linux/drivers/bluetooth/btintel.c
Kiran K 880120d5f1 Bluetooth: btintel: Add support for BlazarU core
Add support for BlazarU core (CNVi).

Signed-off-by: Kiran K <kiran.k@intel.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
2024-07-15 10:11:55 -04:00

3270 lines
85 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
*
* Bluetooth support for Intel devices
*
* Copyright (C) 2015 Intel Corporation
*/
#include <linux/module.h>
#include <linux/firmware.h>
#include <linux/regmap.h>
#include <linux/acpi.h>
#include <acpi/acpi_bus.h>
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "btintel.h"
#define VERSION "0.1"
#define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
#define RSA_HEADER_LEN 644
#define CSS_HEADER_OFFSET 8
#define ECDSA_OFFSET 644
#define ECDSA_HEADER_LEN 320
enum {
DSM_SET_WDISABLE2_DELAY = 1,
DSM_SET_RESET_METHOD = 3,
};
#define CMD_WRITE_BOOT_PARAMS 0xfc0e
struct cmd_write_boot_params {
__le32 boot_addr;
u8 fw_build_num;
u8 fw_build_ww;
u8 fw_build_yy;
} __packed;
static struct {
const char *driver_name;
u8 hw_variant;
u32 fw_build_num;
} coredump_info;
static const guid_t btintel_guid_dsm =
GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233,
0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9);
int btintel_check_bdaddr(struct hci_dev *hdev)
{
struct hci_rp_read_bd_addr *bda;
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
int err = PTR_ERR(skb);
bt_dev_err(hdev, "Reading Intel device address failed (%d)",
err);
return err;
}
if (skb->len != sizeof(*bda)) {
bt_dev_err(hdev, "Intel device address length mismatch");
kfree_skb(skb);
return -EIO;
}
bda = (struct hci_rp_read_bd_addr *)skb->data;
/* For some Intel based controllers, the default Bluetooth device
* address 00:03:19:9E:8B:00 can be found. These controllers are
* fully operational, but have the danger of duplicate addresses
* and that in turn can cause problems with Bluetooth operation.
*/
if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
bt_dev_err(hdev, "Found Intel default device address (%pMR)",
&bda->bdaddr);
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
int btintel_enter_mfg(struct hci_dev *hdev)
{
static const u8 param[] = { 0x01, 0x00 };
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_enter_mfg);
int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
{
u8 param[] = { 0x00, 0x00 };
struct sk_buff *skb;
/* The 2nd command parameter specifies the manufacturing exit method:
* 0x00: Just disable the manufacturing mode (0x00).
* 0x01: Disable manufacturing mode and reset with patches deactivated.
* 0x02: Disable manufacturing mode and reset with patches activated.
*/
if (reset)
param[1] |= patched ? 0x02 : 0x01;
skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_exit_mfg);
int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
{
struct sk_buff *skb;
int err;
skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(hdev, "Changing Intel device address failed (%d)",
err);
return err;
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
{
u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
struct sk_buff *skb;
int err;
if (debug)
mask[1] |= 0x62;
skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
return err;
}
kfree_skb(skb);
return 0;
}
int btintel_set_diag(struct hci_dev *hdev, bool enable)
{
struct sk_buff *skb;
u8 param[3];
int err;
if (enable) {
param[0] = 0x03;
param[1] = 0x03;
param[2] = 0x03;
} else {
param[0] = 0x00;
param[1] = 0x00;
param[2] = 0x00;
}
skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
if (err == -ENODATA)
goto done;
bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
err);
return err;
}
kfree_skb(skb);
done:
btintel_set_event_mask(hdev, enable);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_set_diag);
static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
{
int err, ret;
err = btintel_enter_mfg(hdev);
if (err)
return err;
ret = btintel_set_diag(hdev, enable);
err = btintel_exit_mfg(hdev, false, false);
if (err)
return err;
return ret;
}
static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
{
int ret;
/* Legacy ROM device needs to be in the manufacturer mode to apply
* diagnostic setting
*
* This flag is set after reading the Intel version.
