linux/drivers/net/ethernet/intel/igb/e1000_82575.c
Gustavo A. R. Silva 42277cedba igb: mark expected switch fall-through
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.

This patch fixes the following warning:

drivers/net/ethernet/intel/igb/e1000_82575.c: In function ‘igb_get_invariants_82575’:
drivers/net/ethernet/intel/igb/e1000_82575.c:636:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
   if (igb_sgmii_uses_mdio_82575(hw)) {
      ^
drivers/net/ethernet/intel/igb/e1000_82575.c:642:2: note: here
  case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
  ^~~~

Warning level 3 was used: -Wimplicit-fallthrough=3

Notice that, in this particular case, the code comment is modified
in accordance with what GCC is expecting to find.

This patch is part of the ongoing efforts to enable
-Wimplicit-fallthrough.

Signed-off-by: "Gustavo A. R. Silva" <gustavo@embeddedor.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2019-05-28 15:52:37 -07:00

2932 lines
78 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2018 Intel Corporation. */
/* e1000_82575
* e1000_82576
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/types.h>
#include <linux/if_ether.h>
#include <linux/i2c.h>
#include "e1000_mac.h"
#include "e1000_82575.h"
#include "e1000_i210.h"
#include "igb.h"
static s32 igb_get_invariants_82575(struct e1000_hw *);
static s32 igb_acquire_phy_82575(struct e1000_hw *);
static void igb_release_phy_82575(struct e1000_hw *);
static s32 igb_acquire_nvm_82575(struct e1000_hw *);
static void igb_release_nvm_82575(struct e1000_hw *);
static s32 igb_check_for_link_82575(struct e1000_hw *);
static s32 igb_get_cfg_done_82575(struct e1000_hw *);
static s32 igb_init_hw_82575(struct e1000_hw *);
static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
static s32 igb_reset_hw_82575(struct e1000_hw *);
static s32 igb_reset_hw_82580(struct e1000_hw *);
static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
static s32 igb_setup_copper_link_82575(struct e1000_hw *);
static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
u16 *);
static s32 igb_get_phy_id_82575(struct e1000_hw *);
static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
static bool igb_sgmii_active_82575(struct e1000_hw *);
static s32 igb_reset_init_script_82575(struct e1000_hw *);
static s32 igb_read_mac_addr_82575(struct e1000_hw *);
static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
static const u16 e1000_82580_rxpbs_table[] = {
36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
/* Due to a hw errata, if the host tries to configure the VFTA register
* while performing queries from the BMC or DMA, then the VFTA in some
* cases won't be written.
*/
/**
* igb_write_vfta_i350 - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: register offset in VLAN filter table
* @value: register value written to VLAN filter table
*
* Writes value at the given offset in the register array which stores
* the VLAN filter table.
**/
static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
{
struct igb_adapter *adapter = hw->back;
int i;
for (i = 10; i--;)
array_wr32(E1000_VFTA, offset, value);
wrfl();
adapter->shadow_vfta[offset] = value;
}
/**
* igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
* @hw: pointer to the HW structure
*
* Called to determine if the I2C pins are being used for I2C or as an
* external MDIO interface since the two options are mutually exclusive.
**/
static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
{
u32 reg = 0;
bool ext_mdio = false;
switch (hw->mac.type) {
case e1000_82575:
case e1000_82576:
reg = rd32(E1000_MDIC);
ext_mdio = !!(reg & E1000_MDIC_DEST);
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
reg = rd32(E1000_MDICNFG);
ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
break;
default:
break;
}
return ext_mdio;
}
/**
* igb_check_for_link_media_swap - Check which M88E1112 interface linked
* @hw: pointer to the HW structure
*
* Poll the M88E1112 interfaces to see which interface achieved link.
*/
static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
u8 port = 0;
/* Check the copper medium. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
if (ret_val)
return ret_val;
ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
if (ret_val)
return ret_val;
if (data & E1000_M88E1112_STATUS_LINK)
port = E1000_MEDIA_PORT_COPPER;
/* Check the other medium. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
if (ret_val)
return ret_val;
ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
if (ret_val)
return ret_val;
if (data & E1000_M88E1112_STATUS_LINK)
port = E1000_MEDIA_PORT_OTHER;
/* Determine if a swap needs to happen. */
if (port && (hw->dev_spec._82575.media_port != port)) {
hw->dev_spec._82575.media_port = port;
hw->dev_spec._82575.media_changed = true;
}
if (port == E1000_MEDIA_PORT_COPPER) {
/* reset page to 0 */
ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
if (ret_val)
return ret_val;
igb_check_for_link_82575(hw);
} else {
igb_check_for_link_82575(hw);
/* reset page to 0 */
ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
if (ret_val)
return ret_val;
}
return 0;
}
/**
* igb_init_phy_params_82575 - Init PHY func ptrs.
* @hw: pointer to the HW structure
**/
static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u32 ctrl_ext;
if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none;
goto out;
}
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->reset_delay_us = 100;
ctrl_ext = rd32(E1000_CTRL_EXT);
if (igb_sgmii_active_82575(hw)) {
phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
ctrl_ext |= E1000_CTRL_I2C_ENA;
} else {
phy->ops.reset = igb_phy_hw_reset;
ctrl_ext &= ~E1000_CTRL_I2C_ENA;
}
wr32(E1000_CTRL_EXT, ctrl_ext);
igb_reset_mdicnfg_82580(hw);
if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
} else {
switch (hw->mac.type) {
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
phy->ops.read_reg = igb_read_phy_reg_82580;
phy->ops.write_reg = igb_write_phy_reg_82580;
break;
default:
phy->ops.read_reg = igb_read_phy_reg_igp;
phy->ops.write_reg = igb_write_phy_reg_igp;
}
}
/* set lan id */
hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
E1000_STATUS_FUNC_SHIFT;
/* Set phy->phy_addr and phy->id. */
ret_val = igb_get_phy_id_82575(hw);
if (ret_val)
return ret_val;
/* Verify phy id and set remaining function pointers */
switch (phy->id) {
case M88E1543_E_PHY_ID:
case M88E1512_E_PHY_ID:
case I347AT4_E_PHY_ID:
case M88E1112_E_PHY_ID:
case M88E1111_I_PHY_ID:
phy->type = e1000_phy_m88;
phy->ops.check_polarity = igb_check_polarity_m88;
phy->ops.get_phy_info = igb_get_phy_info_m88;
if (phy->id != M88E1111_I_PHY_ID)
phy->ops.get_cable_length =
igb_get_cable_length_m88_gen2;
else
phy->ops.get_cable_length = igb_get_cable_length_m88;
phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
/* Check if this PHY is configured for media swap. */
if (phy->id == M88E1112_E_PHY_ID) {
u16 data;
ret_val = phy->ops.write_reg(hw,
E1000_M88E1112_PAGE_ADDR,
2);
if (ret_val)
goto out;
ret_val = phy->ops.read_reg(hw,
E1000_M88E1112_MAC_CTRL_1,
&data);
if (ret_val)
goto out;
data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
data == E1000_M88E1112_AUTO_COPPER_BASEX)
hw->mac.ops.check_for_link =
igb_check_for_link_media_swap;
}
if (phy->id == M88E1512_E_PHY_ID) {
ret_val = igb_initialize_M88E1512_phy(hw);
if (ret_val)
goto out;
}
if (phy->id == M88E1543_E_PHY_ID) {
ret_val = igb_initialize_M88E1543_phy(hw);
if (ret_val)
goto out;
}
break;
case IGP03E1000_E_PHY_ID:
phy->type = e1000_phy_igp_3;
phy->ops.get_phy_info = igb_get_phy_info_igp;
phy->ops.get_cable_length = igb_get_cable_length_igp_2;
phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
break;
case I82580_I_PHY_ID:
case I350_I_PHY_ID:
phy->type = e1000_phy_82580;
phy->ops.force_speed_duplex =
igb_phy_force_speed_duplex_82580;
phy->ops.get_cable_length = igb_get_cable_length_82580;
phy->ops.get_phy_info = igb_get_phy_info_82580;
phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
break;
case I210_I_PHY_ID:
phy->type = e1000_phy_i210;
phy->ops.check_polarity = igb_check_polarity_m88;
phy->ops.get_cfg_done = igb_get_cfg_done_i210;
phy->ops.get_phy_info = igb_get_phy_info_m88;
phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
break;
case BCM54616_E_PHY_ID:
phy->type = e1000_phy_bcm54616;
break;
default:
ret_val = -E1000_ERR_PHY;
goto out;
}
out:
return ret_val;
}
/**
* igb_init_nvm_params_82575 - Init NVM func ptrs.
