iabt, write_fault, writable;
|
|
gfn_t gfn;
|
|
int ret, idx;
|
|
|
|
is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
|
|
fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
|
|
|
|
trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
|
|
kvm_vcpu_get_hfar(vcpu), fault_ipa);
|
|
|
|
/* Check the stage-2 fault is trans. fault or write fault */
|
|
fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
|
|
if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
|
|
fault_status != FSC_ACCESS) {
|
|
kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
|
|
kvm_vcpu_trap_get_class(vcpu),
|
|
(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
|
|
(unsigned long)kvm_vcpu_get_hsr(vcpu));
|
|
return -EFAULT;
|
|
}
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
gfn = fault_ipa >> PAGE_SHIFT;
|
|
memslot = gfn_to_memslot(vcpu->kvm, gfn);
|
|
hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
|
|
write_fault = kvm_is_write_fault(vcpu);
|
|
if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
|
|
if (is_iabt) {
|
|
/* Prefetch Abort on I/O address */
|
|
kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Check for a cache maintenance operation. Since we
|
|
* ended-up here, we know it is outside of any memory
|
|
* slot. But we can't find out if that is for a device,
|
|
* or if the guest is just being stupid. The only thing
|
|
* we know for sure is that this range cannot be cached.
|
|
*
|
|
* So let's assume that the guest is just being
|
|
* cautious, and skip the instruction.
|
|
*/
|
|
if (kvm_vcpu_dabt_is_cm(vcpu)) {
|
|
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* The IPA is reported as [MAX:12], so we need to
|
|
* complement it with the bottom 12 bits from the
|
|
* faulting VA. This is always 12 bits, irrespective
|
|
* of the page size.
|
|
*/
|
|
fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
|
|
ret = io_mem_abort(vcpu, run, fault_ipa);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Userspace should not be able to register out-of-bounds IPAs */
|
|
VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
|
|
|
|
if (fault_status == FSC_ACCESS) {
|
|
handle_access_fault(vcpu, fault_ipa);
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
|
|
if (ret == 0)
|
|
ret = 1;
|
|
out_unlock:
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
static int handle_hva_to_gpa(struct kvm *kvm,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
int (*handler)(struct kvm *kvm,
|
|
gpa_t gpa, void *data),
|
|
void *data)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int ret = 0;
|
|
|
|
slots = kvm_memslots(kvm);
|
|
|
|
/* we only care about the pages that the guest sees */
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
unsigned long hva_start, hva_end;
|
|
gfn_t gfn, gfn_end;
|
|
|
|
hva_start = max(start, memslot->userspace_addr);
|
|
hva_end = min(end, memslot->userspace_addr +
|
|
(memslot->npages << PAGE_SHIFT));
|
|
if (hva_start >= hva_end)
|
|
continue;
|
|
|
|
/*
|
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
|
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
|
|
*/
|
|
gfn = hva_to_gfn_memslot(hva_start, memslot);
|
|
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
|
|
|
|
for (; gfn < gfn_end; ++gfn) {
|
|
gpa_t gpa = gfn << PAGE_SHIFT;
|
|
ret |= handler(kvm, gpa, data);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
|
|
{
|
|
unmap_stage2_range(kvm, gpa, PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
unsigned long end = hva + PAGE_SIZE;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return 0;
|
|
|
|
trace_kvm_unmap_hva(hva);
|
|
handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva_range(struct kvm *kvm,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
if (!kvm->arch.pgd)
|
|
return 0;
|
|
|
|
trace_kvm_unmap_hva_range(start, end);
|
|
handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
|
|
{
|
|
pte_t *pte = (pte_t *)data;
|
|
|
|
/*
|
|
* We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
|
|
* flag clear because MMU notifiers will have unmapped a huge PMD before
|
|
* calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
|
|
* therefore stage2_set_pte() never needs to clear out a huge PMD
|
|
* through this calling path.