*/
if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
ret = btintel_set_diag_mfg(hdev, enable);
else
ret = btintel_set_diag(hdev, enable);
return ret;
}
void btintel_hw_error(struct hci_dev *hdev, u8 code)
{
struct sk_buff *skb;
u8 type = 0x00;
bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
PTR_ERR(skb));
return;
}
kfree_skb(skb);
skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
PTR_ERR(skb));
return;
}
if (skb->len != 13) {
bt_dev_err(hdev, "Exception info size mismatch");
kfree_skb(skb);
return;
}
bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
kfree_skb(skb);
}
EXPORT_SYMBOL_GPL(btintel_hw_error);
int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
{
const char *variant;
/* The hardware platform number has a fixed value of 0x37 and
* for now only accept this single value.
*/
if (ver->hw_platform != 0x37) {
bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
ver->hw_platform);
return -EINVAL;
}
/* Check for supported iBT hardware variants of this firmware
* loading method.
*
* This check has been put in place to ensure correct forward
* compatibility options when newer hardware variants come along.
*/
switch (ver->hw_variant) {
case 0x07: /* WP - Legacy ROM */
case 0x08: /* StP - Legacy ROM */
case 0x0b: /* SfP */
case 0x0c: /* WsP */
case 0x11: /* JfP */
case 0x12: /* ThP */
case 0x13: /* HrP */
case 0x14: /* CcP */
break;
default:
bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
ver->hw_variant);
return -EINVAL;
}
switch (ver->fw_variant) {
case 0x01:
variant = "Legacy ROM 2.5";
break;
case 0x06:
variant = "Bootloader";
break;
case 0x22:
variant = "Legacy ROM 2.x";
break;
case 0x23:
variant = "Firmware";
break;
default:
bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
return -EINVAL;
}
coredump_info.hw_variant = ver->hw_variant;
coredump_info.fw_build_num = ver->fw_build_num;
bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
ver->fw_build_num, ver->fw_build_ww,
2000 + ver->fw_build_yy);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_version_info);
static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
const void *param)
{
while (plen > 0) {
struct sk_buff *skb;
u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
cmd_param[0] = fragment_type;
memcpy(cmd_param + 1, param, fragment_len);
skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
cmd_param, HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
plen -= fragment_len;
param += fragment_len;
}
return 0;
}
int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
{
const struct firmware *fw;
struct sk_buff *skb;
const u8 *fw_ptr;
int err;
err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
if (err < 0) {
bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
ddc_name, err);
return err;
}
bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
fw_ptr = fw->data;
/* DDC file contains one or more DDC structure which has
* Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
*/
while (fw->size > fw_ptr - fw->data) {
u8 cmd_plen = fw_ptr[0] + sizeof(u8);
skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
PTR_ERR(skb));
release_firmware(fw);
return PTR_ERR(skb);
}
fw_ptr += cmd_plen;
kfree_skb(skb);
}
release_firmware(fw);
bt_dev_info(hdev, "Applying Intel DDC parameters completed");
return 0;
}
EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
{
int err, ret;
err = btintel_enter_mfg(hdev);
if (err)
return err;
ret = btintel_set_event_mask(hdev, debug);
err = btintel_exit_mfg(hdev, false, false);
if (err)
return err;
return ret;
}
EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
{
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (!skb || skb->len != sizeof(*ver)) {
bt_dev_err(hdev, "Intel version event size mismatch");
kfree_skb(skb);
return -EILSEQ;
}
memcpy(ver, skb->data, sizeof(*ver));
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_read_version);
int btintel_version_info_tlv(struct hci_dev *hdev,
struct intel_version_tlv *version)
{
const char *variant;
/* The hardware platform number has a fixed value of 0x37 and
* for now only accept this single value.
*/
if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
INTEL_HW_PLATFORM(version->cnvi_bt));
return -EINVAL;
}
/* Check for supported iBT hardware variants of this firmware
* loading method.
*
* This check has been put in place to ensure correct forward
* compatibility options when newer hardware variants come along.