* @hw: pointer to the HW structure
**/
static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = rd32(E1000_EECD);
u16 size;
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT);
/* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
/* Just in case size is out of range, cap it to the largest
* EEPROM size supported
*/
if (size > 15)
size = 15;
nvm->word_size = BIT(size);
nvm->opcode_bits = 8;
nvm->delay_usec = 1;
switch (nvm->override) {
case e1000_nvm_override_spi_large:
nvm->page_size = 32;
nvm->address_bits = 16;
break;
case e1000_nvm_override_spi_small:
nvm->page_size = 8;
nvm->address_bits = 8;
break;
default:
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
16 : 8;
break;
}
if (nvm->word_size == BIT(15))
nvm->page_size = 128;
nvm->type = e1000_nvm_eeprom_spi;
/* NVM Function Pointers */
nvm->ops.acquire = igb_acquire_nvm_82575;
nvm->ops.release = igb_release_nvm_82575;
nvm->ops.write = igb_write_nvm_spi;
nvm->ops.validate = igb_validate_nvm_checksum;
nvm->ops.update = igb_update_nvm_checksum;
if (nvm->word_size < BIT(15))
nvm->ops.read = igb_read_nvm_eerd;
else
nvm->ops.read = igb_read_nvm_spi;
/* override generic family function pointers for specific descendants */
switch (hw->mac.type) {
case e1000_82580:
nvm->ops.validate = igb_validate_nvm_checksum_82580;
nvm->ops.update = igb_update_nvm_checksum_82580;
break;
case e1000_i354:
case e1000_i350:
nvm->ops.validate = igb_validate_nvm_checksum_i350;
nvm->ops.update = igb_update_nvm_checksum_i350;
break;
default:
break;
}
return 0;
}
/**
* igb_init_mac_params_82575 - Init MAC func ptrs.
* @hw: pointer to the HW structure
**/
static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
/* Set mta register count */
mac->mta_reg_count = 128;
/* Set uta register count */
mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
/* Set rar entry count */
switch (mac->type) {
case e1000_82576:
mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
break;
case e1000_82580:
mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
break;
case e1000_i350:
case e1000_i354:
mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
break;
default:
mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
break;
}
/* reset */
if (mac->type >= e1000_82580)
mac->ops.reset_hw = igb_reset_hw_82580;
else
mac->ops.reset_hw = igb_reset_hw_82575;
if (mac->type >= e1000_i210) {
mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
} else {
mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
}
if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
mac->ops.write_vfta = igb_write_vfta_i350;
else
mac->ops.write_vfta = igb_write_vfta;
/* Set if part includes ASF firmware */
mac->asf_firmware_present = true;
/* Set if manageability features are enabled. */
mac->arc_subsystem_valid =
(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
? true : false;
/* enable EEE on i350 parts and later parts */
if (mac->type >= e1000_i350)
dev_spec->eee_disable = false;
else
dev_spec->eee_disable = true;
/* Allow a single clear of the SW semaphore on I210 and newer */
if (mac->type >= e1000_i210)
dev_spec->clear_semaphore_once = true;
/* physical interface link setup */
mac->ops.setup_physical_interface =
(hw->phy.media_type == e1000_media_type_copper)
? igb_setup_copper_link_82575
: igb_setup_serdes_link_82575;
if (mac->type == e1000_82580) {
switch (hw->device_id) {
/* feature not supported on these id's */
case E1000_DEV_ID_DH89XXCC_SGMII:
case E1000_DEV_ID_DH89XXCC_SERDES:
case E1000_DEV_ID_DH89XXCC_BACKPLANE:
case E1000_DEV_ID_DH89XXCC_SFP:
break;
default:
hw->dev_spec._82575.mas_capable = true;
break;
}
}
return 0;
}
/**
* igb_set_sfp_media_type_82575 - derives SFP module media type.
* @hw: pointer to the HW structure
*
* The media type is chosen based on SFP module.
* compatibility flags retrieved from SFP ID EEPROM.
**/
static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
{
s32 ret_val = E1000_ERR_CONFIG;
u32 ctrl_ext = 0;
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
u8 tranceiver_type = 0;
s32 timeout = 3;
/* Turn I2C interface ON and power on sfp cage */
ctrl_ext = rd32(E1000_CTRL_EXT);
ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
wrfl();
/* Read SFP module data */
while (timeout) {
ret_val = igb_read_sfp_data_byte(hw,
E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
&tranceiver_type);
if (ret_val == 0)
break;
msleep(100);
timeout--;
}
if (ret_val != 0)
goto out;
ret_val = igb_read_sfp_data_byte(hw,
E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
(u8 *)eth_flags);
if (ret_val != 0)
goto out;
/* Check if there is some SFP module plugged and powered */
if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
(tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
dev_spec->module_plugged = true;
if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
hw->phy.media_type = e1000_media_type_internal_serdes;
} else if (eth_flags->e100_base_fx) {
dev_spec->sgmii_active = true;
hw->phy.media_type = e1000_media_type_internal_serdes;
} else if (eth_flags->e1000_base_t) {
dev_spec->sgmii_active = true;
hw->phy.media_type = e1000_media_type_copper;
} else {
hw->phy.media_type = e1000_media_type_unknown;
hw_dbg("PHY module has not been recognized\n");
goto out;
}
} else {
hw->phy.media_type = e1000_media_type_unknown;
}
ret_val = 0;
out:
/* Restore I2C interface setting */
wr32(E1000_CTRL_EXT, ctrl_ext);
return ret_val;
}
static s32 igb_get_invariants_82575(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
s32 ret_val;
u32 ctrl_ext = 0;
u32 link_mode = 0;
switch (hw->device_id) {
case E1000_DEV_ID_82575EB_COPPER:
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82575GB_QUAD_COPPER:
mac->type = e1000_82575;
break;
case E1000_DEV_ID_82576:
case E1000_DEV_ID_82576_NS:
case E1000_DEV_ID_82576_NS_SERDES:
case E1000_DEV_ID_82576_FIBER:
case E1000_DEV_ID_82576_SERDES:
case E1000_DEV_ID_82576_QUAD_COPPER:
case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
case E1000_DEV_ID_82576_SERDES_QUAD:
mac->type = e1000_82576;
break;
case E1000_DEV_ID_82580_COPPER:
case E1000_DEV_ID_82580_FIBER:
case E1000_DEV_ID_82580_QUAD_FIBER:
case E1000_DEV_ID_82580_SERDES:
case E1000_DEV_ID_82580_SGMII:
case E1000_DEV_ID_82580_COPPER_DUAL:
case E1000_DEV_ID_DH89XXCC_SGMII:
case E1000_DEV_ID_DH89XXCC_SERDES:
case E1000_DEV_ID_DH89XXCC_BACKPLANE:
case E1000_DEV_ID_DH89XXCC_SFP:
mac->type = e1000_82580;
break;
case E1000_DEV_ID_I350_COPPER:
case E1000_DEV_ID_I350_FIBER:
case E1000_DEV_ID_I350_SERDES:
case E1000_DEV_ID_I350_SGMII:
mac->type = e1000_i350;
break;
case E1000_DEV_ID_I210_COPPER:
case E1000_DEV_ID_I210_FIBER:
case E1000_DEV_ID_I210_SERDES:
case E1000_DEV_ID_I210_SGMII:
case E1000_DEV_ID_I210_COPPER_FLASHLESS:
case E1000_DEV_ID_I210_SERDES_FLASHLESS:
mac->type = e1000_i210;
break;
case E1000_DEV_ID_I211_COPPER:
mac->type = e1000_i211;
break;
case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
case E1000_DEV_ID_I354_SGMII:
case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
mac->type = e1000_i354;
break;
default:
return -E1000_ERR_MAC_INIT;
}
/* Set media type */
/* The 82575 uses bits 22:23 for link mode. The mode can be changed
* based on the EEPROM. We cannot rely upon device ID. There
* is no distinguishable difference between fiber and internal
* SerDes mode on the 82575. There can be an external PHY attached
* on the SGMII interface. For this, we'll set sgmii_active to true.
