980411a4d1
Nathan reported that the new per-cpu mm patching oopses if DEBUG_VM is
enabled:
------------[ cut here ]------------
kernel BUG at arch/powerpc/mm/pgtable.c:333!
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.1.0-rc2+ #1
Hardware name: IBM PowerNV (emulated by qemu) POWER9 0x4e1200 opal:v7.0 PowerNV
...
NIP assert_pte_locked+0x180/0x1a0
LR assert_pte_locked+0x170/0x1a0
Call Trace:
0x60000000 (unreliable)
patch_instruction+0x618/0x6d0
arch_prepare_kprobe+0xfc/0x2d0
register_kprobe+0x520/0x7c0
arch_init_kprobes+0x28/0x3c
init_kprobes+0x108/0x184
do_one_initcall+0x60/0x2e0
kernel_init_freeable+0x1f0/0x3e0
kernel_init+0x34/0x1d0
ret_from_kernel_thread+0x5c/0x64
It's caused by the assert_spin_locked() failing in assert_pte_locked().
The assert fails because the PTE was unlocked in text_area_cpu_up_mm(),
and never relocked.
The PTE page shouldn't be freed, the patching_mm is only used for
patching on this CPU, only that single PTE is ever mapped, and it's only
unmapped at CPU offline.
In fact assert_pte_locked() has a special case to ignore init_mm
entirely, and the patching_mm is more-or-less like init_mm, so possibly
the check could be skipped for patching_mm too.
But for now be conservative, and use the proper PTE accessors at
patching time, so that the PTE lock is held while the PTE is used. That
also avoids the warning in assert_pte_locked().
With that it's no longer necessary to save the PTE in
cpu_patching_context for the mm_patch_enabled() case.
Fixes: c28c15b6d2
("powerpc/code-patching: Use temporary mm for Radix MMU")
Reported-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221216125913.990972-1-mpe@ellerman.id.au
501 lines
12 KiB
C
501 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright 2008 Michael Ellerman, IBM Corporation.
|
|
*/
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/random.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpuhotplug.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/jump_label.h>
|
|
|
|
#include <asm/debug.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/page.h>
|
|
#include <asm/code-patching.h>
|
|
#include <asm/inst.h>
|
|
|
|
static int __patch_instruction(u32 *exec_addr, ppc_inst_t instr, u32 *patch_addr)
|
|
{
|
|
if (!ppc_inst_prefixed(instr)) {
|
|
u32 val = ppc_inst_val(instr);
|
|
|
|
__put_kernel_nofault(patch_addr, &val, u32, failed);
|
|
} else {
|
|
u64 val = ppc_inst_as_ulong(instr);
|
|
|
|
__put_kernel_nofault(patch_addr, &val, u64, failed);
|
|
}
|
|
|
|
asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr),
|
|
"r" (exec_addr));
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
return -EPERM;
|
|
}
|
|
|
|
int raw_patch_instruction(u32 *addr, ppc_inst_t instr)
|
|
{
|
|
return __patch_instruction(addr, instr, addr);
|
|
}
|
|
|
|
struct patch_context {
|
|
union {
|
|
struct vm_struct *area;
|
|
struct mm_struct *mm;
|
|
};
|
|
unsigned long addr;
|
|
pte_t *pte;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct patch_context, cpu_patching_context);
|
|
|
|
static int map_patch_area(void *addr, unsigned long text_poke_addr);
|
|
static void unmap_patch_area(unsigned long addr);
|
|
|
|
static bool mm_patch_enabled(void)
|
|
{
|
|
return IS_ENABLED(CONFIG_SMP) && radix_enabled();
|
|
}
|
|
|
|
/*
|
|
* The following applies for Radix MMU. Hash MMU has different requirements,
|
|
* and so is not supported.
|
|
*
|
|
* Changing mm requires context synchronising instructions on both sides of
|
|
* the context switch, as well as a hwsync between the last instruction for
|
|
* which the address of an associated storage access was translated using
|
|
* the current context.
|
|
*
|
|
* switch_mm_irqs_off() performs an isync after the context switch. It is
|
|
* the responsibility of the caller to perform the CSI and hwsync before
|
|
* starting/stopping the temp mm.
