51dce24bcd
After many years of having a ~30 line copyright and license header to our source files, we are finally able to reduce that to one line with the advent of the SPDX identifier. Also caught a few files missing the SPDX license identifier, so fixed them up. Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Acked-by: Shannon Nelson <shannon.nelson@oracle.com> Acked-by: Richard Cochran <richardcochran@gmail.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
783 lines
19 KiB
C
783 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2007 - 2018 Intel Corporation. */
|
|
|
|
#include <linux/if_ether.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include "e1000_mac.h"
|
|
#include "e1000_nvm.h"
|
|
|
|
/**
|
|
* igb_raise_eec_clk - Raise EEPROM clock
|
|
* @hw: pointer to the HW structure
|
|
* @eecd: pointer to the EEPROM
|
|
*
|
|
* Enable/Raise the EEPROM clock bit.
|
|
**/
|
|
static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
|
|
{
|
|
*eecd = *eecd | E1000_EECD_SK;
|
|
wr32(E1000_EECD, *eecd);
|
|
wrfl();
|
|
udelay(hw->nvm.delay_usec);
|
|
}
|
|
|
|
/**
|
|
* igb_lower_eec_clk - Lower EEPROM clock
|
|
* @hw: pointer to the HW structure
|
|
* @eecd: pointer to the EEPROM
|
|
*
|
|
* Clear/Lower the EEPROM clock bit.
|
|
**/
|
|
static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
|
|
{
|
|
*eecd = *eecd & ~E1000_EECD_SK;
|
|
wr32(E1000_EECD, *eecd);
|
|
wrfl();
|
|
udelay(hw->nvm.delay_usec);
|
|
}
|
|
|
|
/**
|
|
* igb_shift_out_eec_bits - Shift data bits our to the EEPROM
|
|
* @hw: pointer to the HW structure
|
|
* @data: data to send to the EEPROM
|
|
* @count: number of bits to shift out
|
|
*
|
|
* We need to shift 'count' bits out to the EEPROM. So, the value in the
|
|
* "data" parameter will be shifted out to the EEPROM one bit at a time.
|
|
* In order to do this, "data" must be broken down into bits.
|
|
**/
|
|
static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = rd32(E1000_EECD);
|
|
u32 mask;
|
|
|
|
mask = 1u << (count - 1);
|
|
if (nvm->type == e1000_nvm_eeprom_spi)
|
|
eecd |= E1000_EECD_DO;
|
|
|
|
do {
|
|
eecd &= ~E1000_EECD_DI;
|
|
|
|
if (data & mask)
|
|
eecd |= E1000_EECD_DI;
|
|
|
|
wr32(E1000_EECD, eecd);
|
|
wrfl();
|
|
|
|
udelay(nvm->delay_usec);
|
|
|
|
igb_raise_eec_clk(hw, &eecd);
|
|
igb_lower_eec_clk(hw, &eecd);
|
|
|
|
mask >>= 1;
|
|
} while (mask);
|
|
|
|
eecd &= ~E1000_EECD_DI;
|
|
wr32(E1000_EECD, eecd);
|
|
}
|
|
|
|
/**
|
|
* igb_shift_in_eec_bits - Shift data bits in from the EEPROM
|
|
* @hw: pointer to the HW structure
|
|
* @count: number of bits to shift in
|
|
*
|
|
* In order to read a register from the EEPROM, we need to shift 'count' bits
|
|
* in from the EEPROM. Bits are "shifted in" by raising the clock input to
|
|
* the EEPROM (setting the SK bit), and then reading the value of the data out
|
|
* "DO" bit. During this "shifting in" process the data in "DI" bit should
|
|
* always be clear.
|
|
**/
|
|
static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
|
|
{
|
|
u32 eecd;
|
|
u32 i;
|
|
u16 data;
|
|
|
|
eecd = rd32(E1000_EECD);
|
|
|
|
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
|
|
data = 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
data <<= 1;
|
|
igb_raise_eec_clk(hw, &eecd);
|
|
|
|
eecd = rd32(E1000_EECD);
|
|
|
|
eecd &= ~E1000_EECD_DI;
|
|
if (eecd & E1000_EECD_DO)
|
|
data |= 1;
|
|
|
|
igb_lower_eec_clk(hw, &eecd);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
|
|
* @hw: pointer to the HW structure
|
|
* @ee_reg: EEPROM flag for polling
|
|
*
|
|
* Polls the EEPROM status bit for either read or write completion based
|
|
* upon the value of 'ee_reg'.
