241b1f419f
The key action of xdr_buf_trim() is that it shortens buf->len, the length of the xdr_buf's content. The other actions -- shortening the head, pages, and tail components -- are actually not necessary. In particular, changing the size of those components can corrupt the RPC message contained in the buffer. This is an accident waiting to happen rather than a current bug, as far as we know. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Acked-by: Bruce Fields <bfields@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
622 lines
17 KiB
C
622 lines
17 KiB
C
/*
|
|
* COPYRIGHT (c) 2008
|
|
* The Regents of the University of Michigan
|
|
* ALL RIGHTS RESERVED
|
|
*
|
|
* Permission is granted to use, copy, create derivative works
|
|
* and redistribute this software and such derivative works
|
|
* for any purpose, so long as the name of The University of
|
|
* Michigan is not used in any advertising or publicity
|
|
* pertaining to the use of distribution of this software
|
|
* without specific, written prior authorization. If the
|
|
* above copyright notice or any other identification of the
|
|
* University of Michigan is included in any copy of any
|
|
* portion of this software, then the disclaimer below must
|
|
* also be included.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION
|
|
* FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY
|
|
* PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF
|
|
* MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
|
|
* WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
|
|
* REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE
|
|
* FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR
|
|
* CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING
|
|
* OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
|
|
* IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <crypto/skcipher.h>
|
|
#include <linux/types.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/sunrpc/gss_krb5.h>
|
|
#include <linux/random.h>
|
|
#include <linux/pagemap.h>
|
|
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
# define RPCDBG_FACILITY RPCDBG_AUTH
|
|
#endif
|
|
|
|
static inline int
|
|
gss_krb5_padding(int blocksize, int length)
|
|
{
|
|
return blocksize - (length % blocksize);
|
|
}
|
|
|
|
static inline void
|
|
gss_krb5_add_padding(struct xdr_buf *buf, int offset, int blocksize)
|
|
{
|
|
int padding = gss_krb5_padding(blocksize, buf->len - offset);
|
|
char *p;
|
|
struct kvec *iov;
|
|
|
|
if (buf->page_len || buf->tail[0].iov_len)
|
|
iov = &buf->tail[0];
|
|
else
|
|
iov = &buf->head[0];
|
|
p = iov->iov_base + iov->iov_len;
|
|
iov->iov_len += padding;
|
|
buf->len += padding;
|
|
memset(p, padding, padding);
|
|
}
|
|
|
|
static inline int
|
|
gss_krb5_remove_padding(struct xdr_buf *buf, int blocksize)
|
|
{
|
|
u8 *ptr;
|
|
u8 pad;
|
|
size_t len = buf->len;
|
|
|
|
if (len <= buf->head[0].iov_len) {
|
|
pad = *(u8 *)(buf->head[0].iov_base + len - 1);
|
|
if (pad > buf->head[0].iov_len)
|
|
return -EINVAL;
|
|
buf->head[0].iov_len -= pad;
|
|
goto out;
|
|
} else
|
|
len -= buf->head[0].iov_len;
|
|
if (len <= buf->page_len) {
|
|
unsigned int last = (buf->page_base + len - 1)
|
|
>>PAGE_SHIFT;
|
|
unsigned int offset = (buf->page_base + len - 1)
|
|
& (PAGE_SIZE - 1);
|
|
ptr = kmap_atomic(buf->pages[last]);
|
|
pad = *(ptr + offset);
|
|
kunmap_atomic(ptr);
|
|
goto out;
|
|
} else
|
|
len -= buf->page_len;
|
|
BUG_ON(len > buf->tail[0].iov_len);
|
|
pad = *(u8 *)(buf->tail[0].iov_base + len - 1);
|
|
out:
|
|
/* XXX: NOTE: we do not adjust the page lengths--they represent
|
|
* a range of data in the real filesystem page cache, and we need
|
|
* to know that range so the xdr code can properly place read data.
|
|
* However adjusting the head length, as we do above, is harmless.
|
|
* In the case of a request that fits into a single page, the server
|
|
* also uses length and head length together to determine the original
|
|
* start of the request to copy the request for deferal; so it's
|
|
* easier on the server if we adjust head and tail length in tandem.
|
|
* It's not really a problem that we don't fool with the page and
|
|
* tail lengths, though--at worst badly formed xdr might lead the
|
|
* server to attempt to parse the padding.