|
|
*/
|
|
static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm)
|
|
{
|
|
struct mm_struct *orig_mm = current->active_mm;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
switch_mm_irqs_off(orig_mm, temp_mm, current);
|
|
|
|
WARN_ON(!mm_is_thread_local(temp_mm));
|
|
|
|
suspend_breakpoints();
|
|
return orig_mm;
|
|
}
|
|
|
|
static void stop_using_temp_mm(struct mm_struct *temp_mm,
|
|
struct mm_struct *orig_mm)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
switch_mm_irqs_off(temp_mm, orig_mm, current);
|
|
restore_breakpoints();
|
|
}
|
|
|
|
static int text_area_cpu_up(unsigned int cpu)
|
|
{
|
|
struct vm_struct *area;
|
|
unsigned long addr;
|
|
int err;
|
|
|
|
area = get_vm_area(PAGE_SIZE, VM_ALLOC);
|
|
if (!area) {
|
|
WARN_ONCE(1, "Failed to create text area for cpu %d\n",
|
|
cpu);
|
|
return -1;
|
|
}
|
|
|
|
// Map/unmap the area to ensure all page tables are pre-allocated
|
|
addr = (unsigned long)area->addr;
|
|
err = map_patch_area(empty_zero_page, addr);
|
|
if (err)
|
|
return err;
|
|
|
|
unmap_patch_area(addr);
|
|
|
|
this_cpu_write(cpu_patching_context.area, area);
|
|
this_cpu_write(cpu_patching_context.addr, addr);
|
|
this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int text_area_cpu_down(unsigned int cpu)
|
|
{
|
|
free_vm_area(this_cpu_read(cpu_patching_context.area));
|
|
this_cpu_write(cpu_patching_context.area, NULL);
|
|
this_cpu_write(cpu_patching_context.addr, 0);
|
|
this_cpu_write(cpu_patching_context.pte, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr)
|
|
{
|
|
struct mmu_gather tlb;
|
|
|
|
tlb_gather_mmu(&tlb, mm);
|
|
free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0);
|
|
mmput(mm);
|
|
}
|
|
|
|
static int text_area_cpu_up_mm(unsigned int cpu)
|
|
{
|
|
struct mm_struct *mm;
|
|
unsigned long addr;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
mm = mm_alloc();
|
|
if (WARN_ON(!mm))
|
|
goto fail_no_mm;
|
|
|
|
/*
|
|
* Choose a random page-aligned address from the interval
|
|
* [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE].
|
|
* The lower address bound is PAGE_SIZE to avoid the zero-page.
|
|
*/
|
|
addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT;
|
|
|
|
/*
|
|
* PTE allocation uses GFP_KERNEL which means we need to
|
|
* pre-allocate the PTE here because we cannot do the
|
|
* allocation during patching when IRQs are disabled.
|
|
*
|
|
* Using get_locked_pte() to avoid open coding, the lock
|
|
* is unnecessary.
|
|
*/
|
|
pte = get_locked_pte(mm, addr, &ptl);
|
|
if (!pte)
|
|
goto fail_no_pte;
|
|
pte_unmap_unlock(pte, ptl);
|
|
|
|
this_cpu_write(cpu_patching_context.mm, mm);
|
|
this_cpu_write(cpu_patching_context.addr, addr);
|
|
|
|
return 0;
|
|
|
|
fail_no_pte:
|
|
put_patching_mm(mm, addr);
|
|
fail_no_mm:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int text_area_cpu_down_mm(unsigned int cpu)
|
|
{
|
|
put_patching_mm(this_cpu_read(cpu_patching_context.mm),
|
|
this_cpu_read(cpu_patching_context.addr));
|
|
|
|
this_cpu_write(cpu_patching_context.mm, NULL);
|
|
this_cpu_write(cpu_patching_context.addr, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done);
|
|
|
|
void __init poking_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
|
|
return;
|
|
|
|
if (mm_patch_enabled())
|
|
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
|
|
"powerpc/text_poke_mm:online",
|
|
text_area_cpu_up_mm,
|
|
text_area_cpu_down_mm);
|
|
else
|
|
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
|
|
"powerpc/text_poke:online",
|
|
text_area_cpu_up,
|
|
text_area_cpu_down);
|
|
|
|
/* cpuhp_setup_state returns >= 0 on success */
|
|
if (WARN_ON(ret < 0))
|
|
return;
|
|
|
|
static_branch_enable(&poking_init_done);
|
|
}
|
|
|
|
static unsigned long get_patch_pfn(void *addr)
|
|
{
|
|
if (IS_ENABLED(CONFIG_MODULES) && is_vmalloc_or_module_addr(addr))
|
|
return vmalloc_to_pfn(addr);
|
|
else
|
|
return __pa_symbol(addr) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* This can be called for kernel text or a module.