|
|
**/
|
|
static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
|
|
{
|
|
u32 attempts = 100000;
|
|
u32 i, reg = 0;
|
|
s32 ret_val = -E1000_ERR_NVM;
|
|
|
|
for (i = 0; i < attempts; i++) {
|
|
if (ee_reg == E1000_NVM_POLL_READ)
|
|
reg = rd32(E1000_EERD);
|
|
else
|
|
reg = rd32(E1000_EEWR);
|
|
|
|
if (reg & E1000_NVM_RW_REG_DONE) {
|
|
ret_val = 0;
|
|
break;
|
|
}
|
|
|
|
udelay(5);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_acquire_nvm - Generic request for access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
|
|
* Return successful if access grant bit set, else clear the request for
|
|
* EEPROM access and return -E1000_ERR_NVM (-1).
|
|
**/
|
|
s32 igb_acquire_nvm(struct e1000_hw *hw)
|
|
{
|
|
u32 eecd = rd32(E1000_EECD);
|
|
s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
|
|
s32 ret_val = 0;
|
|
|
|
|
|
wr32(E1000_EECD, eecd | E1000_EECD_REQ);
|
|
eecd = rd32(E1000_EECD);
|
|
|
|
while (timeout) {
|
|
if (eecd & E1000_EECD_GNT)
|
|
break;
|
|
udelay(5);
|
|
eecd = rd32(E1000_EECD);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
eecd &= ~E1000_EECD_REQ;
|
|
wr32(E1000_EECD, eecd);
|
|
hw_dbg("Could not acquire NVM grant\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_standby_nvm - Return EEPROM to standby state
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Return the EEPROM to a standby state.
|
|
**/
|
|
static void igb_standby_nvm(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = rd32(E1000_EECD);
|
|
|
|
if (nvm->type == e1000_nvm_eeprom_spi) {
|
|
/* Toggle CS to flush commands */
|
|
eecd |= E1000_EECD_CS;
|
|
wr32(E1000_EECD, eecd);
|
|
wrfl();
|
|
udelay(nvm->delay_usec);
|
|
eecd &= ~E1000_EECD_CS;
|
|
wr32(E1000_EECD, eecd);
|
|
wrfl();
|
|
udelay(nvm->delay_usec);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_stop_nvm - Terminate EEPROM command
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Terminates the current command by inverting the EEPROM's chip select pin.
|
|
**/
|
|
static void e1000_stop_nvm(struct e1000_hw *hw)
|
|
{
|
|
u32 eecd;
|
|
|
|
eecd = rd32(E1000_EECD);
|
|
if (hw->nvm.type == e1000_nvm_eeprom_spi) {
|
|
/* Pull CS high */
|
|
eecd |= E1000_EECD_CS;
|
|
igb_lower_eec_clk(hw, &eecd);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_release_nvm - Release exclusive access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
|
|
**/
|
|
void igb_release_nvm(struct e1000_hw *hw)
|
|
{
|
|
u32 eecd;
|
|
|
|
e1000_stop_nvm(hw);
|
|
|
|
eecd = rd32(E1000_EECD);
|
|
eecd &= ~E1000_EECD_REQ;
|
|
wr32(E1000_EECD, eecd);
|
|
}
|
|
|
|
/**
|
|
* igb_ready_nvm_eeprom - Prepares EEPROM for read/write
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Setups the EEPROM for reading and writing.
|
|
**/
|
|
static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = rd32(E1000_EECD);
|
|
s32 ret_val = 0;
|
|
u16 timeout = 0;
|
|
u8 spi_stat_reg;
|
|
|
|
|
|
if (nvm->type == e1000_nvm_eeprom_spi) {
|
|
/* Clear SK and CS */
|
|
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
|
wr32(E1000_EECD, eecd);
|
|
wrfl();
|
|
udelay(1);
|
|
timeout = NVM_MAX_RETRY_SPI;
|
|
|
|
/* Read "Status Register" repeatedly until the LSB is cleared.
|
|
* The EEPROM will signal that the command has been completed
|
|
* by clearing bit 0 of the internal status register. If it's
|
|
* not cleared within 'timeout', then error out.