|
|
* XXX: Document all these weird requirements for gss mechanism
|
|
* wrap/unwrap functions. */
|
|
if (pad > blocksize)
|
|
return -EINVAL;
|
|
if (buf->len > pad)
|
|
buf->len -= pad;
|
|
else
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
gss_krb5_make_confounder(char *p, u32 conflen)
|
|
{
|
|
static u64 i = 0;
|
|
u64 *q = (u64 *)p;
|
|
|
|
/* rfc1964 claims this should be "random". But all that's really
|
|
* necessary is that it be unique. And not even that is necessary in
|
|
* our case since our "gssapi" implementation exists only to support
|
|
* rpcsec_gss, so we know that the only buffers we will ever encrypt
|
|
* already begin with a unique sequence number. Just to hedge my bets
|
|
* I'll make a half-hearted attempt at something unique, but ensuring
|
|
* uniqueness would mean worrying about atomicity and rollover, and I
|
|
* don't care enough. */
|
|
|
|
/* initialize to random value */
|
|
if (i == 0) {
|
|
i = prandom_u32();
|
|
i = (i << 32) | prandom_u32();
|
|
}
|
|
|
|
switch (conflen) {
|
|
case 16:
|
|
*q++ = i++;
|
|
/* fall through */
|
|
case 8:
|
|
*q++ = i++;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* Assumptions: the head and tail of inbuf are ours to play with.
|
|
* The pages, however, may be real pages in the page cache and we replace
|
|
* them with scratch pages from **pages before writing to them. */
|
|
/* XXX: obviously the above should be documentation of wrap interface,
|
|
* and shouldn't be in this kerberos-specific file. */
|
|
|
|
/* XXX factor out common code with seal/unseal. */
|
|
|
|
static u32
|
|
gss_wrap_kerberos_v1(struct krb5_ctx *kctx, int offset,
|
|
struct xdr_buf *buf, struct page **pages)
|
|
{
|
|
char cksumdata[GSS_KRB5_MAX_CKSUM_LEN];
|
|
struct xdr_netobj md5cksum = {.len = sizeof(cksumdata),
|
|
.data = cksumdata};
|
|
int blocksize = 0, plainlen;
|
|
unsigned char *ptr, *msg_start;
|
|
s32 now;
|
|
int headlen;
|
|
struct page **tmp_pages;
|
|
u32 seq_send;
|
|
u8 *cksumkey;
|
|
u32 conflen = kctx->gk5e->conflen;
|
|
|
|
dprintk("RPC: %s\n", __func__);
|
|
|
|
now = get_seconds();
|
|
|
|
blocksize = crypto_sync_skcipher_blocksize(kctx->enc);
|
|
gss_krb5_add_padding(buf, offset, blocksize);
|
|
BUG_ON((buf->len - offset) % blocksize);
|
|
plainlen = conflen + buf->len - offset;
|
|
|
|
headlen = g_token_size(&kctx->mech_used,
|
|
GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength + plainlen) -
|
|
(buf->len - offset);
|
|
|
|
ptr = buf->head[0].iov_base + offset;
|
|
/* shift data to make room for header. */
|
|
xdr_extend_head(buf, offset, headlen);
|
|
|
|
/* XXX Would be cleverer to encrypt while copying. */
|
|
BUG_ON((buf->len - offset - headlen) % blocksize);
|
|
|
|
g_make_token_header(&kctx->mech_used,
|
|
GSS_KRB5_TOK_HDR_LEN +
|
|
kctx->gk5e->cksumlength + plainlen, &ptr);
|
|
|
|
|
|
/* ptr now at header described in rfc 1964, section 1.2.1: */
|
|
ptr[0] = (unsigned char) ((KG_TOK_WRAP_MSG >> 8) & 0xff);
|
|
ptr[1] = (unsigned char) (KG_TOK_WRAP_MSG & 0xff);
|
|
|
|
msg_start = ptr + GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength;
|
|
|
|
/*
|
|
* signalg and sealalg are stored as if they were converted from LE
|
|
* to host endian, even though they're opaque pairs of bytes according
|
|
* to the RFC.
