f691d444f9
The C glue code already infers whether or not the current iteration is the final one, by comparing walk.nbytes with walk.total. This means we can easily inform the asm helpers of this as well, by conditionally passing a pointer to the original IV, which is used in the finalization of the MAC. This removes the need for a separate call into the asm code to perform the finalization. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
352 lines
8.4 KiB
C
352 lines
8.4 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* aes-ce-ccm-glue.c - AES-CCM transform for ARMv8 with Crypto Extensions
|
|
*
|
|
* Copyright (C) 2013 - 2017 Linaro Ltd.
|
|
* Copyright (C) 2024 Google LLC
|
|
*
|
|
* Author: Ard Biesheuvel <ardb@kernel.org>
|
|
*/
|
|
|
|
#include <asm/neon.h>
|
|
#include <asm/unaligned.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "aes-ce-setkey.h"
|
|
|
|
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
|
|
|
|
static int num_rounds(struct crypto_aes_ctx *ctx)
|
|
{
|
|
/*
|
|
* # of rounds specified by AES:
|
|
* 128 bit key 10 rounds
|
|
* 192 bit key 12 rounds
|
|
* 256 bit key 14 rounds
|
|
* => n byte key => 6 + (n/4) rounds
|
|
*/
|
|
return 6 + ctx->key_length / 4;
|
|
}
|
|
|
|
asmlinkage u32 ce_aes_mac_update(u8 const in[], u32 const rk[], int rounds,
|
|
int blocks, u8 dg[], int enc_before,
|
|
int enc_after);
|
|
|
|
asmlinkage void ce_aes_ccm_encrypt(u8 out[], u8 const in[], u32 cbytes,
|
|
u32 const rk[], u32 rounds, u8 mac[],
|
|
u8 ctr[], u8 const final_iv[]);
|
|
|
|
asmlinkage void ce_aes_ccm_decrypt(u8 out[], u8 const in[], u32 cbytes,
|
|
u32 const rk[], u32 rounds, u8 mac[],
|
|
u8 ctr[], u8 const final_iv[]);
|
|
|
|
static int ccm_setkey(struct crypto_aead *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct crypto_aes_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
return ce_aes_expandkey(ctx, in_key, key_len);
|
|
}
|
|
|
|
static int ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
if ((authsize & 1) || authsize < 4)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int ccm_init_mac(struct aead_request *req, u8 maciv[], u32 msglen)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
__be32 *n = (__be32 *)&maciv[AES_BLOCK_SIZE - 8];
|
|
u32 l = req->iv[0] + 1;
|
|
|
|
/* verify that CCM dimension 'L' is set correctly in the IV */
|
|
if (l < 2 || l > 8)
|
|
return -EINVAL;
|
|
|
|
/* verify that msglen can in fact be represented in L bytes */
|
|
if (l < 4 && msglen >> (8 * l))
|
|
return -EOVERFLOW;
|
|
|
|
/*
|
|
* Even if the CCM spec allows L values of up to 8, the Linux cryptoapi
|
|
* uses a u32 type to represent msglen so the top 4 bytes are always 0.