|
|
*/
|
|
while (timeout) {
|
|
igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
|
|
hw->nvm.opcode_bits);
|
|
spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
|
|
if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
|
|
break;
|
|
|
|
udelay(5);
|
|
igb_standby_nvm(hw);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
hw_dbg("SPI NVM Status error\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_read_nvm_spi - Read EEPROM's using SPI
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @words: number of words to read
|
|
* @data: word read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word from the EEPROM.
|
|
**/
|
|
s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 i = 0;
|
|
s32 ret_val;
|
|
u16 word_in;
|
|
u8 read_opcode = NVM_READ_OPCODE_SPI;
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
hw_dbg("nvm parameter(s) out of bounds\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto out;
|
|
}
|
|
|
|
ret_val = nvm->ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = igb_ready_nvm_eeprom(hw);
|
|
if (ret_val)
|
|
goto release;
|
|
|
|
igb_standby_nvm(hw);
|
|
|
|
if ((nvm->address_bits == 8) && (offset >= 128))
|
|
read_opcode |= NVM_A8_OPCODE_SPI;
|
|
|
|
/* Send the READ command (opcode + addr) */
|
|
igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
|
|
igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
|
|
|
|
/* Read the data. SPI NVMs increment the address with each byte
|
|
* read and will roll over if reading beyond the end. This allows
|
|
* us to read the whole NVM from any offset
|
|
*/
|
|
for (i = 0; i < words; i++) {
|
|
word_in = igb_shift_in_eec_bits(hw, 16);
|
|
data[i] = (word_in >> 8) | (word_in << 8);
|
|
}
|
|
|
|
release:
|
|
nvm->ops.release(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_read_nvm_eerd - Reads EEPROM using EERD register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @words: number of words to read
|
|
* @data: word read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word from the EEPROM using the EERD register.
|
|
**/
|
|
s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 i, eerd = 0;
|
|
s32 ret_val = 0;
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
hw_dbg("nvm parameter(s) out of bounds\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < words; i++) {
|
|
eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
|
|
E1000_NVM_RW_REG_START;
|
|
|
|
wr32(E1000_EERD, eerd);
|
|
ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
|
|
if (ret_val)
|
|
break;
|
|
|
|
data[i] = (rd32(E1000_EERD) >>
|
|
E1000_NVM_RW_REG_DATA);
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_write_nvm_spi - Write to EEPROM using SPI
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset within the EEPROM to be written to
|
|
* @words: number of words to write
|
|
* @data: 16 bit word(s) to be written to the EEPROM
|
|
*
|
|
* Writes data to EEPROM at offset using SPI interface.
|
|
*
|
|
* If e1000_update_nvm_checksum is not called after this function , the
|
|
* EEPROM will most likley contain an invalid checksum.
|
|
**/
|
|
s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
s32 ret_val = -E1000_ERR_NVM;
|
|
u16 widx = 0;
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
hw_dbg("nvm parameter(s) out of bounds\n");
|
|
return ret_val;
|
|
}
|
|
|
|
while (widx < words) {
|
|
u8 write_opcode = NVM_WRITE_OPCODE_SPI;
|
|
|
|
ret_val = nvm->ops.acquire(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = igb_ready_nvm_eeprom(hw);
|
|
if (ret_val) {
|
|
nvm->ops.release(hw);
|
|
return ret_val;
|
|
}
|
|
|
|
igb_standby_nvm(hw);
|
|
|
|
/* Send the WRITE ENABLE command (8 bit opcode) */
|
|
igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
|
|
nvm->opcode_bits);
|
|
|
|
igb_standby_nvm(hw);
|
|
|
|
/* Some SPI eeproms use the 8th address bit embedded in the
|
|
* opcode
|
|
*/
|
|
if ((nvm->address_bits == 8) && (offset >= 128))
|
|
write_opcode |= NVM_A8_OPCODE_SPI;
|
|
|
|
/* Send the Write command (8-bit opcode + addr) */
|
|
igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
|
|
igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
|
|
nvm->address_bits);
|
|
|
|
/* Loop to allow for up to whole page write of eeprom */
|
|
while (widx < words) {
|
|
u16 word_out = data[widx];
|
|
|
|
word_out = (word_out >> 8) | (word_out << 8);
|
|
igb_shift_out_eec_bits(hw, word_out, 16);
|
|
widx++;
|
|
|
|
if ((((offset + widx) * 2) % nvm->page_size) == 0) {
|
|
igb_standby_nvm(hw);
|
|
break;
|
|
}
|
|
}
|
|
usleep_range(1000, 2000);
|
|
nvm->ops.release(hw);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_read_part_string - Read device part number
|
|
* @hw: pointer to the HW structure
|
|
* @part_num: pointer to device part number
|
|
* @part_num_size: size of part number buffer
|
|
*
|
|
* Reads the product board assembly (PBA) number from the EEPROM and stores
|
|
* the value in part_num.