|
|
*/
|
|
*(__le16 *)(ptr + 2) = cpu_to_le16(kctx->gk5e->signalg);
|
|
*(__le16 *)(ptr + 4) = cpu_to_le16(kctx->gk5e->sealalg);
|
|
ptr[6] = 0xff;
|
|
ptr[7] = 0xff;
|
|
|
|
gss_krb5_make_confounder(msg_start, conflen);
|
|
|
|
if (kctx->gk5e->keyed_cksum)
|
|
cksumkey = kctx->cksum;
|
|
else
|
|
cksumkey = NULL;
|
|
|
|
/* XXXJBF: UGH!: */
|
|
tmp_pages = buf->pages;
|
|
buf->pages = pages;
|
|
if (make_checksum(kctx, ptr, 8, buf, offset + headlen - conflen,
|
|
cksumkey, KG_USAGE_SEAL, &md5cksum))
|
|
return GSS_S_FAILURE;
|
|
buf->pages = tmp_pages;
|
|
|
|
memcpy(ptr + GSS_KRB5_TOK_HDR_LEN, md5cksum.data, md5cksum.len);
|
|
|
|
seq_send = atomic_fetch_inc(&kctx->seq_send);
|
|
|
|
/* XXX would probably be more efficient to compute checksum
|
|
* and encrypt at the same time: */
|
|
if ((krb5_make_seq_num(kctx, kctx->seq, kctx->initiate ? 0 : 0xff,
|
|
seq_send, ptr + GSS_KRB5_TOK_HDR_LEN, ptr + 8)))
|
|
return GSS_S_FAILURE;
|
|
|
|
if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) {
|
|
struct crypto_sync_skcipher *cipher;
|
|
int err;
|
|
cipher = crypto_alloc_sync_skcipher(kctx->gk5e->encrypt_name,
|
|
0, 0);
|
|
if (IS_ERR(cipher))
|
|
return GSS_S_FAILURE;
|
|
|
|
krb5_rc4_setup_enc_key(kctx, cipher, seq_send);
|
|
|
|
err = gss_encrypt_xdr_buf(cipher, buf,
|
|
offset + headlen - conflen, pages);
|
|
crypto_free_sync_skcipher(cipher);
|
|
if (err)
|
|
return GSS_S_FAILURE;
|
|
} else {
|
|
if (gss_encrypt_xdr_buf(kctx->enc, buf,
|
|
offset + headlen - conflen, pages))
|
|
return GSS_S_FAILURE;
|
|
}
|
|
|
|
return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE;
|
|
}
|
|
|
|
static u32
|
|
gss_unwrap_kerberos_v1(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf)
|
|
{
|
|
int signalg;
|
|
int sealalg;
|
|
char cksumdata[GSS_KRB5_MAX_CKSUM_LEN];
|
|
struct xdr_netobj md5cksum = {.len = sizeof(cksumdata),
|
|
.data = cksumdata};
|
|
s32 now;
|
|
int direction;
|
|
s32 seqnum;
|
|
unsigned char *ptr;
|
|
int bodysize;
|
|
void *data_start, *orig_start;
|
|
int data_len;
|
|
int blocksize;
|
|
u32 conflen = kctx->gk5e->conflen;
|
|
int crypt_offset;
|
|
u8 *cksumkey;
|
|
|
|
dprintk("RPC: gss_unwrap_kerberos\n");
|
|
|
|
ptr = (u8 *)buf->head[0].iov_base + offset;
|
|
if (g_verify_token_header(&kctx->mech_used, &bodysize, &ptr,
|
|
buf->len - offset))
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
|
|
if ((ptr[0] != ((KG_TOK_WRAP_MSG >> 8) & 0xff)) ||
|
|
(ptr[1] != (KG_TOK_WRAP_MSG & 0xff)))
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
|
|
/* XXX sanity-check bodysize?? */
|
|
|
|
/* get the sign and seal algorithms */
|
|
|
|
signalg = ptr[2] + (ptr[3] << 8);
|
|
if (signalg != kctx->gk5e->signalg)
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
|
|
sealalg = ptr[4] + (ptr[5] << 8);
|
|
if (sealalg != kctx->gk5e->sealalg)
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
|
|
if ((ptr[6] != 0xff) || (ptr[7] != 0xff))
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
|
|
/*
|
|
* Data starts after token header and checksum. ptr points
|
|
* to the beginning of the token header
|
|
*/
|
|
crypt_offset = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) -
|
|
(unsigned char *)buf->head[0].iov_base;
|
|
