bc10db8eb8
Local variables are allocated in the stack and the location list should look like base register(s) and an offset. Extend the die_find_variable_by_reg() to handle the following expressions * DW_OP_breg{0..31} * DW_OP_bregx * DW_OP_fbreg Ususally DWARF subprogram entries have frame base information and use it to locate stack variable like below: <2><43d1575>: Abbrev Number: 62 (DW_TAG_variable) <43d1576> DW_AT_location : 2 byte block: 91 7c (DW_OP_fbreg: -4) <--- here <43d1579> DW_AT_name : (indirect string, offset: 0x2c00c9): i <43d157d> DW_AT_decl_file : 1 <43d157e> DW_AT_decl_line : 78 <43d157f> DW_AT_type : <0x43d19d7> I found some differences on saving the frame base between gcc and clang. The gcc uses the CFA to get the base so it needs to check the current frame's CFI info. In this case, stack offset needs to be adjusted from the start of the CFA. <1><1bb8d>: Abbrev Number: 102 (DW_TAG_subprogram) <1bb8e> DW_AT_name : (indirect string, offset: 0x74d41): kernel_init <1bb92> DW_AT_decl_file : 2 <1bb92> DW_AT_decl_line : 1440 <1bb94> DW_AT_decl_column : 18 <1bb95> DW_AT_prototyped : 1 <1bb95> DW_AT_type : <0xcc> <1bb99> DW_AT_low_pc : 0xffffffff81bab9e0 <1bba1> DW_AT_high_pc : 0x1b2 <1bba9> DW_AT_frame_base : 1 byte block: 9c (DW_OP_call_frame_cfa) <------ here <1bbab> DW_AT_call_all_calls: 1 <1bbab> DW_AT_sibling : <0x1bf5a> While clang sets it to a register directly and it can check the register and offset in the instruction directly. <1><43d1542>: Abbrev Number: 60 (DW_TAG_subprogram) <43d1543> DW_AT_low_pc : 0xffffffff816a7c60 <43d154b> DW_AT_high_pc : 0x98 <43d154f> DW_AT_frame_base : 1 byte block: 56 (DW_OP_reg6 (rbp)) <---------- here <43d1551> DW_AT_GNU_all_call_sites: 1 <43d1551> DW_AT_name : (indirect string, offset: 0x3bce91): foo <43d1555> DW_AT_decl_file : 1 <43d1556> DW_AT_decl_line : 75 <43d1557> DW_AT_prototyped : 1 <43d1557> DW_AT_type : <0x43c7332> <43d155b> DW_AT_external : 1 Also it needs to update the offset after finding the type like global variables since the offset was from the frame base. Factor out match_var_offset() to check global and local variables in the same way. The type stats are improved too: Annotate data type stats: total 294, ok 160 (54.4%), bad 134 (45.6%) ----------------------------------------------------------- 30 : no_sym 32 : no_mem_ops 51 : no_var 14 : no_typeinfo 7 : bad_offset Reviewed-by: Ian Rogers <irogers@google.com> Cc: Stephane Eranian <eranian@google.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Link: https://lore.kernel.org/r/20240117062657.985479-9-namhyung@kernel.org Signed-off-by: Namhyung Kim <namhyung@kernel.org>
487 lines
12 KiB
C
487 lines
12 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Convert sample address to data type using DWARF debug info.
|
|
*
|
|
* Written by Namhyung Kim <namhyung@kernel.org>
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "annotate.h"
|
|
#include "annotate-data.h"
|
|
#include "debuginfo.h"
|
|
#include "debug.h"
|
|
#include "dso.h"
|
|
#include "dwarf-regs.h"
|
|
#include "evsel.h"
|
|
#include "evlist.h"
|
|
#include "map.h"
|
|
#include "map_symbol.h"
|
|
#include "strbuf.h"
|
|
#include "symbol.h"
|
|
#include "symbol_conf.h"
|
|
|
|
/*
|
|
* Compare type name and size to maintain them in a tree.
|
|
* I'm not sure if DWARF would have information of a single type in many
|
|
* different places (compilation units). If not, it could compare the
|
|
* offset of the type entry in the .debug_info section.