|
|
*/
|
|
static int map_patch_area(void *addr, unsigned long text_poke_addr)
|
|
{
|
|
unsigned long pfn = get_patch_pfn(addr);
|
|
|
|
return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL);
|
|
}
|
|
|
|
static void unmap_patch_area(unsigned long addr)
|
|
{
|
|
pte_t *ptep;
|
|
pmd_t *pmdp;
|
|
pud_t *pudp;
|
|
p4d_t *p4dp;
|
|
pgd_t *pgdp;
|
|
|
|
pgdp = pgd_offset_k(addr);
|
|
if (WARN_ON(pgd_none(*pgdp)))
|
|
return;
|
|
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
if (WARN_ON(p4d_none(*p4dp)))
|
|
return;
|
|
|
|
pudp = pud_offset(p4dp, addr);
|
|
if (WARN_ON(pud_none(*pudp)))
|
|
return;
|
|
|
|
pmdp = pmd_offset(pudp, addr);
|
|
if (WARN_ON(pmd_none(*pmdp)))
|
|
return;
|
|
|
|
ptep = pte_offset_kernel(pmdp, addr);
|
|
if (WARN_ON(pte_none(*ptep)))
|
|
return;
|
|
|
|
/*
|
|
* In hash, pte_clear flushes the tlb, in radix, we have to
|
|
*/
|
|
pte_clear(&init_mm, addr, ptep);
|
|
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
|
|
}
|
|
|
|
static int __do_patch_instruction_mm(u32 *addr, ppc_inst_t instr)
|
|
{
|
|
int err;
|
|
u32 *patch_addr;
|
|
unsigned long text_poke_addr;
|
|
pte_t *pte;
|
|
unsigned long pfn = get_patch_pfn(addr);
|
|
struct mm_struct *patching_mm;
|
|
struct mm_struct *orig_mm;
|
|
spinlock_t *ptl;
|
|
|
|
patching_mm = __this_cpu_read(cpu_patching_context.mm);
|
|
text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
|
|
patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
|
|
|
|
pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
__set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
|
|
|
|
/* order PTE update before use, also serves as the hwsync */
|
|
asm volatile("ptesync": : :"memory");
|
|
|
|
/* order context switch after arbitrary prior code */
|
|
isync();
|
|
|
|
orig_mm = start_using_temp_mm(patching_mm);
|
|
|
|
err = __patch_instruction(addr, instr, patch_addr);
|
|
|
|
/* hwsync performed by __patch_instruction (sync) if successful */
|
|
if (err)
|
|
mb(); /* sync */
|
|
|
|
/* context synchronisation performed by __patch_instruction (isync or exception) */
|
|
stop_using_temp_mm(patching_mm, orig_mm);
|
|
|
|
pte_clear(patching_mm, text_poke_addr, pte);
|
|
/*
|
|
* ptesync to order PTE update before TLB invalidation done
|
|
* by radix__local_flush_tlb_page_psize (in _tlbiel_va)
|
|
*/
|
|
local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
|
|
|
|
pte_unmap_unlock(pte, ptl);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __do_patch_instruction(u32 *addr, ppc_inst_t instr)
|
|
{
|
|
int err;
|
|
u32 *patch_addr;
|
|
unsigned long text_poke_addr;
|
|
pte_t *pte;
|
|
unsigned long pfn = get_patch_pfn(addr);
|
|
|
|
text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
|
|
patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
|
|
|
|
pte = __this_cpu_read(cpu_patching_context.pte);
|
|
__set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
|
|
/* See ptesync comment in radix__set_pte_at() */
|
|
if (radix_enabled())
|
|
asm volatile("ptesync": : :"memory");
|
|
|
|
err = __patch_instruction(addr, instr, patch_addr);
|
|
|
|
pte_clear(&init_mm, text_poke_addr, pte);
|
|
flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
|
|
|
|
return err;
|
|
}
|
|
|
|
int patch_instruction(u32 *addr, ppc_inst_t instr)
|
|
{
|
|
int err;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* During early early boot patch_instruction is called
|
|
* when text_poke_area is not ready, but we still need
|
|
* to allow patching. We just do the plain old patching
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) ||
