linux/arch/powerpc/mm/book3s64/hash_pgtable.c
Michael Ellerman 87e65ad7bd powerpc/mm/64s/hash: Add real-mode change_memory_range() for hash LPAR
When we enabled STRICT_KERNEL_RWX we received some reports of boot
failures when using the Hash MMU and running under phyp. The crashes
are intermittent, and often exhibit as a completely unresponsive
system, or possibly an oops.

One example, which was caught in xmon:

  [   14.068327][    T1] devtmpfs: mounted
  [   14.069302][    T1] Freeing unused kernel memory: 5568K
  [   14.142060][  T347] BUG: Unable to handle kernel instruction fetch
  [   14.142063][    T1] Run /sbin/init as init process
  [   14.142074][  T347] Faulting instruction address: 0xc000000000004400
  cpu 0x2: Vector: 400 (Instruction Access) at [c00000000c7475e0]
      pc: c000000000004400: exc_virt_0x4400_instruction_access+0x0/0x80
      lr: c0000000001862d4: update_rq_clock+0x44/0x110
      sp: c00000000c747880
     msr: 8000000040001031
    current = 0xc00000000c60d380
    paca    = 0xc00000001ec9de80   irqmask: 0x03   irq_happened: 0x01
      pid   = 347, comm = kworker/2:1
  ...
  enter ? for help
  [c00000000c747880] c0000000001862d4 update_rq_clock+0x44/0x110 (unreliable)
  [c00000000c7478f0] c000000000198794 update_blocked_averages+0xb4/0x6d0
  [c00000000c7479f0] c000000000198e40 update_nohz_stats+0x90/0xd0
  [c00000000c747a20] c0000000001a13b4 _nohz_idle_balance+0x164/0x390
  [c00000000c747b10] c0000000001a1af8 newidle_balance+0x478/0x610
  [c00000000c747be0] c0000000001a1d48 pick_next_task_fair+0x58/0x480
  [c00000000c747c40] c000000000eaab5c __schedule+0x12c/0x950
  [c00000000c747cd0] c000000000eab3e8 schedule+0x68/0x120
  [c00000000c747d00] c00000000016b730 worker_thread+0x130/0x640
  [c00000000c747da0] c000000000174d50 kthread+0x1a0/0x1b0
  [c00000000c747e10] c00000000000e0f0 ret_from_kernel_thread+0x5c/0x6c

This shows that CPU 2, which was idle, woke up and then appears to
randomly take an instruction fault on a completely valid area of
kernel text.

The cause turns out to be the call to hash__mark_rodata_ro(), late in
boot. Due to the way we layout text and rodata, that function actually
changes the permissions for all of text and rodata to read-only plus
execute.

To do the permission change we use a hypervisor call, H_PROTECT. On
phyp that appears to be implemented by briefly removing the mapping of
the kernel text, before putting it back with the updated permissions.
If any other CPU is executing during that window, it will see spurious
faults on the kernel text and/or data, leading to crashes.

To fix it we use stop machine to collect all other CPUs, and then have
them drop into real mode (MMU off), while we change the mapping. That
way they are unaffected by the mapping temporarily disappearing.

We don't see this bug on KVM because KVM always use VPM=1, where
faults are directed to the hypervisor, and the fault will be
serialised vs the h_protect() by HPTE_V_HVLOCK.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210331003845.216246-5-mpe@ellerman.id.au
2021-04-08 21:17:43 +10:00