|
|
*/
|
|
n[0] = 0;
|
|
n[1] = cpu_to_be32(msglen);
|
|
|
|
memcpy(maciv, req->iv, AES_BLOCK_SIZE - l);
|
|
|
|
/*
|
|
* Meaning of byte 0 according to CCM spec (RFC 3610/NIST 800-38C)
|
|
* - bits 0..2 : max # of bytes required to represent msglen, minus 1
|
|
* (already set by caller)
|
|
* - bits 3..5 : size of auth tag (1 => 4 bytes, 2 => 6 bytes, etc)
|
|
* - bit 6 : indicates presence of authenticate-only data
|
|
*/
|
|
maciv[0] |= (crypto_aead_authsize(aead) - 2) << 2;
|
|
if (req->assoclen)
|
|
maciv[0] |= 0x40;
|
|
|
|
memset(&req->iv[AES_BLOCK_SIZE - l], 0, l);
|
|
return 0;
|
|
}
|
|
|
|
static u32 ce_aes_ccm_auth_data(u8 mac[], u8 const in[], u32 abytes,
|
|
u32 macp, u32 const rk[], u32 rounds)
|
|
{
|
|
int enc_after = (macp + abytes) % AES_BLOCK_SIZE;
|
|
|
|
do {
|
|
u32 blocks = abytes / AES_BLOCK_SIZE;
|
|
|
|
if (macp == AES_BLOCK_SIZE || (!macp && blocks > 0)) {
|
|
u32 rem = ce_aes_mac_update(in, rk, rounds, blocks, mac,
|
|
macp, enc_after);
|
|
u32 adv = (blocks - rem) * AES_BLOCK_SIZE;
|
|
|
|
macp = enc_after ? 0 : AES_BLOCK_SIZE;
|
|
in += adv;
|
|
abytes -= adv;
|
|
|
|
if (unlikely(rem)) {
|
|
kernel_neon_end();
|
|
kernel_neon_begin();
|
|
macp = 0;
|
|
}
|
|
} else {
|
|
u32 l = min(AES_BLOCK_SIZE - macp, abytes);
|
|
|
|
crypto_xor(&mac[macp], in, l);
|
|
in += l;
|
|
macp += l;
|
|
abytes -= l;
|
|
}
|
|
} while (abytes > 0);
|
|
|
|
return macp;
|
|
}
|
|
|
|
static void ccm_calculate_auth_mac(struct aead_request *req, u8 mac[])
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
struct __packed { __be16 l; __be32 h; u16 len; } ltag;
|
|
struct scatter_walk walk;
|
|
u32 len = req->assoclen;
|
|
u32 macp = AES_BLOCK_SIZE;
|
|
|
|
/* prepend the AAD with a length tag */
|
|
if (len < 0xff00) {
|
|
ltag.l = cpu_to_be16(len);
|
|
ltag.len = 2;
|
|
} else {
|
|
ltag.l = cpu_to_be16(0xfffe);
|
|
put_unaligned_be32(len, <ag.h);
|
|
ltag.len = 6;
|
|
}
|
|
|
|
macp = ce_aes_ccm_auth_data(mac, (u8 *)<ag, ltag.len, macp,
|
|
ctx->key_enc, num_rounds(ctx));
|
|
scatterwalk_start(&walk, req->src);
|
|
|
|
do {
|
|
u32 n = scatterwalk_clamp(&walk, len);
|
|
u8 *p;
|
|
|
|
if (!n) {
|
|
scatterwalk_start(&walk, sg_next(walk.sg));
|
|
n = scatterwalk_clamp(&walk, len);
|
|
}
|
|
p = scatterwalk_map(&walk);
|
|
|
|
macp = ce_aes_ccm_auth_data(mac, p, n, macp, ctx->key_enc,
|
|
num_rounds(ctx));
|
|
|
|
len -= n;
|
|
|
|
scatterwalk_unmap(p);
|
|
scatterwalk_advance(&walk, n);
|
|
scatterwalk_done(&walk, 0, len);
|
|
} while (len);
|
|
}
|
|
|
|
static int ccm_encrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
struct skcipher_walk walk;
|
|
u8 __aligned(8) mac[AES_BLOCK_SIZE];
|
|
u8 orig_iv[AES_BLOCK_SIZE];
|
|
u32 len = req->cryptlen;
|
|
int err;
|
|
|
|
err = ccm_init_mac(req, mac, len);
|
|
if (err)
|
|
return err;
|
|
|
|
/* preserve the original iv for the final round */
|
|
memcpy(orig_iv, req->iv, AES_BLOCK_SIZE);
|
|
|
|
err = skcipher_walk_aead_encrypt(&walk, req, false);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
|
|
if (req->assoclen)
|
|
ccm_calculate_auth_mac(req, mac);
|
|
|
|
do {
|
|
u32 tail = walk.nbytes % AES_BLOCK_SIZE;
|
|
const u8 *src = walk.src.virt.addr;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
u8 buf[AES_BLOCK_SIZE];
|
|
u8 *final_iv = NULL;
|
|
|
|
if (walk.nbytes == walk.total) {
|
|
tail = 0;