|
|
/*
|
|
* Need plaintext seqnum to derive encryption key for arcfour-hmac
|
|
*/
|
|
if (krb5_get_seq_num(kctx, ptr + GSS_KRB5_TOK_HDR_LEN,
|
|
ptr + 8, &direction, &seqnum))
|
|
return GSS_S_BAD_SIG;
|
|
|
|
if ((kctx->initiate && direction != 0xff) ||
|
|
(!kctx->initiate && direction != 0))
|
|
return GSS_S_BAD_SIG;
|
|
|
|
if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) {
|
|
struct crypto_sync_skcipher *cipher;
|
|
int err;
|
|
|
|
cipher = crypto_alloc_sync_skcipher(kctx->gk5e->encrypt_name,
|
|
0, 0);
|
|
if (IS_ERR(cipher))
|
|
return GSS_S_FAILURE;
|
|
|
|
krb5_rc4_setup_enc_key(kctx, cipher, seqnum);
|
|
|
|
err = gss_decrypt_xdr_buf(cipher, buf, crypt_offset);
|
|
crypto_free_sync_skcipher(cipher);
|
|
if (err)
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
} else {
|
|
if (gss_decrypt_xdr_buf(kctx->enc, buf, crypt_offset))
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
}
|
|
|
|
if (kctx->gk5e->keyed_cksum)
|
|
cksumkey = kctx->cksum;
|
|
else
|
|
cksumkey = NULL;
|
|
|
|
if (make_checksum(kctx, ptr, 8, buf, crypt_offset,
|
|
cksumkey, KG_USAGE_SEAL, &md5cksum))
|
|
return GSS_S_FAILURE;
|
|
|
|
if (memcmp(md5cksum.data, ptr + GSS_KRB5_TOK_HDR_LEN,
|
|
kctx->gk5e->cksumlength))
|
|
return GSS_S_BAD_SIG;
|
|
|
|
/* it got through unscathed. Make sure the context is unexpired */
|
|
|
|
now = get_seconds();
|
|
|
|
if (now > kctx->endtime)
|
|
return GSS_S_CONTEXT_EXPIRED;
|
|
|
|
/* do sequencing checks */
|
|
|
|
/* Copy the data back to the right position. XXX: Would probably be
|
|
* better to copy and encrypt at the same time. */
|
|
|
|
blocksize = crypto_sync_skcipher_blocksize(kctx->enc);
|
|
data_start = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) +
|
|
conflen;
|
|
orig_start = buf->head[0].iov_base + offset;
|
|
data_len = (buf->head[0].iov_base + buf->head[0].iov_len) - data_start;
|
|
memmove(orig_start, data_start, data_len);
|
|
buf->head[0].iov_len -= (data_start - orig_start);
|
|
buf->len -= (data_start - orig_start);
|
|
|
|
if (gss_krb5_remove_padding(buf, blocksize))
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
|
|
return GSS_S_COMPLETE;
|
|
}
|
|
|
|
/*
|
|
* We can shift data by up to LOCAL_BUF_LEN bytes in a pass. If we need
|
|
* to do more than that, we shift repeatedly. Kevin Coffman reports
|
|
* seeing 28 bytes as the value used by Microsoft clients and servers
|
|
* with AES, so this constant is chosen to allow handling 28 in one pass
|
|
* without using too much stack space.
|
|
*
|
|
* If that proves to a problem perhaps we could use a more clever
|
|
* algorithm.
|
|
*/
|
|
#define LOCAL_BUF_LEN 32u
|
|
|
|
static void rotate_buf_a_little(struct xdr_buf *buf, unsigned int shift)
|
|
{
|
|
char head[LOCAL_BUF_LEN];
|
|
char tmp[LOCAL_BUF_LEN];
|
|
unsigned int this_len, i;
|
|
|
|
BUG_ON(shift > LOCAL_BUF_LEN);
|
|
|
|
read_bytes_from_xdr_buf(buf, 0, head, shift);
|
|
for (i = 0; i + shift < buf->len; i += LOCAL_BUF_LEN) {
|
|
this_len = min(LOCAL_BUF_LEN, buf->len - (i + shift));
|
|
read_bytes_from_xdr_buf(buf, i+shift, tmp, this_len);
|
|
write_bytes_to_xdr_buf(buf, i, tmp, this_len);
|
|
}
|
|
write_bytes_to_xdr_buf(buf, buf->len - shift, head, shift);
|
|
}
|
|
|
|