563 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2005, Paul Mackerras, IBM Corporation.
* Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
*/
#include <linux/sched.h>
#include <linux/mm_types.h>
#include <linux/mm.h>
#include <linux/stop_machine.h>
#include <asm/sections.h>
#include <asm/mmu.h>
#include <asm/tlb.h>
#include <mm/mmu_decl.h>
#define CREATE_TRACE_POINTS
#include <trace/events/thp.h>
#if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
#warning Limited user VSID range means pagetable space is wasted
#endif
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* vmemmap is the starting address of the virtual address space where
* struct pages are allocated for all possible PFNs present on the system
* including holes and bad memory (hence sparse). These virtual struct
* pages are stored in sequence in this virtual address space irrespective
* of the fact whether the corresponding PFN is valid or not. This achieves
* constant relationship between address of struct page and its PFN.
*
* During boot or memory hotplug operation when a new memory section is
* added, physical memory allocation (including hash table bolting) will
* be performed for the set of struct pages which are part of the memory
* section. This saves memory by not allocating struct pages for PFNs
* which are not valid.
*
* ----------------------------------------------
* | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
* ----------------------------------------------
*
* f000000000000000 c000000000000000
* vmemmap +--------------+ +--------------+
* + | page struct | +--------------> | page struct |
* | +--------------+ +--------------+
* | | page struct | +--------------> | page struct |
* | +--------------+ | +--------------+
* | | page struct | + +------> | page struct |
* | +--------------+ | +--------------+
* | | page struct | | +--> | page struct |
* | +--------------+ | | +--------------+
* | | page struct | | |
* | +--------------+ | |
* | | page struct | | |
* | +--------------+ | |
* | | page struct | | |
* | +--------------+ | |
* | | page struct | | |
* | +--------------+ | |
* | | page struct | +-------+ |
* | +--------------+ |
* | | page struct | +-----------+
* | +--------------+
* | | page struct | No mapping
* | +--------------+
* | | page struct | No mapping
* v +--------------+
*
* -----------------------------------------
* | RELATION BETWEEN STRUCT PAGES AND PFNS|
* -----------------------------------------
*
* vmemmap +--------------+ +---------------+
* + | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | |
* | +--------------+
* | | |
* | +--------------+
* | | |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | |
* | +--------------+
* | | |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* v +--------------+ +---------------+
*/
/*
* On hash-based CPUs, the vmemmap is bolted in the hash table.
*
*/
int __meminit hash__vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys)
{
int rc;
if ((start + page_size) >= H_VMEMMAP_END) {
pr_warn("Outside the supported range\n");
return -1;
}
rc = htab_bolt_mapping(start, start + page_size, phys,
pgprot_val(PAGE_KERNEL),
mmu_vmemmap_psize, mmu_kernel_ssize);
if (rc < 0) {
int rc2 = htab_remove_mapping(start, start + page_size,
mmu_vmemmap_psize,
mmu_kernel_ssize);
BUG_ON(rc2 && (rc2 != -ENOENT));
}
return rc;
}
#ifdef CONFIG_MEMORY_HOTPLUG
void hash__vmemmap_remove_mapping(unsigned long start,
unsigned long page_size)
{
int rc = htab_remove_mapping(start, start + page_size,
mmu_vmemmap_psize,
mmu_kernel_ssize);
BUG_ON((rc < 0) && (rc != -ENOENT));
WARN_ON(rc == -ENOENT);
}
#endif
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
/*
* map_kernel_page currently only called by __ioremap
* map_kernel_page adds an entry to the ioremap page table
* and adds an entry to the HPT, possibly bolting it
*/
int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
{
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
if (slab_is_available()) {
pgdp = pgd_offset_k(ea);
p4dp = p4d_offset(pgdp, ea);
pudp = pud_alloc(&init_mm, p4dp, ea);
if (!pudp)
return -ENOMEM;
pmdp = pmd_alloc(&init_mm, pudp, ea);
if (!pmdp)
return -ENOMEM;
ptep = pte_alloc_kernel(pmdp, ea);
if (!ptep)
return -ENOMEM;
set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
} else {
/*
* If the mm subsystem is not fully up, we cannot create a