|
|
final_iv = orig_iv;
|
|
}
|
|
|
|
if (unlikely(walk.nbytes < AES_BLOCK_SIZE))
|
|
src = dst = memcpy(&buf[sizeof(buf) - walk.nbytes],
|
|
src, walk.nbytes);
|
|
|
|
ce_aes_ccm_encrypt(dst, src, walk.nbytes - tail,
|
|
ctx->key_enc, num_rounds(ctx),
|
|
mac, walk.iv, final_iv);
|
|
|
|
if (unlikely(walk.nbytes < AES_BLOCK_SIZE))
|
|
memcpy(walk.dst.virt.addr, dst, walk.nbytes);
|
|
|
|
if (walk.nbytes) {
|
|
err = skcipher_walk_done(&walk, tail);
|
|
}
|
|
} while (walk.nbytes);
|
|
|
|
kernel_neon_end();
|
|
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
/* copy authtag to end of dst */
|
|
scatterwalk_map_and_copy(mac, req->dst, req->assoclen + req->cryptlen,
|
|
crypto_aead_authsize(aead), 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ccm_decrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
unsigned int authsize = crypto_aead_authsize(aead);
|
|
struct skcipher_walk walk;
|
|
u8 __aligned(8) mac[AES_BLOCK_SIZE];
|
|
u8 orig_iv[AES_BLOCK_SIZE];
|
|
u32 len = req->cryptlen - authsize;
|
|
int err;
|
|
|
|
err = ccm_init_mac(req, mac, len);
|
|
if (err)
|
|
return err;
|
|
|
|
/* preserve the original iv for the final round */
|
|
memcpy(orig_iv, req->iv, AES_BLOCK_SIZE);
|
|
|
|
err = skcipher_walk_aead_decrypt(&walk, req, false);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
|
|
if (req->assoclen)
|
|
ccm_calculate_auth_mac(req, mac);
|
|
|
|
do {
|
|
u32 tail = walk.nbytes % AES_BLOCK_SIZE;
|
|
const u8 *src = walk.src.virt.addr;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
u8 buf[AES_BLOCK_SIZE];
|
|
u8 *final_iv = NULL;
|
|
|
|
if (walk.nbytes == walk.total) {
|
|
tail = 0;
|
|
final_iv = orig_iv;
|
|
}
|
|
|
|
if (unlikely(walk.nbytes < AES_BLOCK_SIZE))
|
|
src = dst = memcpy(&buf[sizeof(buf) - walk.nbytes],
|
|
src, walk.nbytes);
|
|
|
|
ce_aes_ccm_decrypt(dst, src, walk.nbytes - tail,
|
|
ctx->key_enc, num_rounds(ctx),
|
|
mac, walk.iv, final_iv);
|
|
|
|
if (unlikely(walk.nbytes < AES_BLOCK_SIZE))
|
|
memcpy(walk.dst.virt.addr, dst, walk.nbytes);
|
|
|
|
if (walk.nbytes) {
|
|
err = skcipher_walk_done(&walk, tail);
|
|
}
|
|
} while (walk.nbytes);
|
|
|
|
kernel_neon_end();
|
|
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
/* compare calculated auth tag with the stored one */
|
|
scatterwalk_map_and_copy(orig_iv, req->src,
|
|
req->assoclen + req->cryptlen - authsize,
|
|
authsize, 0);
|
|
|
|
if (crypto_memneq(mac, orig_iv, authsize))
|
|
return -EBADMSG;
|
|
return 0;
|
|
}
|
|
|
|
static struct aead_alg ccm_aes_alg = {
|
|
.base = {
|
|
.cra_name = "ccm(aes)",
|
|
.cra_driver_name = "ccm-aes-ce",
|
|
.cra_priority = 300,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.maxauthsize = AES_BLOCK_SIZE,
|
|
.setkey = ccm_setkey,
|
|
.setauthsize = ccm_setauthsize,
|
|
.encrypt = ccm_encrypt,
|
|
.decrypt = ccm_decrypt,
|
|
};
|
|
|
|
static int __init aes_mod_init(void)
|
|
{
|
|
if (!cpu_have_named_feature(AES))
|
|
return -ENODEV;
|
|
return crypto_register_aead(&ccm_aes_alg);
|
|
}
|
|
|
|
static void __exit aes_mod_exit(void)
|
|
{
|
|
crypto_unregister_aead(&ccm_aes_alg);
|
|
}
|
|
|
|
module_init(aes_mod_init);
|
|
module_exit(aes_mod_exit);
|
|
|
|
MODULE_DESCRIPTION("Synchronous AES in CCM mode using ARMv8 Crypto Extensions");
|
|
MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_ALIAS_CRYPTO("ccm(aes)");
|