|
|
**/
|
|
s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
|
|
{
|
|
s32 ret_val;
|
|
u16 nvm_data;
|
|
u16 pointer;
|
|
u16 offset;
|
|
u16 length;
|
|
|
|
if (part_num == NULL) {
|
|
hw_dbg("PBA string buffer was null\n");
|
|
ret_val = E1000_ERR_INVALID_ARGUMENT;
|
|
goto out;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
/* if nvm_data is not ptr guard the PBA must be in legacy format which
|
|
* means pointer is actually our second data word for the PBA number
|
|
* and we can decode it into an ascii string
|
|
*/
|
|
if (nvm_data != NVM_PBA_PTR_GUARD) {
|
|
hw_dbg("NVM PBA number is not stored as string\n");
|
|
|
|
/* we will need 11 characters to store the PBA */
|
|
if (part_num_size < 11) {
|
|
hw_dbg("PBA string buffer too small\n");
|
|
return E1000_ERR_NO_SPACE;
|
|
}
|
|
|
|
/* extract hex string from data and pointer */
|
|
part_num[0] = (nvm_data >> 12) & 0xF;
|
|
part_num[1] = (nvm_data >> 8) & 0xF;
|
|
part_num[2] = (nvm_data >> 4) & 0xF;
|
|
part_num[3] = nvm_data & 0xF;
|
|
part_num[4] = (pointer >> 12) & 0xF;
|
|
part_num[5] = (pointer >> 8) & 0xF;
|
|
part_num[6] = '-';
|
|
part_num[7] = 0;
|
|
part_num[8] = (pointer >> 4) & 0xF;
|
|
part_num[9] = pointer & 0xF;
|
|
|
|
/* put a null character on the end of our string */
|
|
part_num[10] = '\0';
|
|
|
|
/* switch all the data but the '-' to hex char */
|
|
for (offset = 0; offset < 10; offset++) {
|
|
if (part_num[offset] < 0xA)
|
|
part_num[offset] += '0';
|
|
else if (part_num[offset] < 0x10)
|
|
part_num[offset] += 'A' - 0xA;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
if (length == 0xFFFF || length == 0) {
|
|
hw_dbg("NVM PBA number section invalid length\n");
|
|
ret_val = E1000_ERR_NVM_PBA_SECTION;
|
|
goto out;
|
|
}
|
|
/* check if part_num buffer is big enough */
|
|
if (part_num_size < (((u32)length * 2) - 1)) {
|
|
hw_dbg("PBA string buffer too small\n");
|
|
ret_val = E1000_ERR_NO_SPACE;
|
|
goto out;
|
|
}
|
|
|
|
/* trim pba length from start of string */
|
|
pointer++;
|
|
length--;
|
|
|
|
for (offset = 0; offset < length; offset++) {
|
|
ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
part_num[offset * 2] = (u8)(nvm_data >> 8);
|
|
part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
|
|
}
|
|
part_num[offset * 2] = '\0';
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_read_mac_addr - Read device MAC address
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Reads the device MAC address from the EEPROM and stores the value.
|
|
* Since devices with two ports use the same EEPROM, we increment the
|
|
* last bit in the MAC address for the second port.
|
|
**/
|
|
s32 igb_read_mac_addr(struct e1000_hw *hw)
|
|
{
|
|
u32 rar_high;
|
|
u32 rar_low;
|
|
u16 i;
|
|
|
|
rar_high = rd32(E1000_RAH(0));
|
|
rar_low = rd32(E1000_RAL(0));
|
|
|
|
for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
|
|
hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
|
|
|
|
for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
|
|
hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
|
|
|
|
for (i = 0; i < ETH_ALEN; i++)
|
|
hw->mac.addr[i] = hw->mac.perm_addr[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_validate_nvm_checksum - Validate EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
|
|
**/
|
|
s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
u16 checksum = 0;
|
|
u16 i, nvm_data;
|
|
|
|
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
|
|
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
checksum += nvm_data;
|
|
}
|
|
|
|
if (checksum != (u16) NVM_SUM) {
|
|
hw_dbg("NVM Checksum Invalid\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_update_nvm_checksum - Update EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* up to the checksum. Then calculates the EEPROM checksum and writes the
|
|
* value to the EEPROM.