static void _rotate_left(struct xdr_buf *buf, unsigned int shift)
|
|
{
|
|
int shifted = 0;
|
|
int this_shift;
|
|
|
|
shift %= buf->len;
|
|
while (shifted < shift) {
|
|
this_shift = min(shift - shifted, LOCAL_BUF_LEN);
|
|
rotate_buf_a_little(buf, this_shift);
|
|
shifted += this_shift;
|
|
}
|
|
}
|
|
|
|
static void rotate_left(u32 base, struct xdr_buf *buf, unsigned int shift)
|
|
{
|
|
struct xdr_buf subbuf;
|
|
|
|
xdr_buf_subsegment(buf, &subbuf, base, buf->len - base);
|
|
_rotate_left(&subbuf, shift);
|
|
}
|
|
|
|
static u32
|
|
gss_wrap_kerberos_v2(struct krb5_ctx *kctx, u32 offset,
|
|
struct xdr_buf *buf, struct page **pages)
|
|
{
|
|
u8 *ptr, *plainhdr;
|
|
s32 now;
|
|
u8 flags = 0x00;
|
|
__be16 *be16ptr;
|
|
__be64 *be64ptr;
|
|
u32 err;
|
|
|
|
dprintk("RPC: %s\n", __func__);
|
|
|
|
if (kctx->gk5e->encrypt_v2 == NULL)
|
|
return GSS_S_FAILURE;
|
|
|
|
/* make room for gss token header */
|
|
if (xdr_extend_head(buf, offset, GSS_KRB5_TOK_HDR_LEN))
|
|
return GSS_S_FAILURE;
|
|
|
|
/* construct gss token header */
|
|
ptr = plainhdr = buf->head[0].iov_base + offset;
|
|
*ptr++ = (unsigned char) ((KG2_TOK_WRAP>>8) & 0xff);
|
|
*ptr++ = (unsigned char) (KG2_TOK_WRAP & 0xff);
|
|
|
|
if ((kctx->flags & KRB5_CTX_FLAG_INITIATOR) == 0)
|
|
flags |= KG2_TOKEN_FLAG_SENTBYACCEPTOR;
|
|
if ((kctx->flags & KRB5_CTX_FLAG_ACCEPTOR_SUBKEY) != 0)
|
|
flags |= KG2_TOKEN_FLAG_ACCEPTORSUBKEY;
|
|
/* We always do confidentiality in wrap tokens */
|
|
flags |= KG2_TOKEN_FLAG_SEALED;
|
|
|
|
*ptr++ = flags;
|
|
*ptr++ = 0xff;
|
|
be16ptr = (__be16 *)ptr;
|
|
|
|
*be16ptr++ = 0;
|
|
/* "inner" token header always uses 0 for RRC */
|
|
*be16ptr++ = 0;
|
|
|
|
be64ptr = (__be64 *)be16ptr;
|
|
*be64ptr = cpu_to_be64(atomic64_fetch_inc(&kctx->seq_send64));
|
|
|
|
err = (*kctx->gk5e->encrypt_v2)(kctx, offset, buf, pages);
|
|
if (err)
|
|
return err;
|
|
|
|
now = get_seconds();
|
|
return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE;
|
|
}
|
|
|
|
static u32
|
|
gss_unwrap_kerberos_v2(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf)
|
|
{
|
|
s32 now;
|
|
u8 *ptr;
|
|
u8 flags = 0x00;
|
|
u16 ec, rrc;
|
|
int err;
|
|
u32 headskip, tailskip;
|
|
u8 decrypted_hdr[GSS_KRB5_TOK_HDR_LEN];
|
|
unsigned int movelen;
|
|
|
|
|
|
dprintk("RPC: %s\n", __func__);
|
|
|
|
if (kctx->gk5e->decrypt_v2 == NULL)
|
|
return GSS_S_FAILURE;
|
|
|
|
ptr = buf->head[0].iov_base + offset;
|
|
|
|
if (be16_to_cpu(*((__be16 *)ptr)) != KG2_TOK_WRAP)
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
|
|
flags = ptr[2];
|
|
if ((!kctx->initiate && (flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)) ||
|
|
(kctx->initiate && !(flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)))
|
|
return GSS_S_BAD_SIG;
|
|
|
|
if ((flags & KG2_TOKEN_FLAG_SEALED) == 0) {
|
|
dprintk("%s: token missing expected sealed flag\n", __func__);
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
}
|
|
|
|
if (ptr[3] != 0xff)
|
|
return GSS_S_DEFECTIVE_TOKEN;
|
|
|
|
ec = be16_to_cpup((__be16 *)(ptr + 4));
|
|
rrc = be16_to_cpup((__be16 *)(ptr + 6));
|
|
|
|
/*
|
|
* NOTE: the sequence number at ptr + 8 is skipped, rpcsec_gss
|
|
* doesn't want it checked; see page 6 of rfc 2203.