|
|
*/
|
|
static int data_type_cmp(const void *_key, const struct rb_node *node)
|
|
{
|
|
const struct annotated_data_type *key = _key;
|
|
struct annotated_data_type *type;
|
|
|
|
type = rb_entry(node, struct annotated_data_type, node);
|
|
|
|
if (key->self.size != type->self.size)
|
|
return key->self.size - type->self.size;
|
|
return strcmp(key->self.type_name, type->self.type_name);
|
|
}
|
|
|
|
static bool data_type_less(struct rb_node *node_a, const struct rb_node *node_b)
|
|
{
|
|
struct annotated_data_type *a, *b;
|
|
|
|
a = rb_entry(node_a, struct annotated_data_type, node);
|
|
b = rb_entry(node_b, struct annotated_data_type, node);
|
|
|
|
if (a->self.size != b->self.size)
|
|
return a->self.size < b->self.size;
|
|
return strcmp(a->self.type_name, b->self.type_name) < 0;
|
|
}
|
|
|
|
/* Recursively add new members for struct/union */
|
|
static int __add_member_cb(Dwarf_Die *die, void *arg)
|
|
{
|
|
struct annotated_member *parent = arg;
|
|
struct annotated_member *member;
|
|
Dwarf_Die member_type, die_mem;
|
|
Dwarf_Word size, loc;
|
|
Dwarf_Attribute attr;
|
|
struct strbuf sb;
|
|
int tag;
|
|
|
|
if (dwarf_tag(die) != DW_TAG_member)
|
|
return DIE_FIND_CB_SIBLING;
|
|
|
|
member = zalloc(sizeof(*member));
|
|
if (member == NULL)
|
|
return DIE_FIND_CB_END;
|
|
|
|
strbuf_init(&sb, 32);
|
|
die_get_typename(die, &sb);
|
|
|
|
die_get_real_type(die, &member_type);
|
|
if (dwarf_aggregate_size(&member_type, &size) < 0)
|
|
size = 0;
|
|
|
|
if (!dwarf_attr_integrate(die, DW_AT_data_member_location, &attr))
|
|
loc = 0;
|
|
else
|
|
dwarf_formudata(&attr, &loc);
|
|
|
|
member->type_name = strbuf_detach(&sb, NULL);
|
|
/* member->var_name can be NULL */
|
|
if (dwarf_diename(die))
|
|
member->var_name = strdup(dwarf_diename(die));
|
|
member->size = size;
|
|
member->offset = loc + parent->offset;
|
|
INIT_LIST_HEAD(&member->children);
|
|
list_add_tail(&member->node, &parent->children);
|
|
|
|
tag = dwarf_tag(&member_type);
|
|
switch (tag) {
|
|
case DW_TAG_structure_type:
|
|
case DW_TAG_union_type:
|
|
die_find_child(&member_type, __add_member_cb, member, &die_mem);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return DIE_FIND_CB_SIBLING;
|
|
}
|
|
|
|
static void add_member_types(struct annotated_data_type *parent, Dwarf_Die *type)
|
|
{
|
|
Dwarf_Die die_mem;
|
|
|
|
die_find_child(type, __add_member_cb, &parent->self, &die_mem);
|
|
}
|
|
|
|
static void delete_members(struct annotated_member *member)
|
|
{
|
|
struct annotated_member *child, *tmp;
|
|
|
|
list_for_each_entry_safe(child, tmp, &member->children, node) {
|
|
list_del(&child->node);
|
|
delete_members(child);
|
|
free(child->type_name);
|
|
free(child->var_name);
|
|
free(child);
|
|
}
|
|
}
|
|
|
|
static struct annotated_data_type *dso__findnew_data_type(struct dso *dso,
|
|
Dwarf_Die *type_die)
|
|
{
|
|
struct annotated_data_type *result = NULL;
|
|
struct annotated_data_type key;
|
|
struct rb_node *node;
|
|
struct strbuf sb;
|
|
char *type_name;
|
|
Dwarf_Word size;
|
|
|
|
strbuf_init(&sb, 32);
|
|
if (die_get_typename_from_type(type_die, &sb) < 0)
|
|
strbuf_add(&sb, "(unknown type)", 14);
|
|
type_name = strbuf_detach(&sb, NULL);
|
|