*/
hw->phy.media_type = e1000_media_type_copper;
dev_spec->sgmii_active = false;
dev_spec->module_plugged = false;
ctrl_ext = rd32(E1000_CTRL_EXT);
link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
switch (link_mode) {
case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
hw->phy.media_type = e1000_media_type_internal_serdes;
break;
case E1000_CTRL_EXT_LINK_MODE_SGMII:
/* Get phy control interface type set (MDIO vs. I2C)*/
if (igb_sgmii_uses_mdio_82575(hw)) {
hw->phy.media_type = e1000_media_type_copper;
dev_spec->sgmii_active = true;
break;
}
/* fall through - for I2C based SGMII */
case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
/* read media type from SFP EEPROM */
ret_val = igb_set_sfp_media_type_82575(hw);
if ((ret_val != 0) ||
(hw->phy.media_type == e1000_media_type_unknown)) {
/* If media type was not identified then return media
* type defined by the CTRL_EXT settings.
*/
hw->phy.media_type = e1000_media_type_internal_serdes;
if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
hw->phy.media_type = e1000_media_type_copper;
dev_spec->sgmii_active = true;
}
break;
}
/* do not change link mode for 100BaseFX */
if (dev_spec->eth_flags.e100_base_fx)
break;
/* change current link mode setting */
ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
if (hw->phy.media_type == e1000_media_type_copper)
ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
else
ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
wr32(E1000_CTRL_EXT, ctrl_ext);
break;
default:
break;
}
/* mac initialization and operations */
ret_val = igb_init_mac_params_82575(hw);
if (ret_val)
goto out;
/* NVM initialization */
ret_val = igb_init_nvm_params_82575(hw);
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
ret_val = igb_init_nvm_params_i210(hw);
break;
default:
break;
}
if (ret_val)
goto out;
/* if part supports SR-IOV then initialize mailbox parameters */
switch (mac->type) {
case e1000_82576:
case e1000_i350:
igb_init_mbx_params_pf(hw);
break;
default:
break;
}
/* setup PHY parameters */
ret_val = igb_init_phy_params_82575(hw);
out:
return ret_val;
}
/**
* igb_acquire_phy_82575 - Acquire rights to access PHY
* @hw: pointer to the HW structure
*
* Acquire access rights to the correct PHY. This is a
* function pointer entry point called by the api module.
**/
static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
{
u16 mask = E1000_SWFW_PHY0_SM;
if (hw->bus.func == E1000_FUNC_1)
mask = E1000_SWFW_PHY1_SM;
else if (hw->bus.func == E1000_FUNC_2)
mask = E1000_SWFW_PHY2_SM;
else if (hw->bus.func == E1000_FUNC_3)
mask = E1000_SWFW_PHY3_SM;
return hw->mac.ops.acquire_swfw_sync(hw, mask);
}
/**
* igb_release_phy_82575 - Release rights to access PHY
* @hw: pointer to the HW structure
*
* A wrapper to release access rights to the correct PHY. This is a
* function pointer entry point called by the api module.
**/
static void igb_release_phy_82575(struct e1000_hw *hw)
{
u16 mask = E1000_SWFW_PHY0_SM;
if (hw->bus.func == E1000_FUNC_1)
mask = E1000_SWFW_PHY1_SM;
else if (hw->bus.func == E1000_FUNC_2)
mask = E1000_SWFW_PHY2_SM;
else if (hw->bus.func == E1000_FUNC_3)
mask = E1000_SWFW_PHY3_SM;
hw->mac.ops.release_swfw_sync(hw, mask);
}
/**
* igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset using the serial gigabit media independent
* interface and stores the retrieved information in data.
**/
static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
u16 *data)
{
s32 ret_val = -E1000_ERR_PARAM;
if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
hw_dbg("PHY Address %u is out of range\n", offset);
goto out;
}
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
ret_val = igb_read_phy_reg_i2c(hw, offset, data);
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset using the serial gigabit
* media independent interface.
**/
static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
u16 data)
{
s32 ret_val = -E1000_ERR_PARAM;
if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
hw_dbg("PHY Address %d is out of range\n", offset);
goto out;
}
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
ret_val = igb_write_phy_reg_i2c(hw, offset, data);
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* igb_get_phy_id_82575 - Retrieve PHY addr and id
* @hw: pointer to the HW structure
*
* Retrieves the PHY address and ID for both PHY's which do and do not use
* sgmi interface.
**/
static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 phy_id;
u32 ctrl_ext;
u32 mdic;
/* Extra read required for some PHY's on i354 */
if (hw->mac.type == e1000_i354)
igb_get_phy_id(hw);
/* For SGMII PHYs, we try the list of possible addresses until
* we find one that works. For non-SGMII PHYs
* (e.g. integrated copper PHYs), an address of 1 should
* work. The result of this function should mean phy->phy_addr
* and phy->id are set correctly.
*/
if (!(igb_sgmii_active_82575(hw))) {
phy->addr = 1;
ret_val = igb_get_phy_id(hw);
goto out;
}
if (igb_sgmii_uses_mdio_82575(hw)) {
switch (hw->mac.type) {
case e1000_82575:
case e1000_82576:
mdic = rd32(E1000_MDIC);
mdic &= E1000_MDIC_PHY_MASK;
phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
mdic = rd32(E1000_MDICNFG);
mdic &= E1000_MDICNFG_PHY_MASK;
phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
break;
default:
ret_val = -E1000_ERR_PHY;
goto out;
}
ret_val = igb_get_phy_id(hw);
goto out;
}
/* Power on sgmii phy if it is disabled */
ctrl_ext = rd32(E1000_CTRL_EXT);
wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
wrfl();
msleep(300);
/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
* Therefore, we need to test 1-7
*/
for (phy->addr = 1; phy->addr < 8; phy->addr++) {
ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
if (ret_val == 0) {
hw_dbg("Vendor ID 0x%08X read at address %u\n",
phy_id, phy->addr);
/* At the time of this writing, The M88 part is
* the only supported SGMII PHY product.
*/
if (phy_id == M88_VENDOR)
break;
} else {
hw_dbg("PHY address %u was unreadable\n", phy->addr);
}
}
/* A valid PHY type couldn't be found. */
if (phy->addr == 8) {
phy->addr = 0;
ret_val = -E1000_ERR_PHY;
goto out;
} else {
ret_val = igb_get_phy_id(hw);
}
/* restore previous sfp cage power state */
wr32(E1000_CTRL_EXT, ctrl_ext);
out:
return ret_val;
}
/**
* igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
* @hw: pointer to the HW structure
*
* Resets the PHY using the serial gigabit media independent interface.
**/
static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
/* This isn't a true "hard" reset, but is the only reset
* available to us at this time.
*/
hw_dbg("Soft resetting SGMII attached PHY...\n");
/* SFP documentation requires the following to configure the SPF module
* to work on SGMII. No further documentation is given.
*/
ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
if (ret_val)
goto out;
ret_val = igb_phy_sw_reset(hw);
if (ret_val)
goto out;
if (phy->id == M88E1512_E_PHY_ID)
ret_val = igb_initialize_M88E1512_phy(hw);
if (phy->id == M88E1543_E_PHY_ID)
ret_val = igb_initialize_M88E1543_phy(hw);
out:
return ret_val;
}
/**
* igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D0 state according to the active flag. When
* activating LPLU this function also disables smart speed
* and vice versa. LPLU will not be activated unless the
* device autonegotiation advertisement meets standards of
* either 10 or 10/100 or 10/100/1000 at all duplexes.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
goto out;
if (active) {
data |= IGP02E1000_PM_D0_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
data);
if (ret_val)
goto out;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
goto out;
} else {
data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
data);
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = phy->ops.read_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &data);
if (ret_val)
goto out;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, data);
if (ret_val)
goto out;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = phy->ops.read_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &data);
if (ret_val)
goto out;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, data);
if (ret_val)
goto out;
}
}
out:
return ret_val;
}
/**
* igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D0 state according to the active flag. When
* activating LPLU this function also disables smart speed
* and vice versa. LPLU will not be activated unless the
* device autonegotiation advertisement meets standards of
* either 10 or 10/100 or 10/100/1000 at all duplexes.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
u16 data;
data = rd32(E1000_82580_PHY_POWER_MGMT);
if (active) {
data |= E1000_82580_PM_D0_LPLU;
/* When LPLU is enabled, we should disable SmartSpeed */
data &= ~E1000_82580_PM_SPD;
} else {
data &= ~E1000_82580_PM_D0_LPLU;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on)
data |= E1000_82580_PM_SPD;
else if (phy->smart_speed == e1000_smart_speed_off)
data &= ~E1000_82580_PM_SPD; }
wr32(E1000_82580_PHY_POWER_MGMT, data);
return 0;
}
/**
* igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D3
* and SmartSpeed is disabled when active is true, else clear lplu for D3
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained.