* linux page table entry for this mapping. Simply bolt an
* entry in the hardware page table.
*
*/
if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
mmu_io_psize, mmu_kernel_ssize)) {
printk(KERN_ERR "Failed to do bolted mapping IO "
"memory at %016lx !\n", pa);
return -ENOMEM;
}
}
smp_wmb();
return 0;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, unsigned long clr,
unsigned long set)
{
__be64 old_be, tmp;
unsigned long old;
#ifdef CONFIG_DEBUG_VM
WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
assert_spin_locked(pmd_lockptr(mm, pmdp));
#endif
__asm__ __volatile__(
"1: ldarx %0,0,%3\n\
and. %1,%0,%6\n\
bne- 1b \n\
andc %1,%0,%4 \n\
or %1,%1,%7\n\
stdcx. %1,0,%3 \n\
bne- 1b"
: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
"r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
: "cc" );
old = be64_to_cpu(old_be);
trace_hugepage_update(addr, old, clr, set);
if (old & H_PAGE_HASHPTE)
hpte_do_hugepage_flush(mm, addr, pmdp, old);
return old;
}
pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
VM_BUG_ON(pmd_trans_huge(*pmdp));
VM_BUG_ON(pmd_devmap(*pmdp));
pmd = *pmdp;
pmd_clear(pmdp);
/*
* Wait for all pending hash_page to finish. This is needed
* in case of subpage collapse. When we collapse normal pages
* to hugepage, we first clear the pmd, then invalidate all
* the PTE entries. The assumption here is that any low level
* page fault will see a none pmd and take the slow path that
* will wait on mmap_lock. But we could very well be in a
* hash_page with local ptep pointer value. Such a hash page
* can result in adding new HPTE entries for normal subpages.
* That means we could be modifying the page content as we
* copy them to a huge page. So wait for parallel hash_page
* to finish before invalidating HPTE entries. We can do this
* by sending an IPI to all the cpus and executing a dummy
* function there.
*/
serialize_against_pte_lookup(vma->vm_mm);
/*
* Now invalidate the hpte entries in the range
* covered by pmd. This make sure we take a
* fault and will find the pmd as none, which will
* result in a major fault which takes mmap_lock and
* hence wait for collapse to complete. Without this
* the __collapse_huge_page_copy can result in copying
* the old content.
*/
flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
return pmd;
}
/*
* We want to put the pgtable in pmd and use pgtable for tracking
* the base page size hptes
*/
void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable)
{
pgtable_t *pgtable_slot;
assert_spin_locked(pmd_lockptr(mm, pmdp));
/*
* we store the pgtable in the second half of PMD
*/
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
*pgtable_slot = pgtable;
/*
* expose the deposited pgtable to other cpus.
* before we set the hugepage PTE at pmd level
* hash fault code looks at the deposted pgtable
* to store hash index values.
*/
smp_wmb();
}
pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
{
pgtable_t pgtable;
pgtable_t *pgtable_slot;
assert_spin_locked(pmd_lockptr(mm, pmdp));
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
pgtable = *pgtable_slot;
/*
* Once we withdraw, mark the entry NULL.
*/
*pgtable_slot = NULL;
/*
* We store HPTE information in the deposited PTE fragment.
* zero out the content on withdraw.
*/
memset(pgtable, 0, PTE_FRAG_SIZE);
return pgtable;
}
/*
* A linux hugepage PMD was changed and the corresponding hash table entries
* neesd to be flushed.
*/
void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, unsigned long old_pmd)
{
int ssize;
unsigned int psize;
unsigned long vsid;
unsigned long flags = 0;
/* get the base page size,vsid and segment size */
#ifdef CONFIG_DEBUG_VM
psize = get_slice_psize(mm, addr);
BUG_ON(psize == MMU_PAGE_16M);
#endif
if (old_pmd & H_PAGE_COMBO)
psize = MMU_PAGE_4K;
else
psize = MMU_PAGE_64K;
if (!is_kernel_addr(addr)) {
ssize = user_segment_size(addr);
vsid = get_user_vsid(&mm->context, addr, ssize);
WARN_ON(vsid == 0);
} else {
vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
ssize = mmu_kernel_ssize;
}
if (mm_is_thread_local(mm))
flags |= HPTE_LOCAL_UPDATE;
return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
}
pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
pmd_t old_pmd;
pgtable_t pgtable;
unsigned long old;
pgtable_t *pgtable_slot;
old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
old_pmd = __pmd(old);
/*
* We have pmd == none and we are holding page_table_lock.