|
|
*/
|
|
stage2_set_pte(kvm, NULL, gpa, pte, 0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
|
|
{
|
|
unsigned long end = hva + PAGE_SIZE;
|
|
pte_t stage2_pte;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return;
|
|
|
|
trace_kvm_set_spte_hva(hva);
|
|
stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
|
|
handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
|
|
}
|
|
|
|
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pmd = stage2_get_pmd(kvm, NULL, gpa);
|
|
if (!pmd || pmd_none(*pmd)) /* Nothing there */
|
|
return 0;
|
|
|
|
if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
|
|
return stage2_pmdp_test_and_clear_young(pmd);
|
|
|
|
pte = pte_offset_kernel(pmd, gpa);
|
|
if (pte_none(*pte))
|
|
return 0;
|
|
|
|
return stage2_ptep_test_and_clear_young(pte);
|
|
}
|
|
|
|
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pmd = stage2_get_pmd(kvm, NULL, gpa);
|
|
if (!pmd || pmd_none(*pmd)) /* Nothing there */
|
|
return 0;
|
|
|
|
if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
|
|
return pmd_young(*pmd);
|
|
|
|
pte = pte_offset_kernel(pmd, gpa);
|
|
if (!pte_none(*pte)) /* Just a page... */
|
|
return pte_young(*pte);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
|
|
{
|
|
trace_kvm_age_hva(start, end);
|
|
return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
|
|
}
|
|
|
|
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
trace_kvm_test_age_hva(hva);
|
|
return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
|
|
}
|
|
|
|
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
|
|
{
|
|
mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
|
|
}
|
|
|
|
phys_addr_t kvm_mmu_get_httbr(void)
|
|
{
|
|
if (__kvm_cpu_uses_extended_idmap())
|
|
return virt_to_phys(merged_hyp_pgd);
|
|
else
|
|
return virt_to_phys(hyp_pgd);
|
|
}
|
|
|
|
phys_addr_t kvm_get_idmap_vector(void)
|
|
{
|
|
return hyp_idmap_vector;
|
|
}
|
|
|
|
phys_addr_t kvm_get_idmap_start(void)
|
|
{
|
|
return hyp_idmap_start;
|
|
}
|
|
|
|
static int kvm_map_idmap_text(pgd_t *pgd)
|
|
{
|
|
int err;
|
|
|
|
/* Create the idmap in the boot page tables */
|
|
err = __create_hyp_mappings(pgd,
|
|
hyp_idmap_start, hyp_idmap_end,
|
|
__phys_to_pfn(hyp_idmap_start),
|
|
PAGE_HYP_EXEC);
|
|
if (err)
|
|
kvm_err("Failed to idmap %lx-%lx\n",
|
|
hyp_idmap_start, hyp_idmap_end);
|
|
|
|
return err;
|
|
}
|
|
|
|
int kvm_mmu_init(void)
|
|
{
|
|
int err;
|
|
|
|
hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
|
|
hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
|
|
hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
|
|
|
|
/*
|
|
* We rely on the linker script to ensure at build time that the HYP
|
|
* init code does not cross a page boundary.
|
|
*/
|
|
BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
|
|
|
|
kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
|
|
kvm_info("HYP VA range: %lx:%lx\n",
|
|
kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
|
|
|
|
if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
|
|
hyp_idmap_start < kern_hyp_va(~0UL)) {
|
|
/*
|
|
* The idmap page is intersecting with the VA space,
|
|
* it is not safe to continue further.
|
|
*/
|
|
kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
|
|
if (!hyp_pgd) {
|
|
kvm_err("Hyp mode PGD not allocated\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (__kvm_cpu_uses_extended_idmap()) {
|
|
boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
|
hyp_pgd_order);
|
|
if (!boot_hyp_pgd) {
|
|
kvm_err("Hyp boot PGD not allocated\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = kvm_map_idmap_text(boot_hyp_pgd);
|
|
if (err)
|
|
goto out;
|
|
|
|
merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!merged_hyp_pgd) {
|
|
kvm_err("Failed to allocate extra HYP pgd\n");
|
|
goto out;
|
|
}
|
|
__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
|
|
hyp_idmap_start);
|
|
} else {
|
|
err = kvm_map_idmap_text(hyp_pgd);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
out:
|
|
free_hyp_pgds();
|
|
return err;
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
const struct kvm_userspace_memory_region *mem,
|
|
const struct kvm_memory_slot *old,
|
|
const struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
/*
|
|
* At this point memslot has been committed and there is an
|
|
* allocated dirty_bitmap[], dirty pages will be be tracked while the
|
|
* memory slot is write protected.
|
|
*/
|
|
if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
|
|
kvm_mmu_wp_memory_region(kvm, mem->slot);
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
const struct kvm_userspace_memory_region *mem,
|
|
enum kvm_mr_change change)
|
|
{
|
|
hva_t hva = mem->userspace_addr;
|
|
hva_t reg_end = hva + mem->memory_size;
|
|
bool writable = !(mem->flags & KVM_MEM_READONLY);
|
|
int ret = 0;
|
|
|
|
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
|
|
change != KVM_MR_FLAGS_ONLY)
|
|
return 0;
|
|
|
|
/*
|
|
* Prevent userspace from creating a memory region outside of the IPA
|
|
* space addressable by the KVM guest IPA space.
|
|
*/
|
|
if (memslot->base_gfn + memslot->npages >=
|
|
(KVM_PHYS_SIZE >> PAGE_SHIFT))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* A memory region could potentially cover multiple VMAs, and any holes
|
|
* between them, so iterate over all of them to find out if we can map
|
|
* any of them right now.