**/
static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
u16 data;
data = rd32(E1000_82580_PHY_POWER_MGMT);
if (!active) {
data &= ~E1000_82580_PM_D3_LPLU;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on)
data |= E1000_82580_PM_SPD;
else if (phy->smart_speed == e1000_smart_speed_off)
data &= ~E1000_82580_PM_SPD;
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
data |= E1000_82580_PM_D3_LPLU;
/* When LPLU is enabled, we should disable SmartSpeed */
data &= ~E1000_82580_PM_SPD;
}
wr32(E1000_82580_PHY_POWER_MGMT, data);
return 0;
}
/**
* igb_acquire_nvm_82575 - Request for access to EEPROM
* @hw: pointer to the HW structure
*
* Acquire the necessary semaphores for exclusive access to the EEPROM.
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -E1000_ERR_NVM (-1).
**/
static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
{
s32 ret_val;
ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
if (ret_val)
goto out;
ret_val = igb_acquire_nvm(hw);
if (ret_val)
hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
out:
return ret_val;
}
/**
* igb_release_nvm_82575 - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit,
* then release the semaphores acquired.
**/
static void igb_release_nvm_82575(struct e1000_hw *hw)
{
igb_release_nvm(hw);
hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
}
/**
* igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
* will also specify which port we're acquiring the lock for.
**/
static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
u32 swfw_sync;
u32 swmask = mask;
u32 fwmask = mask << 16;
s32 ret_val = 0;
s32 i = 0, timeout = 200;
while (i < timeout) {
if (igb_get_hw_semaphore(hw)) {
ret_val = -E1000_ERR_SWFW_SYNC;
goto out;
}
swfw_sync = rd32(E1000_SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
/* Firmware currently using resource (fwmask)
* or other software thread using resource (swmask)
*/
igb_put_hw_semaphore(hw);
mdelay(5);
i++;
}
if (i == timeout) {
hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
ret_val = -E1000_ERR_SWFW_SYNC;
goto out;
}
swfw_sync |= swmask;
wr32(E1000_SW_FW_SYNC, swfw_sync);
igb_put_hw_semaphore(hw);
out:
return ret_val;
}
/**
* igb_release_swfw_sync_82575 - Release SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
* will also specify which port we're releasing the lock for.
**/
static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
u32 swfw_sync;
while (igb_get_hw_semaphore(hw) != 0)
; /* Empty */
swfw_sync = rd32(E1000_SW_FW_SYNC);
swfw_sync &= ~mask;
wr32(E1000_SW_FW_SYNC, swfw_sync);
igb_put_hw_semaphore(hw);
}
/**
* igb_get_cfg_done_82575 - Read config done bit
* @hw: pointer to the HW structure
*
* Read the management control register for the config done bit for
* completion status. NOTE: silicon which is EEPROM-less will fail trying
* to read the config done bit, so an error is *ONLY* logged and returns
* 0. If we were to return with error, EEPROM-less silicon
* would not be able to be reset or change link.
**/
static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
{
s32 timeout = PHY_CFG_TIMEOUT;
u32 mask = E1000_NVM_CFG_DONE_PORT_0;
if (hw->bus.func == 1)
mask = E1000_NVM_CFG_DONE_PORT_1;
else if (hw->bus.func == E1000_FUNC_2)
mask = E1000_NVM_CFG_DONE_PORT_2;
else if (hw->bus.func == E1000_FUNC_3)
mask = E1000_NVM_CFG_DONE_PORT_3;
while (timeout) {
if (rd32(E1000_EEMNGCTL) & mask)
break;
usleep_range(1000, 2000);
timeout--;
}
if (!timeout)
hw_dbg("MNG configuration cycle has not completed.\n");
/* If EEPROM is not marked present, init the PHY manually */
if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
(hw->phy.type == e1000_phy_igp_3))
igb_phy_init_script_igp3(hw);
return 0;
}
/**
* igb_get_link_up_info_82575 - Get link speed/duplex info
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* This is a wrapper function, if using the serial gigabit media independent
* interface, use PCS to retrieve the link speed and duplex information.
* Otherwise, use the generic function to get the link speed and duplex info.
**/
static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
if (hw->phy.media_type != e1000_media_type_copper)
ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
duplex);
else
ret_val = igb_get_speed_and_duplex_copper(hw, speed,
duplex);
return ret_val;
}
/**
* igb_check_for_link_82575 - Check for link
* @hw: pointer to the HW structure
*
* If sgmii is enabled, then use the pcs register to determine link, otherwise
* use the generic interface for determining link.
**/
static s32 igb_check_for_link_82575(struct e1000_hw *hw)
{
s32 ret_val;
u16 speed, duplex;
if (hw->phy.media_type != e1000_media_type_copper) {
ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
&duplex);
/* Use this flag to determine if link needs to be checked or
* not. If we have link clear the flag so that we do not
* continue to check for link.
*/
hw->mac.get_link_status = !hw->mac.serdes_has_link;
/* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = igb_config_fc_after_link_up(hw);
if (ret_val)
hw_dbg("Error configuring flow control\n");
} else {
ret_val = igb_check_for_copper_link(hw);
}
return ret_val;
}
/**
* igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
* @hw: pointer to the HW structure
**/
void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
{
u32 reg;
if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
!igb_sgmii_active_82575(hw))
return;
/* Enable PCS to turn on link */
reg = rd32(E1000_PCS_CFG0);
reg |= E1000_PCS_CFG_PCS_EN;
wr32(E1000_PCS_CFG0, reg);
/* Power up the laser */
reg = rd32(E1000_CTRL_EXT);
reg &= ~E1000_CTRL_EXT_SDP3_DATA;
wr32(E1000_CTRL_EXT, reg);
/* flush the write to verify completion */
wrfl();
usleep_range(1000, 2000);
}
/**
* igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Using the physical coding sub-layer (PCS), retrieve the current speed and
* duplex, then store the values in the pointers provided.
**/
static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
struct e1000_mac_info *mac = &hw->mac;
u32 pcs, status;
/* Set up defaults for the return values of this function */
mac->serdes_has_link = false;
*speed = 0;
*duplex = 0;
/* Read the PCS Status register for link state. For non-copper mode,
* the status register is not accurate. The PCS status register is
* used instead.
*/
pcs = rd32(E1000_PCS_LSTAT);
/* The link up bit determines when link is up on autoneg. The sync ok
* gets set once both sides sync up and agree upon link. Stable link
* can be determined by checking for both link up and link sync ok
*/
if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
mac->serdes_has_link = true;
/* Detect and store PCS speed */
if (pcs & E1000_PCS_LSTS_SPEED_1000)
*speed = SPEED_1000;
else if (pcs & E1000_PCS_LSTS_SPEED_100)
*speed = SPEED_100;
else
*speed = SPEED_10;
/* Detect and store PCS duplex */
if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
/* Check if it is an I354 2.5Gb backplane connection. */
if (mac->type == e1000_i354) {
status = rd32(E1000_STATUS);
if ((status & E1000_STATUS_2P5_SKU) &&
!(status & E1000_STATUS_2P5_SKU_OVER)) {
*speed = SPEED_2500;
*duplex = FULL_DUPLEX;
hw_dbg("2500 Mbs, ");
hw_dbg("Full Duplex\n");
}
}
}
return 0;
}
/**
* igb_shutdown_serdes_link_82575 - Remove link during power down
* @hw: pointer to the HW structure
*
* In the case of fiber serdes, shut down optics and PCS on driver unload
* when management pass thru is not enabled.