|
|
!static_branch_likely(&poking_init_done))
|
|
return raw_patch_instruction(addr, instr);
|
|
|
|
local_irq_save(flags);
|
|
if (mm_patch_enabled())
|
|
err = __do_patch_instruction_mm(addr, instr);
|
|
else
|
|
err = __do_patch_instruction(addr, instr);
|
|
local_irq_restore(flags);
|
|
|
|
return err;
|
|
}
|
|
NOKPROBE_SYMBOL(patch_instruction);
|
|
|
|
int patch_branch(u32 *addr, unsigned long target, int flags)
|
|
{
|
|
ppc_inst_t instr;
|
|
|
|
if (create_branch(&instr, addr, target, flags))
|
|
return -ERANGE;
|
|
|
|
return patch_instruction(addr, instr);
|
|
}
|
|
|
|
/*
|
|
* Helper to check if a given instruction is a conditional branch
|
|
* Derived from the conditional checks in analyse_instr()
|
|
*/
|
|
bool is_conditional_branch(ppc_inst_t instr)
|
|
{
|
|
unsigned int opcode = ppc_inst_primary_opcode(instr);
|
|
|
|
if (opcode == 16) /* bc, bca, bcl, bcla */
|
|
return true;
|
|
if (opcode == 19) {
|
|
switch ((ppc_inst_val(instr) >> 1) & 0x3ff) {
|
|
case 16: /* bclr, bclrl */
|
|
case 528: /* bcctr, bcctrl */
|
|
case 560: /* bctar, bctarl */
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
NOKPROBE_SYMBOL(is_conditional_branch);
|
|
|
|
int create_cond_branch(ppc_inst_t *instr, const u32 *addr,
|
|
unsigned long target, int flags)
|
|
{
|
|
long offset;
|
|
|
|
offset = target;
|
|
if (! (flags & BRANCH_ABSOLUTE))
|
|
offset = offset - (unsigned long)addr;
|
|
|
|
/* Check we can represent the target in the instruction format */
|
|
if (!is_offset_in_cond_branch_range(offset))
|
|
return 1;
|
|
|
|
/* Mask out the flags and target, so they don't step on each other. */
|
|
*instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int instr_is_relative_branch(ppc_inst_t instr)
|
|
{
|
|
if (ppc_inst_val(instr) & BRANCH_ABSOLUTE)
|
|
return 0;
|
|
|
|
return instr_is_branch_iform(instr) || instr_is_branch_bform(instr);
|
|
}
|
|
|
|
int instr_is_relative_link_branch(ppc_inst_t instr)
|
|
{
|
|
return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK);
|
|
}
|
|
|
|
static unsigned long branch_iform_target(const u32 *instr)
|
|
{
|
|
signed long imm;
|
|
|
|
imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC;
|
|
|
|
/* If the top bit of the immediate value is set this is negative */
|
|
if (imm & 0x2000000)
|
|
imm -= 0x4000000;
|
|
|
|
if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
|
|
imm += (unsigned long)instr;
|
|
|
|
return (unsigned long)imm;
|
|
}
|
|
|
|
static unsigned long branch_bform_target(const u32 *instr)
|
|
{
|
|
signed long imm;
|
|
|
|
imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC;
|
|
|
|
/* If the top bit of the immediate value is set this is negative */
|
|
if (imm & 0x8000)
|
|
imm -= 0x10000;
|
|
|
|
if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
|
|
imm += (unsigned long)instr;
|
|
|
|
return (unsigned long)imm;
|
|
}
|
|
|
|
unsigned long branch_target(const u32 *instr)
|
|
{
|
|
if (instr_is_branch_iform(ppc_inst_read(instr)))
|
|
return branch_iform_target(instr);
|
|
else if (instr_is_branch_bform(ppc_inst_read(instr)))
|
|
return branch_bform_target(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src)
|
|
{
|
|
unsigned long target;
|
|
target = branch_target(src);
|
|
|
|
if (instr_is_branch_iform(ppc_inst_read(src)))
|
|
return create_branch(instr, dest, target,
|
|
ppc_inst_val(ppc_inst_read(src)));
|
|
else if (instr_is_branch_bform(ppc_inst_read(src)))
|
|
return create_cond_branch(instr, dest, target,
|
|
ppc_inst_val(ppc_inst_read(src)));
|
|
|
|
return 1;
|
|
}
|