|
|
*/
|
|
|
|
if (rrc != 0)
|
|
rotate_left(offset + 16, buf, rrc);
|
|
|
|
err = (*kctx->gk5e->decrypt_v2)(kctx, offset, buf,
|
|
&headskip, &tailskip);
|
|
if (err)
|
|
return GSS_S_FAILURE;
|
|
|
|
/*
|
|
* Retrieve the decrypted gss token header and verify
|
|
* it against the original
|
|
*/
|
|
err = read_bytes_from_xdr_buf(buf,
|
|
buf->len - GSS_KRB5_TOK_HDR_LEN - tailskip,
|
|
decrypted_hdr, GSS_KRB5_TOK_HDR_LEN);
|
|
if (err) {
|
|
dprintk("%s: error %u getting decrypted_hdr\n", __func__, err);
|
|
return GSS_S_FAILURE;
|
|
}
|
|
if (memcmp(ptr, decrypted_hdr, 6)
|
|
|| memcmp(ptr + 8, decrypted_hdr + 8, 8)) {
|
|
dprintk("%s: token hdr, plaintext hdr mismatch!\n", __func__);
|
|
return GSS_S_FAILURE;
|
|
}
|
|
|
|
/* do sequencing checks */
|
|
|
|
/* it got through unscathed. Make sure the context is unexpired */
|
|
now = get_seconds();
|
|
if (now > kctx->endtime)
|
|
return GSS_S_CONTEXT_EXPIRED;
|
|
|
|
/*
|
|
* Move the head data back to the right position in xdr_buf.
|
|
* We ignore any "ec" data since it might be in the head or
|
|
* the tail, and we really don't need to deal with it.
|
|
* Note that buf->head[0].iov_len may indicate the available
|
|
* head buffer space rather than that actually occupied.
|
|
*/
|
|
movelen = min_t(unsigned int, buf->head[0].iov_len, buf->len);
|
|
movelen -= offset + GSS_KRB5_TOK_HDR_LEN + headskip;
|
|
if (offset + GSS_KRB5_TOK_HDR_LEN + headskip + movelen >
|
|
buf->head[0].iov_len)
|
|
return GSS_S_FAILURE;
|
|
memmove(ptr, ptr + GSS_KRB5_TOK_HDR_LEN + headskip, movelen);
|
|
buf->head[0].iov_len -= GSS_KRB5_TOK_HDR_LEN + headskip;
|
|
buf->len -= GSS_KRB5_TOK_HDR_LEN + headskip;
|
|
|
|
/* Trim off the trailing "extra count" and checksum blob */
|
|
buf->len -= ec + GSS_KRB5_TOK_HDR_LEN + tailskip;
|
|
|
|
return GSS_S_COMPLETE;
|
|
}
|
|
|
|
u32
|
|
gss_wrap_kerberos(struct gss_ctx *gctx, int offset,
|
|
struct xdr_buf *buf, struct page **pages)
|
|
{
|
|
struct krb5_ctx *kctx = gctx->internal_ctx_id;
|
|
|
|
switch (kctx->enctype) {
|
|
default:
|
|
BUG();
|
|
case ENCTYPE_DES_CBC_RAW:
|
|
case ENCTYPE_DES3_CBC_RAW:
|
|
case ENCTYPE_ARCFOUR_HMAC:
|
|
return gss_wrap_kerberos_v1(kctx, offset, buf, pages);
|
|
case ENCTYPE_AES128_CTS_HMAC_SHA1_96:
|
|
case ENCTYPE_AES256_CTS_HMAC_SHA1_96:
|
|
return gss_wrap_kerberos_v2(kctx, offset, buf, pages);
|
|
}
|
|
}
|
|
|
|
u32
|
|
gss_unwrap_kerberos(struct gss_ctx *gctx, int offset, struct xdr_buf *buf)
|
|
{
|
|
struct krb5_ctx *kctx = gctx->internal_ctx_id;
|
|
|
|
switch (kctx->enctype) {
|
|
default:
|
|
BUG();
|
|
case ENCTYPE_DES_CBC_RAW:
|
|
case ENCTYPE_DES3_CBC_RAW:
|
|
case ENCTYPE_ARCFOUR_HMAC:
|
|
return gss_unwrap_kerberos_v1(kctx, offset, buf);
|
|
case ENCTYPE_AES128_CTS_HMAC_SHA1_96:
|
|
case ENCTYPE_AES256_CTS_HMAC_SHA1_96:
|
|
return gss_unwrap_kerberos_v2(kctx, offset, buf);
|
|
}
|
|
}
|