dwarf_aggregate_size(type_die, &size);
|
|
|
|
/* Check existing nodes in dso->data_types tree */
|
|
key.self.type_name = type_name;
|
|
key.self.size = size;
|
|
node = rb_find(&key, &dso->data_types, data_type_cmp);
|
|
if (node) {
|
|
result = rb_entry(node, struct annotated_data_type, node);
|
|
free(type_name);
|
|
return result;
|
|
}
|
|
|
|
/* If not, add a new one */
|
|
result = zalloc(sizeof(*result));
|
|
if (result == NULL) {
|
|
free(type_name);
|
|
return NULL;
|
|
}
|
|
|
|
result->self.type_name = type_name;
|
|
result->self.size = size;
|
|
INIT_LIST_HEAD(&result->self.children);
|
|
|
|
if (symbol_conf.annotate_data_member)
|
|
add_member_types(result, type_die);
|
|
|
|
rb_add(&result->node, &dso->data_types, data_type_less);
|
|
return result;
|
|
}
|
|
|
|
static bool find_cu_die(struct debuginfo *di, u64 pc, Dwarf_Die *cu_die)
|
|
{
|
|
Dwarf_Off off, next_off;
|
|
size_t header_size;
|
|
|
|
if (dwarf_addrdie(di->dbg, pc, cu_die) != NULL)
|
|
return cu_die;
|
|
|
|
/*
|
|
* There are some kernels don't have full aranges and contain only a few
|
|
* aranges entries. Fallback to iterate all CU entries in .debug_info
|
|
* in case it's missing.
|
|
*/
|
|
off = 0;
|
|
while (dwarf_nextcu(di->dbg, off, &next_off, &header_size,
|
|
NULL, NULL, NULL) == 0) {
|
|
if (dwarf_offdie(di->dbg, off + header_size, cu_die) &&
|
|
dwarf_haspc(cu_die, pc))
|
|
return true;
|
|
|
|
off = next_off;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* The type info will be saved in @type_die */
|
|
static int check_variable(Dwarf_Die *var_die, Dwarf_Die *type_die, int offset,
|
|
bool is_pointer)
|
|
{
|
|
Dwarf_Word size;
|
|
|
|
/* Get the type of the variable */
|
|
if (die_get_real_type(var_die, type_die) == NULL) {
|
|
pr_debug("variable has no type\n");
|
|
ann_data_stat.no_typeinfo++;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Usually it expects a pointer type for a memory access.
|
|
* Convert to a real type it points to. But global variables
|
|
* and local variables are accessed directly without a pointer.
|
|
*/
|
|
if (is_pointer) {
|
|
if ((dwarf_tag(type_die) != DW_TAG_pointer_type &&
|
|
dwarf_tag(type_die) != DW_TAG_array_type) ||
|
|
die_get_real_type(type_die, type_die) == NULL) {
|
|
pr_debug("no pointer or no type\n");
|
|
ann_data_stat.no_typeinfo++;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Get the size of the actual type */
|
|
if (dwarf_aggregate_size(type_die, &size) < 0) {
|
|
pr_debug("type size is unknown\n");
|
|
ann_data_stat.invalid_size++;
|
|
return -1;
|
|
}
|
|
|
|
/* Minimal sanity check */
|
|
if ((unsigned)offset >= size) {
|
|
pr_debug("offset: %d is bigger than size: %" PRIu64 "\n", offset, size);
|
|
ann_data_stat.bad_offset++;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The result will be saved in @type_die */
|
|
static int find_data_type_die(struct debuginfo *di, u64 pc, u64 addr,
|
|
const char *var_name, struct annotated_op_loc *loc,
|
|
Dwarf_Die *type_die)
|
|
{
|
|
Dwarf_Die cu_die, var_die;
|
|
Dwarf_Die *scopes = NULL;
|
|
int reg, offset;
|
|
int ret = -1;
|
|
int i, nr_scopes;
|
|
int fbreg = -1;
|
|
bool is_fbreg = false;
|
|
int fb_offset = 0;
|
|
|
|
/* Get a compile_unit for this address */