|
|
**/
|
|
s32 igb_update_nvm_checksum(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 checksum = 0;
|
|
u16 i, nvm_data;
|
|
|
|
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
|
|
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error while updating checksum.\n");
|
|
goto out;
|
|
}
|
|
checksum += nvm_data;
|
|
}
|
|
checksum = (u16) NVM_SUM - checksum;
|
|
ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
|
|
if (ret_val)
|
|
hw_dbg("NVM Write Error while updating checksum.\n");
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_get_fw_version - Get firmware version information
|
|
* @hw: pointer to the HW structure
|
|
* @fw_vers: pointer to output structure
|
|
*
|
|
* unsupported MAC types will return all 0 version structure
|
|
**/
|
|
void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
|
|
{
|
|
u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
|
|
u8 q, hval, rem, result;
|
|
u16 comb_verh, comb_verl, comb_offset;
|
|
|
|
memset(fw_vers, 0, sizeof(struct e1000_fw_version));
|
|
|
|
/* basic eeprom version numbers and bits used vary by part and by tool
|
|
* used to create the nvm images. Check which data format we have.
|
|
*/
|
|
hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
|
|
switch (hw->mac.type) {
|
|
case e1000_i211:
|
|
igb_read_invm_version(hw, fw_vers);
|
|
return;
|
|
case e1000_82575:
|
|
case e1000_82576:
|
|
case e1000_82580:
|
|
/* Use this format, unless EETRACK ID exists,
|
|
* then use alternate format
|
|
*/
|
|
if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
|
|
hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
|
|
fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
|
|
>> NVM_MAJOR_SHIFT;
|
|
fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
|
|
>> NVM_MINOR_SHIFT;
|
|
fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
|
|
goto etrack_id;
|
|
}
|
|
break;
|
|
case e1000_i210:
|
|
if (!(igb_get_flash_presence_i210(hw))) {
|
|
igb_read_invm_version(hw, fw_vers);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case e1000_i350:
|
|
/* find combo image version */
|
|
hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
|
|
if ((comb_offset != 0x0) &&
|
|
(comb_offset != NVM_VER_INVALID)) {
|
|
|
|
hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
|
|
+ 1), 1, &comb_verh);
|
|
hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
|
|
1, &comb_verl);
|
|
|
|
/* get Option Rom version if it exists and is valid */
|
|
if ((comb_verh && comb_verl) &&
|
|
((comb_verh != NVM_VER_INVALID) &&
|
|
(comb_verl != NVM_VER_INVALID))) {
|
|
|
|
fw_vers->or_valid = true;
|
|
fw_vers->or_major =
|
|
comb_verl >> NVM_COMB_VER_SHFT;
|
|
fw_vers->or_build =
|
|
(comb_verl << NVM_COMB_VER_SHFT)
|
|
| (comb_verh >> NVM_COMB_VER_SHFT);
|
|
fw_vers->or_patch =
|
|
comb_verh & NVM_COMB_VER_MASK;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
|
|
fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
|
|
>> NVM_MAJOR_SHIFT;
|
|
|
|
/* check for old style version format in newer images*/
|
|
if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
|
|
eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
|
|
} else {
|
|
eeprom_verl = (fw_version & NVM_MINOR_MASK)
|
|
>> NVM_MINOR_SHIFT;
|
|
}
|
|
/* Convert minor value to hex before assigning to output struct
|
|
* Val to be converted will not be higher than 99, per tool output
|
|
*/
|
|
q = eeprom_verl / NVM_HEX_CONV;
|
|
hval = q * NVM_HEX_TENS;
|
|
rem = eeprom_verl % NVM_HEX_CONV;
|
|
result = hval + rem;
|
|
fw_vers->eep_minor = result;
|
|
|
|
etrack_id:
|
|
if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
|
|
hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
|
|
hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
|
|
fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
|
|
| eeprom_verl;
|
|
}
|
|
}
|