**/
void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
{
u32 reg;
if (hw->phy.media_type != e1000_media_type_internal_serdes &&
igb_sgmii_active_82575(hw))
return;
if (!igb_enable_mng_pass_thru(hw)) {
/* Disable PCS to turn off link */
reg = rd32(E1000_PCS_CFG0);
reg &= ~E1000_PCS_CFG_PCS_EN;
wr32(E1000_PCS_CFG0, reg);
/* shutdown the laser */
reg = rd32(E1000_CTRL_EXT);
reg |= E1000_CTRL_EXT_SDP3_DATA;
wr32(E1000_CTRL_EXT, reg);
/* flush the write to verify completion */
wrfl();
usleep_range(1000, 2000);
}
}
/**
* igb_reset_hw_82575 - Reset hardware
* @hw: pointer to the HW structure
*
* This resets the hardware into a known state. This is a
* function pointer entry point called by the api module.
**/
static s32 igb_reset_hw_82575(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
/* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = igb_disable_pcie_master(hw);
if (ret_val)
hw_dbg("PCI-E Master disable polling has failed.\n");
/* set the completion timeout for interface */
ret_val = igb_set_pcie_completion_timeout(hw);
if (ret_val)
hw_dbg("PCI-E Set completion timeout has failed.\n");
hw_dbg("Masking off all interrupts\n");
wr32(E1000_IMC, 0xffffffff);
wr32(E1000_RCTL, 0);
wr32(E1000_TCTL, E1000_TCTL_PSP);
wrfl();
usleep_range(10000, 20000);
ctrl = rd32(E1000_CTRL);
hw_dbg("Issuing a global reset to MAC\n");
wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
ret_val = igb_get_auto_rd_done(hw);
if (ret_val) {
/* When auto config read does not complete, do not
* return with an error. This can happen in situations
* where there is no eeprom and prevents getting link.
*/
hw_dbg("Auto Read Done did not complete\n");
}
/* If EEPROM is not present, run manual init scripts */
if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
igb_reset_init_script_82575(hw);
/* Clear any pending interrupt events. */
wr32(E1000_IMC, 0xffffffff);
rd32(E1000_ICR);
/* Install any alternate MAC address into RAR0 */
ret_val = igb_check_alt_mac_addr(hw);
return ret_val;
}
/**
* igb_init_hw_82575 - Initialize hardware
* @hw: pointer to the HW structure
*
* This inits the hardware readying it for operation.
**/
static s32 igb_init_hw_82575(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
u16 i, rar_count = mac->rar_entry_count;
if ((hw->mac.type >= e1000_i210) &&
!(igb_get_flash_presence_i210(hw))) {
ret_val = igb_pll_workaround_i210(hw);
if (ret_val)
return ret_val;
}
/* Initialize identification LED */
ret_val = igb_id_led_init(hw);
if (ret_val) {
hw_dbg("Error initializing identification LED\n");
/* This is not fatal and we should not stop init due to this */
}
/* Disabling VLAN filtering */
hw_dbg("Initializing the IEEE VLAN\n");
igb_clear_vfta(hw);
/* Setup the receive address */
igb_init_rx_addrs(hw, rar_count);
/* Zero out the Multicast HASH table */
hw_dbg("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
array_wr32(E1000_MTA, i, 0);
/* Zero out the Unicast HASH table */
hw_dbg("Zeroing the UTA\n");
for (i = 0; i < mac->uta_reg_count; i++)
array_wr32(E1000_UTA, i, 0);
/* Setup link and flow control */
ret_val = igb_setup_link(hw);
/* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
igb_clear_hw_cntrs_82575(hw);
return ret_val;
}
/**
* igb_setup_copper_link_82575 - Configure copper link settings
* @hw: pointer to the HW structure
*
* Configures the link for auto-neg or forced speed and duplex. Then we check
* for link, once link is established calls to configure collision distance
* and flow control are called.
**/
static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u32 phpm_reg;
ctrl = rd32(E1000_CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
wr32(E1000_CTRL, ctrl);
/* Clear Go Link Disconnect bit on supported devices */
switch (hw->mac.type) {
case e1000_82580:
case e1000_i350:
case e1000_i210:
case e1000_i211:
phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
phpm_reg &= ~E1000_82580_PM_GO_LINKD;
wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
break;
default:
break;
}
ret_val = igb_setup_serdes_link_82575(hw);
if (ret_val)
goto out;
if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
/* allow time for SFP cage time to power up phy */
msleep(300);
ret_val = hw->phy.ops.reset(hw);
if (ret_val) {
hw_dbg("Error resetting the PHY.\n");
goto out;
}
}
switch (hw->phy.type) {
case e1000_phy_i210:
case e1000_phy_m88:
switch (hw->phy.id) {
case I347AT4_E_PHY_ID:
case M88E1112_E_PHY_ID:
case M88E1543_E_PHY_ID:
case M88E1512_E_PHY_ID:
case I210_I_PHY_ID:
ret_val = igb_copper_link_setup_m88_gen2(hw);
break;
default:
ret_val = igb_copper_link_setup_m88(hw);
break;
}
break;
case e1000_phy_igp_3:
ret_val = igb_copper_link_setup_igp(hw);
break;
case e1000_phy_82580:
ret_val = igb_copper_link_setup_82580(hw);
break;
case e1000_phy_bcm54616:
ret_val = 0;
break;
default:
ret_val = -E1000_ERR_PHY;
break;
}
if (ret_val)
goto out;
ret_val = igb_setup_copper_link(hw);
out:
return ret_val;
}
/**
* igb_setup_serdes_link_82575 - Setup link for serdes
* @hw: pointer to the HW structure
*
* Configure the physical coding sub-layer (PCS) link. The PCS link is
* used on copper connections where the serialized gigabit media independent
* interface (sgmii), or serdes fiber is being used. Configures the link
* for auto-negotiation or forces speed/duplex.
**/
static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
{
u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
bool pcs_autoneg;
s32 ret_val = 0;
u16 data;
if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
!igb_sgmii_active_82575(hw))
return ret_val;
/* On the 82575, SerDes loopback mode persists until it is
* explicitly turned off or a power cycle is performed. A read to
* the register does not indicate its status. Therefore, we ensure
* loopback mode is disabled during initialization.
*/
wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
/* power on the sfp cage if present and turn on I2C */
ctrl_ext = rd32(E1000_CTRL_EXT);
ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
ctrl_ext |= E1000_CTRL_I2C_ENA;
wr32(E1000_CTRL_EXT, ctrl_ext);
ctrl_reg = rd32(E1000_CTRL);
ctrl_reg |= E1000_CTRL_SLU;
if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
/* set both sw defined pins */
ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
/* Set switch control to serdes energy detect */
reg = rd32(E1000_CONNSW);
reg |= E1000_CONNSW_ENRGSRC;
wr32(E1000_CONNSW, reg);
}
reg = rd32(E1000_PCS_LCTL);
/* default pcs_autoneg to the same setting as mac autoneg */
pcs_autoneg = hw->mac.autoneg;
switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
case E1000_CTRL_EXT_LINK_MODE_SGMII:
/* sgmii mode lets the phy handle forcing speed/duplex */
pcs_autoneg = true;
/* autoneg time out should be disabled for SGMII mode */
reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
break;
case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
/* disable PCS autoneg and support parallel detect only */
pcs_autoneg = false;
/* fall through */
default:
if (hw->mac.type == e1000_82575 ||
hw->mac.type == e1000_82576) {
ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
if (ret_val) {
hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
return ret_val;
}
if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
pcs_autoneg = false;
}
/* non-SGMII modes only supports a speed of 1000/Full for the
* link so it is best to just force the MAC and let the pcs
* link either autoneg or be forced to 1000/Full
*/
ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
E1000_CTRL_FD | E1000_CTRL_FRCDPX;
/* set speed of 1000/Full if speed/duplex is forced */
reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
break;
}
wr32(E1000_CTRL, ctrl_reg);
/* New SerDes mode allows for forcing speed or autonegotiating speed
* at 1gb. Autoneg should be default set by most drivers. This is the
* mode that will be compatible with older link partners and switches.
* However, both are supported by the hardware and some drivers/tools.