*/
switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
case 0x17: /* TyP */
case 0x18: /* Slr */
case 0x19: /* Slr-F */
case 0x1b: /* Mgr */
case 0x1c: /* Gale Peak (GaP) */
case 0x1d: /* BlazarU (BzrU) */
case 0x1e: /* BlazarI (Bzr) */
break;
default:
bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
INTEL_HW_VARIANT(version->cnvi_bt));
return -EINVAL;
}
switch (version->img_type) {
case BTINTEL_IMG_BOOTLOADER:
variant = "Bootloader";
/* It is required that every single firmware fragment is acknowledged
* with a command complete event. If the boot parameters indicate
* that this bootloader does not send them, then abort the setup.
*/
if (version->limited_cce != 0x00) {
bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
version->limited_cce);
return -EINVAL;
}
/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
if (version->sbe_type > 0x01) {
bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
version->sbe_type);
return -EINVAL;
}
bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
bt_dev_info(hdev, "Secure boot is %s",
version->secure_boot ? "enabled" : "disabled");
bt_dev_info(hdev, "OTP lock is %s",
version->otp_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "API lock is %s",
version->api_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "Debug lock is %s",
version->debug_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
version->min_fw_build_nn, version->min_fw_build_cw,
2000 + version->min_fw_build_yy);
break;
case BTINTEL_IMG_IML:
variant = "Intermediate loader";
break;
case BTINTEL_IMG_OP:
variant = "Firmware";
break;
default:
bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
return -EINVAL;
}
coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt);
coredump_info.fw_build_num = version->build_num;
bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
2000 + (version->timestamp >> 8), version->timestamp & 0xff,
version->build_type, version->build_num);
if (version->img_type == BTINTEL_IMG_OP)
bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
int btintel_parse_version_tlv(struct hci_dev *hdev,
struct intel_version_tlv *version,
struct sk_buff *skb)
{
/* Consume Command Complete Status field */
skb_pull(skb, 1);
/* Event parameters contatin multiple TLVs. Read each of them
* and only keep the required data. Also, it use existing legacy
* version field like hw_platform, hw_variant, and fw_variant
* to keep the existing setup flow
*/
while (skb->len) {
struct intel_tlv *tlv;
/* Make sure skb has a minimum length of the header */
if (skb->len < sizeof(*tlv))
return -EINVAL;
tlv = (struct intel_tlv *)skb->data;
/* Make sure skb has a enough data */
if (skb->len < tlv->len + sizeof(*tlv))
return -EINVAL;
switch (tlv->type) {
case INTEL_TLV_CNVI_TOP:
version->cnvi_top = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_CNVR_TOP:
version->cnvr_top = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_CNVI_BT:
version->cnvi_bt = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_CNVR_BT:
version->cnvr_bt = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_DEV_REV_ID:
version->dev_rev_id = get_unaligned_le16(tlv->val);
break;
case INTEL_TLV_IMAGE_TYPE:
version->img_type = tlv->val[0];
break;
case INTEL_TLV_TIME_STAMP:
/* If image type is Operational firmware (0x03), then
* running FW Calendar Week and Year information can
* be extracted from Timestamp information
*/
version->min_fw_build_cw = tlv->val[0];
version->min_fw_build_yy = tlv->val[1];
version->timestamp = get_unaligned_le16(tlv->val);
break;
case INTEL_TLV_BUILD_TYPE:
version->build_type = tlv->val[0];
break;
case INTEL_TLV_BUILD_NUM:
/* If image type is Operational firmware (0x03), then
* running FW build number can be extracted from the
* Build information
*/
version->min_fw_build_nn = tlv->val[0];
version->build_num = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_SECURE_BOOT:
