063d99b4fa
Commit 6afdb859b710 ("mm: do not ignore mapping_gfp_mask in page cache allocation paths") has caught some users of hardcoded GFP_KERNEL used in the page cache allocation paths. This, however, wasn't complete and there were others which went unnoticed. Dave Chinner has reported the following deadlock for xfs on loop device: : With the recent merge of the loop device changes, I'm now seeing : XFS deadlock on my single CPU, 1GB RAM VM running xfs/073. : : The deadlocked is as follows: : : kloopd1: loop_queue_read_work : xfs_file_iter_read : lock XFS inode XFS_IOLOCK_SHARED (on image file) : page cache read (GFP_KERNEL) : radix tree alloc : memory reclaim : reclaim XFS inodes : log force to unpin inodes : <wait for log IO completion> : : xfs-cil/loop1: <does log force IO work> : xlog_cil_push : xlog_write : <loop issuing log writes> : xlog_state_get_iclog_space() : <blocks due to all log buffers under write io> : <waits for IO completion> : : kloopd1: loop_queue_write_work : xfs_file_write_iter : lock XFS inode XFS_IOLOCK_EXCL (on image file) : <wait for inode to be unlocked> : : i.e. the kloopd, with it's split read and write work queues, has : introduced a dependency through memory reclaim. i.e. that writes : need to be able to progress for reads make progress. : : The problem, fundamentally, is that mpage_readpages() does a : GFP_KERNEL allocation, rather than paying attention to the inode's : mapping gfp mask, which is set to GFP_NOFS. : : The didn't used to happen, because the loop device used to issue : reads through the splice path and that does: : : error = add_to_page_cache_lru(page, mapping, index, : GFP_KERNEL & mapping_gfp_mask(mapping)); This has changed by commit aa4d86163e4 ("block: loop: switch to VFS ITER_BVEC"). This patch changes mpage_readpage{s} to follow gfp mask set for the mapping. There are, however, other places which are doing basically the same. lustre:ll_dir_filler is doing GFP_KERNEL from the function which apparently uses GFP_NOFS for other allocations so let's make this consistent. cifs:readpages_get_pages is called from cifs_readpages and __cifs_readpages_from_fscache called from the same path obeys mapping gfp. ramfs_nommu_expand_for_mapping is hardcoding GFP_KERNEL as well regardless it uses mapping_gfp_mask for the page allocation. ext4_mpage_readpages is the called from the page cache allocation path same as read_pages and read_cache_pages As I've noticed in my previous post I cannot say I would be happy about sprinkling mapping_gfp_mask all over the place and it sounds like we should drop gfp_mask argument altogether and use it internally in __add_to_page_cache_locked that would require all the filesystems to use mapping gfp consistently which I am not sure is the case here. From a quick glance it seems that some file system use it all the time while others are selective. Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Dave Chinner <david@fromorbit.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Ming Lei <ming.lei@canonical.com> Cc: Andreas Dilger <andreas.dilger@intel.com> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lustre Parallel Filesystem Client ================================= The Lustre file system is an open-source, parallel file system that supports many requirements of leadership class HPC simulation environments. Born from from a research project at Carnegie Mellon University, the Lustre file system is a widely-used option in HPC. The Lustre file system provides a POSIX compliant file system interface, can scale to thousands of clients, petabytes of storage and hundreds of gigabytes per second of I/O bandwidth. Unlike shared disk storage cluster filesystems (e.g. OCFS2, GFS, GPFS), Lustre has independent Metadata and Data servers that clients can access in parallel to maximize performance. In order to use Lustre client you will need to download the "lustre-client" package that contains the userspace tools from http://lustre.org/download/ You will need to install and configure your Lustre servers separately. Mount Syntax ============ After you installed the lustre-client tools including mount.lustre binary you can mount your Lustre filesystem with: mount -t lustre mgs:/fsname mnt where mgs is the host name or ip address of your Lustre MGS(management service) fsname is the name of the filesystem you would like to mount. Mount Options ============= noflock Disable posix file locking (Applications trying to use the functionality will get ENOSYS) localflock Enable local flock support, using only client-local flock (faster, for applications that require flock but do not run on multiple nodes). flock Enable cluster-global posix file locking coherent across all client nodes. user_xattr, nouser_xattr Support "user." extended attributes (or not) user_fid2path, nouser_fid2path Enable FID to path translation by regular users (or not) checksum, nochecksum Verify data consistency on the wire and in memory as it passes between the layers (or not). lruresize, nolruresize Allow lock LRU to be controlled by memory pressure on the server (or only 100 (default, controlled by lru_size proc parameter) locks per CPU per server on this client). lazystatfs, nolazystatfs Do not block in statfs() if some of the servers are down. 32bitapi Shrink inode numbers to fit into 32 bits. This is necessary if you plan to reexport Lustre filesystem from this client via NFSv4. verbose, noverbose Enable mount/umount console messages (or not) More Information ================ You can get more information at the Lustre website: http://wiki.lustre.org/ Source for the userspace tools and out-of-tree client and server code is available at: http://git.hpdd.intel.com/fs/lustre-release.git Latest binary packages: http://lustre.org/download/