*/
reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
if (pcs_autoneg) {
/* Set PCS register for autoneg */
reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
/* Disable force flow control for autoneg */
reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
/* Configure flow control advertisement for autoneg */
anadv_reg = rd32(E1000_PCS_ANADV);
anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
switch (hw->fc.requested_mode) {
case e1000_fc_full:
case e1000_fc_rx_pause:
anadv_reg |= E1000_TXCW_ASM_DIR;
anadv_reg |= E1000_TXCW_PAUSE;
break;
case e1000_fc_tx_pause:
anadv_reg |= E1000_TXCW_ASM_DIR;
break;
default:
break;
}
wr32(E1000_PCS_ANADV, anadv_reg);
hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
} else {
/* Set PCS register for forced link */
reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
/* Force flow control for forced link */
reg |= E1000_PCS_LCTL_FORCE_FCTRL;
hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
}
wr32(E1000_PCS_LCTL, reg);
if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
igb_force_mac_fc(hw);
return ret_val;
}
/**
* igb_sgmii_active_82575 - Return sgmii state
* @hw: pointer to the HW structure
*
* 82575 silicon has a serialized gigabit media independent interface (sgmii)
* which can be enabled for use in the embedded applications. Simply
* return the current state of the sgmii interface.
**/
static bool igb_sgmii_active_82575(struct e1000_hw *hw)
{
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
return dev_spec->sgmii_active;
}
/**
* igb_reset_init_script_82575 - Inits HW defaults after reset
* @hw: pointer to the HW structure
*
* Inits recommended HW defaults after a reset when there is no EEPROM
* detected. This is only for the 82575.
**/
static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
{
if (hw->mac.type == e1000_82575) {
hw_dbg("Running reset init script for 82575\n");
/* SerDes configuration via SERDESCTRL */
igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
/* CCM configuration via CCMCTL register */
igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
/* PCIe lanes configuration */
igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
/* PCIe PLL Configuration */
igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
}
return 0;
}
/**
* igb_read_mac_addr_82575 - Read device MAC address
* @hw: pointer to the HW structure
**/
static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
{
s32 ret_val = 0;
/* If there's an alternate MAC address place it in RAR0
* so that it will override the Si installed default perm
* address.
*/
ret_val = igb_check_alt_mac_addr(hw);
if (ret_val)
goto out;
ret_val = igb_read_mac_addr(hw);
out:
return ret_val;
}
/**
* igb_power_down_phy_copper_82575 - Remove link during PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, remove the link.
**/
void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
{
/* If the management interface is not enabled, then power down */
if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
igb_power_down_phy_copper(hw);
}
/**
* igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
* @hw: pointer to the HW structure
*
* Clears the hardware counters by reading the counter registers.
**/
static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
{
igb_clear_hw_cntrs_base(hw);
rd32(E1000_PRC64);
rd32(E1000_PRC127);
rd32(E1000_PRC255);
rd32(E1000_PRC511);
rd32(E1000_PRC1023);
rd32(E1000_PRC1522);
rd32(E1000_PTC64);
rd32(E1000_PTC127);
rd32(E1000_PTC255);
rd32(E1000_PTC511);
rd32(E1000_PTC1023);
rd32(E1000_PTC1522);
rd32(E1000_ALGNERRC);
rd32(E1000_RXERRC);
rd32(E1000_TNCRS);
rd32(E1000_CEXTERR);
rd32(E1000_TSCTC);
rd32(E1000_TSCTFC);
rd32(E1000_MGTPRC);
rd32(E1000_MGTPDC);
rd32(E1000_MGTPTC);
rd32(E1000_IAC);
rd32(E1000_ICRXOC);
rd32(E1000_ICRXPTC);
rd32(E1000_ICRXATC);
rd32(E1000_ICTXPTC);
rd32(E1000_ICTXATC);
rd32(E1000_ICTXQEC);
rd32(E1000_ICTXQMTC);
rd32(E1000_ICRXDMTC);
rd32(E1000_CBTMPC);
rd32(E1000_HTDPMC);
rd32(E1000_CBRMPC);
rd32(E1000_RPTHC);
rd32(E1000_HGPTC);
rd32(E1000_HTCBDPC);
rd32(E1000_HGORCL);
rd32(E1000_HGORCH);
rd32(E1000_HGOTCL);
rd32(E1000_HGOTCH);
rd32(E1000_LENERRS);
/* This register should not be read in copper configurations */
if (hw->phy.media_type == e1000_media_type_internal_serdes ||
igb_sgmii_active_82575(hw))
rd32(E1000_SCVPC);
}
/**
* igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
* @hw: pointer to the HW structure
*
* After rx enable if manageability is enabled then there is likely some
* bad data at the start of the fifo and possibly in the DMA fifo. This
* function clears the fifos and flushes any packets that came in as rx was
* being enabled.
**/
void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
{
u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
int i, ms_wait;
/* disable IPv6 options as per hardware errata */
rfctl = rd32(E1000_RFCTL);
rfctl |= E1000_RFCTL_IPV6_EX_DIS;
wr32(E1000_RFCTL, rfctl);
if (hw->mac.type != e1000_82575 ||
!(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
return;
/* Disable all RX queues */
for (i = 0; i < 4; i++) {
rxdctl[i] = rd32(E1000_RXDCTL(i));
wr32(E1000_RXDCTL(i),
rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
}
/* Poll all queues to verify they have shut down */
for (ms_wait = 0; ms_wait < 10; ms_wait++) {
usleep_range(1000, 2000);
rx_enabled = 0;
for (i = 0; i < 4; i++)
rx_enabled |= rd32(E1000_RXDCTL(i));
if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
break;
}
if (ms_wait == 10)
hw_dbg("Queue disable timed out after 10ms\n");
/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
* incoming packets are rejected. Set enable and wait 2ms so that
* any packet that was coming in as RCTL.EN was set is flushed
*/
wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
rlpml = rd32(E1000_RLPML);
wr32(E1000_RLPML, 0);
rctl = rd32(E1000_RCTL);
temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
temp_rctl |= E1000_RCTL_LPE;
wr32(E1000_RCTL, temp_rctl);
wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
wrfl();
usleep_range(2000, 3000);
/* Enable RX queues that were previously enabled and restore our
* previous state
*/
for (i = 0; i < 4; i++)
wr32(E1000_RXDCTL(i), rxdctl[i]);
wr32(E1000_RCTL, rctl);
wrfl();
wr32(E1000_RLPML, rlpml);
wr32(E1000_RFCTL, rfctl);
/* Flush receive errors generated by workaround */
rd32(E1000_ROC);
rd32(E1000_RNBC);
rd32(E1000_MPC);
}
/**
* igb_set_pcie_completion_timeout - set pci-e completion timeout
* @hw: pointer to the HW structure
*
* The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
* however the hardware default for these parts is 500us to 1ms which is less
* than the 10ms recommended by the pci-e spec. To address this we need to
* increase the value to either 10ms to 200ms for capability version 1 config,
* or 16ms to 55ms for version 2.
**/
static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
{
u32 gcr = rd32(E1000_GCR);
s32 ret_val = 0;
u16 pcie_devctl2;
/* only take action if timeout value is defaulted to 0 */
if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
goto out;
/* if capabilities version is type 1 we can write the
* timeout of 10ms to 200ms through the GCR register
*/
if (!(gcr & E1000_GCR_CAP_VER2)) {
gcr |= E1000_GCR_CMPL_TMOUT_10ms;
goto out;
}
/* for version 2 capabilities we need to write the config space
* directly in order to set the completion timeout value for
* 16ms to 55ms
*/
ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
&pcie_devctl2);
if (ret_val)
goto out;
pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
&pcie_devctl2);
out:
/* disable completion timeout resend */
gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
wr32(E1000_GCR, gcr);
return ret_val;
}
/**
* igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
* @hw: pointer to the hardware struct
* @enable: state to enter, either enabled or disabled
* @pf: Physical Function pool - do not set anti-spoofing for the PF
*
* enables/disables L2 switch anti-spoofing functionality.
**/
void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
{
u32 reg_val, reg_offset;
switch (hw->mac.type) {
case e1000_82576:
reg_offset = E1000_DTXSWC;
break;
case e1000_i350:
case e1000_i354:
reg_offset = E1000_TXSWC;
break;
default:
return;
}
reg_val = rd32(reg_offset);
if (enable) {
reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
E1000_DTXSWC_VLAN_SPOOF_MASK);
/* The PF can spoof - it has to in order to
* support emulation mode NICs
*/
reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
} else {
reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
E1000_DTXSWC_VLAN_SPOOF_MASK);
}
wr32(reg_offset, reg_val);
}
/**
* igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
* @hw: pointer to the hardware struct
* @enable: state to enter, either enabled or disabled
*
* enables/disables L2 switch loopback functionality.