version->secure_boot = tlv->val[0];
break;
case INTEL_TLV_OTP_LOCK:
version->otp_lock = tlv->val[0];
break;
case INTEL_TLV_API_LOCK:
version->api_lock = tlv->val[0];
break;
case INTEL_TLV_DEBUG_LOCK:
version->debug_lock = tlv->val[0];
break;
case INTEL_TLV_MIN_FW:
version->min_fw_build_nn = tlv->val[0];
version->min_fw_build_cw = tlv->val[1];
version->min_fw_build_yy = tlv->val[2];
break;
case INTEL_TLV_LIMITED_CCE:
version->limited_cce = tlv->val[0];
break;
case INTEL_TLV_SBE_TYPE:
version->sbe_type = tlv->val[0];
break;
case INTEL_TLV_OTP_BDADDR:
memcpy(&version->otp_bd_addr, tlv->val,
sizeof(bdaddr_t));
break;
case INTEL_TLV_GIT_SHA1:
version->git_sha1 = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_FW_ID:
snprintf(version->fw_id, sizeof(version->fw_id),
"%s", tlv->val);
break;
default:
/* Ignore rest of information */
break;
}
/* consume the current tlv and move to next*/
skb_pull(skb, tlv->len + sizeof(*tlv));
}
return 0;
}
EXPORT_SYMBOL_GPL(btintel_parse_version_tlv);
static int btintel_read_version_tlv(struct hci_dev *hdev,
struct intel_version_tlv *version)
{
struct sk_buff *skb;
const u8 param[1] = { 0xFF };
if (!version)
return -EINVAL;
skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->data[0]) {
bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
skb->data[0]);
kfree_skb(skb);
return -EIO;
}
btintel_parse_version_tlv(hdev, version, skb);
kfree_skb(skb);
return 0;
}
/* ------- REGMAP IBT SUPPORT ------- */
#define IBT_REG_MODE_8BIT 0x00
#define IBT_REG_MODE_16BIT 0x01
#define IBT_REG_MODE_32BIT 0x02
struct regmap_ibt_context {
struct hci_dev *hdev;
__u16 op_write;
__u16 op_read;
};
struct ibt_cp_reg_access {
__le32 addr;
__u8 mode;
__u8 len;
__u8 data[];
} __packed;
struct ibt_rp_reg_access {
__u8 status;
__le32 addr;
__u8 data[];
} __packed;
static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
void *val, size_t val_size)
{
struct regmap_ibt_context *ctx = context;
struct ibt_cp_reg_access cp;
struct ibt_rp_reg_access *rp;
struct sk_buff *skb;
int err = 0;
if (reg_size != sizeof(__le32))
return -EINVAL;
switch (val_size) {
case 1:
cp.mode = IBT_REG_MODE_8BIT;
break;
case 2:
cp.mode = IBT_REG_MODE_16BIT;
break;
case 4:
cp.mode = IBT_REG_MODE_32BIT;
break;
default:
return -EINVAL;
}
/* regmap provides a little-endian formatted addr */
cp.addr = *(__le32 *)addr;
cp.len = val_size;
bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
le32_to_cpu(cp.addr), err);
return err;
}
if (skb->len != sizeof(*rp) + val_size) {
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
le32_to_cpu(cp.addr));
err = -EINVAL;
goto done;
}
rp = (struct ibt_rp_reg_access *)skb->data;
if (rp->addr != cp.addr) {
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
le32_to_cpu(rp->addr));
err = -EINVAL;
goto done;
}
memcpy(val, rp->data, val_size);
done:
kfree_skb(skb);
return err;
}
static int regmap_ibt_gather_write(void *context,
const void *addr, size_t reg_size,
const void *val, size_t val_size)
{
struct regmap_ibt_context *ctx = context;
struct ibt_cp_reg_access *cp;
struct sk_buff *skb;
int plen = sizeof(*cp) + val_size;
u8 mode;
int err = 0;
if (reg_size != sizeof(__le32))
return -EINVAL;
switch (val_size) {
case 1:
mode = IBT_REG_MODE_8BIT;
break;
case 2:
mode = IBT_REG_MODE_16BIT;
break;
case 4:
mode = IBT_REG_MODE_32BIT;
break;
default:
return -EINVAL;
}
cp = kmalloc(plen, GFP_KERNEL);
if (!cp)
return -ENOMEM;
/* regmap provides a little-endian formatted addr/value */
cp->addr = *(__le32 *)addr;
cp->mode = mode;
cp->len = val_size;
memcpy(&cp->data, val, val_size);
bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
le32_to_cpu(cp->addr), err);
goto done;
}
kfree_skb(skb);
done:
kfree(cp);
return err;
}
static int regmap_ibt_write(void *context, const void *data, size_t count)
{
/* data contains register+value, since we only support 32bit addr,
* minimum data size is 4 bytes.