|
|
if (!find_cu_die(di, pc, &cu_die)) {
|
|
pr_debug("cannot find CU for address %" PRIx64 "\n", pc);
|
|
ann_data_stat.no_cuinfo++;
|
|
return -1;
|
|
}
|
|
|
|
reg = loc->reg1;
|
|
offset = loc->offset;
|
|
|
|
if (reg == DWARF_REG_PC) {
|
|
if (die_find_variable_by_addr(&cu_die, pc, addr, &var_die, &offset)) {
|
|
ret = check_variable(&var_die, type_die, offset,
|
|
/*is_pointer=*/false);
|
|
loc->offset = offset;
|
|
goto out;
|
|
}
|
|
|
|
if (var_name && die_find_variable_at(&cu_die, var_name, pc,
|
|
&var_die)) {
|
|
ret = check_variable(&var_die, type_die, 0,
|
|
/*is_pointer=*/false);
|
|
/* loc->offset will be updated by the caller */
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Get a list of nested scopes - i.e. (inlined) functions and blocks. */
|
|
nr_scopes = die_get_scopes(&cu_die, pc, &scopes);
|
|
|
|
if (reg != DWARF_REG_PC && dwarf_hasattr(&scopes[0], DW_AT_frame_base)) {
|
|
Dwarf_Attribute attr;
|
|
Dwarf_Block block;
|
|
|
|
/* Check if the 'reg' is assigned as frame base register */
|
|
if (dwarf_attr(&scopes[0], DW_AT_frame_base, &attr) != NULL &&
|
|
dwarf_formblock(&attr, &block) == 0 && block.length == 1) {
|
|
switch (*block.data) {
|
|
case DW_OP_reg0 ... DW_OP_reg31:
|
|
fbreg = *block.data - DW_OP_reg0;
|
|
break;
|
|
case DW_OP_call_frame_cfa:
|
|
if (die_get_cfa(di->dbg, pc, &fbreg,
|
|
&fb_offset) < 0)
|
|
fbreg = -1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
retry:
|
|
is_fbreg = (reg == fbreg);
|
|
if (is_fbreg)
|
|
offset = loc->offset - fb_offset;
|
|
|
|
/* Search from the inner-most scope to the outer */
|
|
for (i = nr_scopes - 1; i >= 0; i--) {
|
|
if (reg == DWARF_REG_PC) {
|
|
if (!die_find_variable_by_addr(&scopes[i], pc, addr,
|
|
&var_die, &offset))
|
|
continue;
|
|
} else {
|
|
/* Look up variables/parameters in this scope */
|
|
if (!die_find_variable_by_reg(&scopes[i], pc, reg,
|
|
&offset, is_fbreg, &var_die))
|
|
continue;
|
|
}
|
|
|
|
/* Found a variable, see if it's correct */
|
|
ret = check_variable(&var_die, type_die, offset,
|
|
reg != DWARF_REG_PC && !is_fbreg);
|
|
loc->offset = offset;
|
|
goto out;
|
|
}
|
|
|
|
if (loc->multi_regs && reg == loc->reg1 && loc->reg1 != loc->reg2) {
|
|
reg = loc->reg2;
|
|
goto retry;
|
|
}
|
|
|
|
if (ret < 0)
|
|
ann_data_stat.no_var++;
|
|
|
|
out:
|
|
free(scopes);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* find_data_type - Return a data type at the location
|
|
* @ms: map and symbol at the location
|
|
* @ip: instruction address of the memory access
|
|
* @loc: instruction operand location
|
|
* @addr: data address of the memory access
|
|
* @var_name: global variable name
|
|
*
|
|
* This functions searches the debug information of the binary to get the data
|
|
* type it accesses. The exact location is expressed by (@ip, reg, offset)
|
|
* for pointer variables or (@ip, @addr) for global variables. Note that global
|
|
* variables might update the @loc->offset after finding the start of the variable.
|
|
* If it cannot find a global variable by address, it tried to fine a declaration
|
|
* of the variable using @var_name. In that case, @loc->offset won't be updated.
|
|
*
|
|
* It return %NULL if not found.