**/
void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
{
u32 dtxswc;
switch (hw->mac.type) {
case e1000_82576:
dtxswc = rd32(E1000_DTXSWC);
if (enable)
dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
else
dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
wr32(E1000_DTXSWC, dtxswc);
break;
case e1000_i354:
case e1000_i350:
dtxswc = rd32(E1000_TXSWC);
if (enable)
dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
else
dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
wr32(E1000_TXSWC, dtxswc);
break;
default:
/* Currently no other hardware supports loopback */
break;
}
}
/**
* igb_vmdq_set_replication_pf - enable or disable vmdq replication
* @hw: pointer to the hardware struct
* @enable: state to enter, either enabled or disabled
*
* enables/disables replication of packets across multiple pools.
**/
void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
{
u32 vt_ctl = rd32(E1000_VT_CTL);
if (enable)
vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
else
vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
wr32(E1000_VT_CTL, vt_ctl);
}
/**
* igb_read_phy_reg_82580 - Read 82580 MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the MDI control register in the PHY at offset and stores the
* information read to data.
**/
s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
ret_val = igb_read_phy_reg_mdic(hw, offset, data);
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* igb_write_phy_reg_82580 - Write 82580 MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write to register at offset
*
* Writes data to MDI control register in the PHY at offset.
**/
s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
ret_val = igb_write_phy_reg_mdic(hw, offset, data);
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
* @hw: pointer to the HW structure
*
* This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
* the values found in the EEPROM. This addresses an issue in which these
* bits are not restored from EEPROM after reset.
**/
static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
{
s32 ret_val = 0;
u32 mdicnfg;
u16 nvm_data = 0;
if (hw->mac.type != e1000_82580)
goto out;
if (!igb_sgmii_active_82575(hw))
goto out;
ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
&nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
mdicnfg = rd32(E1000_MDICNFG);
if (nvm_data & NVM_WORD24_EXT_MDIO)
mdicnfg |= E1000_MDICNFG_EXT_MDIO;
if (nvm_data & NVM_WORD24_COM_MDIO)
mdicnfg |= E1000_MDICNFG_COM_MDIO;
wr32(E1000_MDICNFG, mdicnfg);
out:
return ret_val;
}
/**
* igb_reset_hw_82580 - Reset hardware
* @hw: pointer to the HW structure
*
* This resets function or entire device (all ports, etc.)
* to a known state.
**/
static s32 igb_reset_hw_82580(struct e1000_hw *hw)
{
s32 ret_val = 0;
/* BH SW mailbox bit in SW_FW_SYNC */
u16 swmbsw_mask = E1000_SW_SYNCH_MB;
u32 ctrl;
bool global_device_reset = hw->dev_spec._82575.global_device_reset;
hw->dev_spec._82575.global_device_reset = false;
/* due to hw errata, global device reset doesn't always
* work on 82580
*/
if (hw->mac.type == e1000_82580)
global_device_reset = false;
/* Get current control state. */
ctrl = rd32(E1000_CTRL);
/* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = igb_disable_pcie_master(hw);
if (ret_val)
hw_dbg("PCI-E Master disable polling has failed.\n");
hw_dbg("Masking off all interrupts\n");
wr32(E1000_IMC, 0xffffffff);
wr32(E1000_RCTL, 0);
wr32(E1000_TCTL, E1000_TCTL_PSP);
wrfl();
usleep_range(10000, 11000);
/* Determine whether or not a global dev reset is requested */
if (global_device_reset &&
hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
global_device_reset = false;
if (global_device_reset &&
!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
ctrl |= E1000_CTRL_DEV_RST;
else
ctrl |= E1000_CTRL_RST;
wr32(E1000_CTRL, ctrl);
wrfl();
/* Add delay to insure DEV_RST has time to complete */
if (global_device_reset)
usleep_range(5000, 6000);
ret_val = igb_get_auto_rd_done(hw);
if (ret_val) {
/* When auto config read does not complete, do not
* return with an error. This can happen in situations
* where there is no eeprom and prevents getting link.
*/
hw_dbg("Auto Read Done did not complete\n");
}
/* clear global device reset status bit */
wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
/* Clear any pending interrupt events. */
wr32(E1000_IMC, 0xffffffff);
rd32(E1000_ICR);
ret_val = igb_reset_mdicnfg_82580(hw);
if (ret_val)
hw_dbg("Could not reset MDICNFG based on EEPROM\n");
/* Install any alternate MAC address into RAR0 */
ret_val = igb_check_alt_mac_addr(hw);
/* Release semaphore */
if (global_device_reset)
hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
return ret_val;
}
/**
* igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
* @data: data received by reading RXPBS register
*
* The 82580 uses a table based approach for packet buffer allocation sizes.
* This function converts the retrieved value into the correct table value
* 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
* 0x0 36 72 144 1 2 4 8 16
* 0x8 35 70 140 rsv rsv rsv rsv rsv
*/
u16 igb_rxpbs_adjust_82580(u32 data)
{
u16 ret_val = 0;
if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
ret_val = e1000_82580_rxpbs_table[data];
return ret_val;
}
/**
* igb_validate_nvm_checksum_with_offset - Validate EEPROM
* checksum
* @hw: pointer to the HW structure
* @offset: offset in words of the checksum protected region
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
**/
static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
u16 offset)
{
s32 ret_val = 0;
u16 checksum = 0;
u16 i, nvm_data;
for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
checksum += nvm_data;
}
if (checksum != (u16) NVM_SUM) {
hw_dbg("NVM Checksum Invalid\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
out:
return ret_val;
}
/**
* igb_update_nvm_checksum_with_offset - Update EEPROM
* checksum
* @hw: pointer to the HW structure
* @offset: offset in words of the checksum protected region
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM.
**/
static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error while updating checksum.\n");
goto out;
}
checksum += nvm_data;
}
checksum = (u16) NVM_SUM - checksum;
ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
&checksum);
if (ret_val)
hw_dbg("NVM Write Error while updating checksum.\n");
out:
return ret_val;
}
/**
* igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM section checksum by reading/adding each word of
* the EEPROM and then verifies that the sum of the EEPROM is
* equal to 0xBABA.
**/
static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 eeprom_regions_count = 1;
u16 j, nvm_data;
u16 nvm_offset;
ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
/* if checksums compatibility bit is set validate checksums
* for all 4 ports.
*/
eeprom_regions_count = 4;
}
for (j = 0; j < eeprom_regions_count; j++) {
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
ret_val = igb_validate_nvm_checksum_with_offset(hw,
nvm_offset);
if (ret_val != 0)
goto out;
}
out:
return ret_val;
}
/**
* igb_update_nvm_checksum_82580 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM section checksums for all 4 ports by reading/adding
* each word of the EEPROM up to the checksum. Then calculates the EEPROM
* checksum and writes the value to the EEPROM.
**/
static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
{
s32 ret_val;
u16 j, nvm_data;
u16 nvm_offset;
ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
goto out;
}
if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
/* set compatibility bit to validate checksums appropriately */
nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
&nvm_data);
if (ret_val) {
hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
goto out;
}
}
for (j = 0; j < 4; j++) {
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
if (ret_val)
goto out;
}
out:
return ret_val;
}
/**
* igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM section checksum by reading/adding each word of
* the EEPROM and then verifies that the sum of the EEPROM is
* equal to 0xBABA.
**/
static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 j;
u16 nvm_offset;
for (j = 0; j < 4; j++) {
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
ret_val = igb_validate_nvm_checksum_with_offset(hw,
nvm_offset);
if (ret_val != 0)
goto out;
}
out:
return ret_val;
}
/**
* igb_update_nvm_checksum_i350 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM section checksums for all 4 ports by reading/adding
* each word of the EEPROM up to the checksum. Then calculates the EEPROM
* checksum and writes the value to the EEPROM.