|
|
*
|
|
* +--------------------------------------------+
|
|
* +---------------+----------------+ +----------------+
|
|
* | : VMA 1 | VMA 2 | | VMA 3 : |
|
|
* +---------------+----------------+ +----------------+
|
|
* | memory region |
|
|
* +--------------------------------------------+
|
|
*/
|
|
do {
|
|
struct vm_area_struct *vma = find_vma(current->mm, hva);
|
|
hva_t vm_start, vm_end;
|
|
|
|
if (!vma || vma->vm_start >= reg_end)
|
|
break;
|
|
|
|
/*
|
|
* Mapping a read-only VMA is only allowed if the
|
|
* memory region is configured as read-only.
|
|
*/
|
|
if (writable && !(vma->vm_flags & VM_WRITE)) {
|
|
ret = -EPERM;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Take the intersection of this VMA with the memory region
|
|
*/
|
|
vm_start = max(hva, vma->vm_start);
|
|
vm_end = min(reg_end, vma->vm_end);
|
|
|
|
if (vma->vm_flags & VM_PFNMAP) {
|
|
gpa_t gpa = mem->guest_phys_addr +
|
|
(vm_start - mem->userspace_addr);
|
|
phys_addr_t pa;
|
|
|
|
pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
|
|
pa += vm_start - vma->vm_start;
|
|
|
|
/* IO region dirty page logging not allowed */
|
|
if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
|
|
return -EINVAL;
|
|
|
|
ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
|
|
vm_end - vm_start,
|
|
writable);
|
|
if (ret)
|
|
break;
|
|
}
|
|
hva = vm_end;
|
|
} while (hva < reg_end);
|
|
|
|
if (change == KVM_MR_FLAGS_ONLY)
|
|
return ret;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (ret)
|
|
unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
|
|
else
|
|
stage2_flush_memslot(kvm, memslot);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
}
|
|
|
|
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
|
|
unsigned long npages)
|
|
{
|
|
/*
|
|
* Readonly memslots are not incoherent with the caches by definition,
|
|
* but in practice, they are used mostly to emulate ROMs or NOR flashes
|
|
* that the guest may consider devices and hence map as uncached.
|
|
* To prevent incoherency issues in these cases, tag all readonly
|
|
* regions as incoherent.
|
|
*/
|
|
if (slot->flags & KVM_MEM_READONLY)
|
|
slot->flags |= KVM_MEMSLOT_INCOHERENT;
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot)
|
|
{
|
|
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t size = slot->npages << PAGE_SHIFT;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
unmap_stage2_range(kvm, gpa, size);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
/*
|
|
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
|
|
*
|
|
* Main problems:
|
|
* - S/W ops are local to a CPU (not broadcast)
|
|
* - We have line migration behind our back (speculation)
|
|
* - System caches don't support S/W at all (damn!)
|
|
*
|
|
* In the face of the above, the best we can do is to try and convert
|
|
* S/W ops to VA ops. Because the guest is not allowed to infer the
|
|
* S/W to PA mapping, it can only use S/W to nuke the whole cache,
|
|
* which is a rather good thing for us.
|
|
*
|
|
* Also, it is only used when turning caches on/off ("The expected
|
|
* usage of the cache maintenance instructions that operate by set/way
|
|
* is associated with the cache maintenance instructions associated
|
|
* with the powerdown and powerup of caches, if this is required by
|
|
* the implementation.").
|
|
*
|
|
* We use the following policy:
|
|
*
|
|
* - If we trap a S/W operation, we enable VM trapping to detect
|
|
* caches being turned on/off, and do a full clean.
|
|
*
|
|
* - We flush the caches on both caches being turned on and off.
|
|
*
|
|
* - Once the caches are enabled, we stop trapping VM ops.
|
|
*/
|
|
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long hcr = vcpu_get_hcr(vcpu);
|
|
|
|
/*
|
|
* If this is the first time we do a S/W operation
|
|
* (i.e. HCR_TVM not set) flush the whole memory, and set the
|
|
* VM trapping.
|
|
*
|
|
* Otherwise, rely on the VM trapping to wait for the MMU +
|
|
* Caches to be turned off. At that point, we'll be able to
|
|
* clean the caches again.
|
|
*/
|
|
if (!(hcr & HCR_TVM)) {
|
|
trace_kvm_set_way_flush(*vcpu_pc(vcpu),
|
|
vcpu_has_cache_enabled(vcpu));
|
|
stage2_flush_vm(vcpu->kvm);
|
|
vcpu_set_hcr(vcpu, hcr | HCR_TVM);
|
|
}
|
|
}
|
|
|
|
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
|
|
{
|
|
bool now_enabled = vcpu_has_cache_enabled(vcpu);
|
|
|
|
/*
|
|
* If switching the MMU+caches on, need to invalidate the caches.
|
|
* If switching it off, need to clean the caches.
|
|
* Clean + invalidate does the trick always.
|
|
*/
|
|
if (now_enabled != was_enabled)
|
|
stage2_flush_vm(vcpu->kvm);
|
|
|
|
/* Caches are now on, stop trapping VM ops (until a S/W op) */
|
|
if (now_enabled)
|
|
vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
|
|
|
|
trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
|
|
}
|