* So we can safely go and clear the pgtable hash
* index info.
*/
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
pgtable = *pgtable_slot;
/*
* Let's zero out old valid and hash index details
* hash fault look at them.
*/
memset(pgtable, 0, PTE_FRAG_SIZE);
return old_pmd;
}
int hash__has_transparent_hugepage(void)
{
if (!mmu_has_feature(MMU_FTR_16M_PAGE))
return 0;
/*
* We support THP only if PMD_SIZE is 16MB.
*/
if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
return 0;
/*
* We need to make sure that we support 16MB hugepage in a segement
* with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
* of 64K.
*/
/*
* If we have 64K HPTE, we will be using that by default
*/
if (mmu_psize_defs[MMU_PAGE_64K].shift &&
(mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
return 0;
/*
* Ok we only have 4K HPTE
*/
if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
return 0;
return 1;
}
EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#ifdef CONFIG_STRICT_KERNEL_RWX
struct change_memory_parms {
unsigned long start, end, newpp;
unsigned int step, nr_cpus, master_cpu;
atomic_t cpu_counter;
};
// We'd rather this was on the stack but it has to be in the RMO
static struct change_memory_parms chmem_parms;
// And therefore we need a lock to protect it from concurrent use
static DEFINE_MUTEX(chmem_lock);
static void change_memory_range(unsigned long start, unsigned long end,
unsigned int step, unsigned long newpp)
{
unsigned long idx;
pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
start, end, newpp, step);
for (idx = start; idx < end; idx += step)
/* Not sure if we can do much with the return value */
mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
mmu_kernel_ssize);
}
static int notrace chmem_secondary_loop(struct change_memory_parms *parms)
{
unsigned long msr, tmp, flags;
int *p;
p = &parms->cpu_counter.counter;
local_irq_save(flags);
hard_irq_disable();
asm volatile (
// Switch to real mode and leave interrupts off
"mfmsr %[msr] ;"
"li %[tmp], %[MSR_IR_DR] ;"
"andc %[tmp], %[msr], %[tmp] ;"
"mtmsrd %[tmp] ;"
// Tell the master we are in real mode
"1: "
"lwarx %[tmp], 0, %[p] ;"
"addic %[tmp], %[tmp], -1 ;"
"stwcx. %[tmp], 0, %[p] ;"
"bne- 1b ;"
// Spin until the counter goes to zero
"2: ;"
"lwz %[tmp], 0(%[p]) ;"
"cmpwi %[tmp], 0 ;"
"bne- 2b ;"
// Switch back to virtual mode
"mtmsrd %[msr] ;"
: // outputs
[msr] "=&r" (msr), [tmp] "=&b" (tmp), "+m" (*p)
: // inputs
[p] "b" (p), [MSR_IR_DR] "i" (MSR_IR | MSR_DR)
: // clobbers
"cc", "xer"
);
local_irq_restore(flags);
return 0;
}
static int change_memory_range_fn(void *data)
{
struct change_memory_parms *parms = data;
if (parms->master_cpu != smp_processor_id())
return chmem_secondary_loop(parms);
// Wait for all but one CPU (this one) to call-in
while (atomic_read(&parms->cpu_counter) > 1)
barrier();
change_memory_range(parms->start, parms->end, parms->step, parms->newpp);
mb();
// Signal the other CPUs that we're done
atomic_dec(&parms->cpu_counter);
return 0;
}
static bool hash__change_memory_range(unsigned long start, unsigned long end,
unsigned long newpp)
{
unsigned int step, shift;
shift = mmu_psize_defs[mmu_linear_psize].shift;
step = 1 << shift;
start = ALIGN_DOWN(start, step);
end = ALIGN(end, step); // aligns up
if (start >= end)
return false;
if (firmware_has_feature(FW_FEATURE_LPAR)) {
mutex_lock(&chmem_lock);
chmem_parms.start = start;
chmem_parms.end = end;
chmem_parms.step = step;
chmem_parms.newpp = newpp;
chmem_parms.master_cpu = smp_processor_id();
cpus_read_lock();
atomic_set(&chmem_parms.cpu_counter, num_online_cpus());
// Ensure state is consistent before we call the other CPUs
mb();
stop_machine_cpuslocked(change_memory_range_fn, &chmem_parms,
cpu_online_mask);
cpus_read_unlock();
mutex_unlock(&chmem_lock);
} else
change_memory_range(start, end, step, newpp);
return true;
}
void hash__mark_rodata_ro(void)
{
unsigned long start, end, pp;
start = (unsigned long)_stext;
end = (unsigned long)__init_begin;
pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL_ROX), HPTE_USE_KERNEL_KEY);
WARN_ON(!hash__change_memory_range(start, end, pp));
}
void hash__mark_initmem_nx(void)
{
unsigned long start, end, pp;
start = (unsigned long)__init_begin;
end = (unsigned long)__init_end;
pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
WARN_ON(!hash__change_memory_range(start, end, pp));
}
#endif