**/
static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 j;
u16 nvm_offset;
for (j = 0; j < 4; j++) {
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
if (ret_val != 0)
goto out;
}
out:
return ret_val;
}
/**
* __igb_access_emi_reg - Read/write EMI register
* @hw: pointer to the HW structure
* @addr: EMI address to program
* @data: pointer to value to read/write from/to the EMI address
* @read: boolean flag to indicate read or write
**/
static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
u16 *data, bool read)
{
s32 ret_val = 0;
ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
if (ret_val)
return ret_val;
if (read)
ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
else
ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
return ret_val;
}
/**
* igb_read_emi_reg - Read Extended Management Interface register
* @hw: pointer to the HW structure
* @addr: EMI address to program
* @data: value to be read from the EMI address
**/
s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
{
return __igb_access_emi_reg(hw, addr, data, true);
}
/**
* igb_set_eee_i350 - Enable/disable EEE support
* @hw: pointer to the HW structure
* @adv1G: boolean flag enabling 1G EEE advertisement
* @adv100m: boolean flag enabling 100M EEE advertisement
*
* Enable/disable EEE based on setting in dev_spec structure.
*
**/
s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
{
u32 ipcnfg, eeer;
if ((hw->mac.type < e1000_i350) ||
(hw->phy.media_type != e1000_media_type_copper))
goto out;
ipcnfg = rd32(E1000_IPCNFG);
eeer = rd32(E1000_EEER);
/* enable or disable per user setting */
if (!(hw->dev_spec._82575.eee_disable)) {
u32 eee_su = rd32(E1000_EEE_SU);
if (adv100M)
ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
else
ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
if (adv1G)
ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
else
ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
E1000_EEER_LPI_FC);
/* This bit should not be set in normal operation. */
if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
hw_dbg("LPI Clock Stop Bit should not be set!\n");
} else {
ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
E1000_IPCNFG_EEE_100M_AN);
eeer &= ~(E1000_EEER_TX_LPI_EN |
E1000_EEER_RX_LPI_EN |
E1000_EEER_LPI_FC);
}
wr32(E1000_IPCNFG, ipcnfg);
wr32(E1000_EEER, eeer);
rd32(E1000_IPCNFG);
rd32(E1000_EEER);
out:
return 0;
}
/**
* igb_set_eee_i354 - Enable/disable EEE support
* @hw: pointer to the HW structure
* @adv1G: boolean flag enabling 1G EEE advertisement
* @adv100m: boolean flag enabling 100M EEE advertisement
*
* Enable/disable EEE legacy mode based on setting in dev_spec structure.
*
**/
s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 phy_data;
if ((hw->phy.media_type != e1000_media_type_copper) ||
((phy->id != M88E1543_E_PHY_ID) &&
(phy->id != M88E1512_E_PHY_ID)))
goto out;
if (!hw->dev_spec._82575.eee_disable) {
/* Switch to PHY page 18. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
if (ret_val)
goto out;
ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
&phy_data);
if (ret_val)
goto out;
phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
phy_data);
if (ret_val)
goto out;
/* Return the PHY to page 0. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
if (ret_val)
goto out;
/* Turn on EEE advertisement. */
ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
E1000_EEE_ADV_DEV_I354,
&phy_data);
if (ret_val)
goto out;
if (adv100M)
phy_data |= E1000_EEE_ADV_100_SUPPORTED;
else
phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
if (adv1G)
phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
else
phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
E1000_EEE_ADV_DEV_I354,
phy_data);
} else {
/* Turn off EEE advertisement. */
ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
E1000_EEE_ADV_DEV_I354,
&phy_data);
if (ret_val)
goto out;
phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
E1000_EEE_ADV_1000_SUPPORTED);
ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
E1000_EEE_ADV_DEV_I354,
phy_data);
}
out:
return ret_val;
}
/**
* igb_get_eee_status_i354 - Get EEE status
* @hw: pointer to the HW structure
* @status: EEE status
*
* Get EEE status by guessing based on whether Tx or Rx LPI indications have
* been received.
**/
s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 phy_data;
/* Check if EEE is supported on this device. */
if ((hw->phy.media_type != e1000_media_type_copper) ||
((phy->id != M88E1543_E_PHY_ID) &&
(phy->id != M88E1512_E_PHY_ID)))
goto out;
ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
E1000_PCS_STATUS_DEV_I354,
&phy_data);
if (ret_val)
goto out;
*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
out:
return ret_val;
}
static const u8 e1000_emc_temp_data[4] = {
E1000_EMC_INTERNAL_DATA,
E1000_EMC_DIODE1_DATA,
E1000_EMC_DIODE2_DATA,
E1000_EMC_DIODE3_DATA
};
static const u8 e1000_emc_therm_limit[4] = {
E1000_EMC_INTERNAL_THERM_LIMIT,
E1000_EMC_DIODE1_THERM_LIMIT,
E1000_EMC_DIODE2_THERM_LIMIT,
E1000_EMC_DIODE3_THERM_LIMIT
};
#ifdef CONFIG_IGB_HWMON
/**
* igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
* @hw: pointer to hardware structure
*
* Updates the temperatures in mac.thermal_sensor_data
**/
static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
{
u16 ets_offset;
u16 ets_cfg;
u16 ets_sensor;
u8 num_sensors;
u8 sensor_index;
u8 sensor_location;
u8 i;
struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
return E1000_NOT_IMPLEMENTED;
data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
/* Return the internal sensor only if ETS is unsupported */
hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
return 0;
hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
!= NVM_ETS_TYPE_EMC)
return E1000_NOT_IMPLEMENTED;
num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
if (num_sensors > E1000_MAX_SENSORS)
num_sensors = E1000_MAX_SENSORS;
for (i = 1; i < num_sensors; i++) {
hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
NVM_ETS_DATA_INDEX_SHIFT);
sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
NVM_ETS_DATA_LOC_SHIFT);
if (sensor_location != 0)
hw->phy.ops.read_i2c_byte(hw,
e1000_emc_temp_data[sensor_index],
E1000_I2C_THERMAL_SENSOR_ADDR,
&data->sensor[i].temp);
}
return 0;
}
/**
* igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
* @hw: pointer to hardware structure
*
* Sets the thermal sensor thresholds according to the NVM map
* and save off the threshold and location values into mac.thermal_sensor_data
**/
static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
{
u16 ets_offset;
u16 ets_cfg;
u16 ets_sensor;
u8 low_thresh_delta;
u8 num_sensors;
u8 sensor_index;
u8 sensor_location;
u8 therm_limit;
u8 i;
struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
return E1000_NOT_IMPLEMENTED;
memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
data->sensor[0].location = 0x1;
data->sensor[0].caution_thresh =
(rd32(E1000_THHIGHTC) & 0xFF);
data->sensor[0].max_op_thresh =
(rd32(E1000_THLOWTC) & 0xFF);
/* Return the internal sensor only if ETS is unsupported */
hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
return 0;
hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
!= NVM_ETS_TYPE_EMC)
return E1000_NOT_IMPLEMENTED;
low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
NVM_ETS_LTHRES_DELTA_SHIFT);
num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
for (i = 1; i <= num_sensors; i++) {
hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
NVM_ETS_DATA_INDEX_SHIFT);
sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
NVM_ETS_DATA_LOC_SHIFT);
therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
hw->phy.ops.write_i2c_byte(hw,
e1000_emc_therm_limit[sensor_index],
E1000_I2C_THERMAL_SENSOR_ADDR,
therm_limit);
if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
data->sensor[i].location = sensor_location;
data->sensor[i].caution_thresh = therm_limit;
data->sensor[i].max_op_thresh = therm_limit -
low_thresh_delta;
}
}
return 0;
}
#endif
static struct e1000_mac_operations e1000_mac_ops_82575 = {
.init_hw = igb_init_hw_82575,
.check_for_link = igb_check_for_link_82575,
.rar_set = igb_rar_set,
.read_mac_addr = igb_read_mac_addr_82575,
.get_speed_and_duplex = igb_get_link_up_info_82575,
#ifdef CONFIG_IGB_HWMON
.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
#endif
};
static const struct e1000_phy_operations e1000_phy_ops_82575 = {
.acquire = igb_acquire_phy_82575,
.get_cfg_done = igb_get_cfg_done_82575,
.release = igb_release_phy_82575,
.write_i2c_byte = igb_write_i2c_byte,
.read_i2c_byte = igb_read_i2c_byte,
};
static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
.acquire = igb_acquire_nvm_82575,
.read = igb_read_nvm_eerd,
.release = igb_release_nvm_82575,
.write = igb_write_nvm_spi,
};
const struct e1000_info e1000_82575_info = {
.get_invariants = igb_get_invariants_82575,
.mac_ops = &e1000_mac_ops_82575,
.phy_ops = &e1000_phy_ops_82575,
.nvm_ops = &e1000_nvm_ops_82575,
};