|
|
*/
|
|
struct annotated_data_type *find_data_type(struct map_symbol *ms, u64 ip,
|
|
struct annotated_op_loc *loc, u64 addr,
|
|
const char *var_name)
|
|
{
|
|
struct annotated_data_type *result = NULL;
|
|
struct dso *dso = map__dso(ms->map);
|
|
struct debuginfo *di;
|
|
Dwarf_Die type_die;
|
|
u64 pc;
|
|
|
|
di = debuginfo__new(dso->long_name);
|
|
if (di == NULL) {
|
|
pr_debug("cannot get the debug info\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* IP is a relative instruction address from the start of the map, as
|
|
* it can be randomized/relocated, it needs to translate to PC which is
|
|
* a file address for DWARF processing.
|
|
*/
|
|
pc = map__rip_2objdump(ms->map, ip);
|
|
if (find_data_type_die(di, pc, addr, var_name, loc, &type_die) < 0)
|
|
goto out;
|
|
|
|
result = dso__findnew_data_type(dso, &type_die);
|
|
|
|
out:
|
|
debuginfo__delete(di);
|
|
return result;
|
|
}
|
|
|
|
static int alloc_data_type_histograms(struct annotated_data_type *adt, int nr_entries)
|
|
{
|
|
int i;
|
|
size_t sz = sizeof(struct type_hist);
|
|
|
|
sz += sizeof(struct type_hist_entry) * adt->self.size;
|
|
|
|
/* Allocate a table of pointers for each event */
|
|
adt->nr_histograms = nr_entries;
|
|
adt->histograms = calloc(nr_entries, sizeof(*adt->histograms));
|
|
if (adt->histograms == NULL)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Each histogram is allocated for the whole size of the type.
|
|
* TODO: Probably we can move the histogram to members.
|
|
*/
|
|
for (i = 0; i < nr_entries; i++) {
|
|
adt->histograms[i] = zalloc(sz);
|
|
if (adt->histograms[i] == NULL)
|
|
goto err;
|
|
}
|
|
return 0;
|
|
|
|
err:
|
|
while (--i >= 0)
|
|
free(adt->histograms[i]);
|
|
free(adt->histograms);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void delete_data_type_histograms(struct annotated_data_type *adt)
|
|
{
|
|
for (int i = 0; i < adt->nr_histograms; i++)
|
|
free(adt->histograms[i]);
|
|
free(adt->histograms);
|
|
}
|
|
|
|
void annotated_data_type__tree_delete(struct rb_root *root)
|
|
{
|
|
struct annotated_data_type *pos;
|
|
|
|
while (!RB_EMPTY_ROOT(root)) {
|
|
struct rb_node *node = rb_first(root);
|
|
|
|
rb_erase(node, root);
|
|
pos = rb_entry(node, struct annotated_data_type, node);
|
|
delete_members(&pos->self);
|
|
delete_data_type_histograms(pos);
|
|
free(pos->self.type_name);
|
|
free(pos);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* annotated_data_type__update_samples - Update histogram
|
|
* @adt: Data type to update
|
|
* @evsel: Event to update
|
|
* @offset: Offset in the type
|
|
* @nr_samples: Number of samples at this offset
|
|
* @period: Event count at this offset
|
|
*
|
|
* This function updates type histogram at @ofs for @evsel. Samples are
|
|
* aggregated before calling this function so it can be called with more
|
|
* than one samples at a certain offset.
|
|
*/
|
|
int annotated_data_type__update_samples(struct annotated_data_type *adt,
|
|
struct evsel *evsel, int offset,
|
|
int nr_samples, u64 period)
|
|
{
|
|
struct type_hist *h;
|
|
|
|
if (adt == NULL)
|
|
return 0;
|
|
|
|
if (adt->histograms == NULL) {
|
|
int nr = evsel->evlist->core.nr_entries;
|
|
|
|
if (alloc_data_type_histograms(adt, nr) < 0)
|
|
return -1;
|
|
}
|
|
|
|
if (offset < 0 || offset >= adt->self.size)
|
|
return -1;
|
|
|
|
h = adt->histograms[evsel->core.idx];
|
|
|
|
h->nr_samples += nr_samples;
|
|
h->addr[offset].nr_samples += nr_samples;
|
|
h->period += period;
|
|
h->addr[offset].period += period;
|
|
return 0;
|
|
}
|