*/
if (WARN_ONCE(count < 4, "Invalid register access"))
return -EINVAL;
return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
}
static void regmap_ibt_free_context(void *context)
{
kfree(context);
}
static const struct regmap_bus regmap_ibt = {
.read = regmap_ibt_read,
.write = regmap_ibt_write,
.gather_write = regmap_ibt_gather_write,
.free_context = regmap_ibt_free_context,
.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
};
/* Config is the same for all register regions */
static const struct regmap_config regmap_ibt_cfg = {
.name = "btintel_regmap",
.reg_bits = 32,
.val_bits = 32,
};
struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
u16 opcode_write)
{
struct regmap_ibt_context *ctx;
bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
opcode_write);
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
ctx->op_read = opcode_read;
ctx->op_write = opcode_write;
ctx->hdev = hdev;
return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
}
EXPORT_SYMBOL_GPL(btintel_regmap_init);
int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
{
struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
struct sk_buff *skb;
params.boot_param = cpu_to_le32(boot_param);
skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Failed to send Intel Reset command");
return PTR_ERR(skb);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
int btintel_read_boot_params(struct hci_dev *hdev,
struct intel_boot_params *params)
{
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != sizeof(*params)) {
bt_dev_err(hdev, "Intel boot parameters size mismatch");
kfree_skb(skb);
return -EILSEQ;
}
memcpy(params, skb->data, sizeof(*params));
kfree_skb(skb);
if (params->status) {
bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
params->status);
return -bt_to_errno(params->status);
}
bt_dev_info(hdev, "Device revision is %u",
le16_to_cpu(params->dev_revid));
bt_dev_info(hdev, "Secure boot is %s",
params->secure_boot ? "enabled" : "disabled");
bt_dev_info(hdev, "OTP lock is %s",
params->otp_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "API lock is %s",
params->api_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "Debug lock is %s",
params->debug_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
params->min_fw_build_nn, params->min_fw_build_cw,
2000 + params->min_fw_build_yy);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_read_boot_params);
static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
const struct firmware *fw)
{
int err;
/* Start the firmware download transaction with the Init fragment
* represented by the 128 bytes of CSS header.
*/
err = btintel_secure_send(hdev, 0x00, 128, fw->data);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
goto done;
}
/* Send the 256 bytes of public key information from the firmware
* as the PKey fragment.
*/
err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
goto done;
}
/* Send the 256 bytes of signature information from the firmware
* as the Sign fragment.
*/
err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
goto done;
}
done:
return err;
}
static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
const struct firmware *fw)
{
int err;
/* Start the firmware download transaction with the Init fragment
* represented by the 128 bytes of CSS header.
*/
err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
return err;
}
/* Send the 96 bytes of public key information from the firmware
* as the PKey fragment.
*/
err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
return err;
}
/* Send the 96 bytes of signature information from the firmware
* as the Sign fragment
*/
err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware signature (%d)",
err);
return err;
}
return 0;
}
static int btintel_download_firmware_payload(struct hci_dev *hdev,
const struct firmware *fw,
size_t offset)
{
int err;
const u8 *fw_ptr;
u32 frag_len;
fw_ptr = fw->data + offset;
frag_len = 0;
err = -EINVAL;
while (fw_ptr - fw->data < fw->size) {
struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
frag_len += sizeof(*cmd) + cmd->plen;
/* The parameter length of the secure send command requires
* a 4 byte alignment. It happens so that the firmware file
* contains proper Intel_NOP commands to align the fragments
* as needed.
*
* Send set of commands with 4 byte alignment from the
* firmware data buffer as a single Data fragement.
*/
if (!(frag_len % 4)) {
err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
if (err < 0) {
bt_dev_err(hdev,
"Failed to send firmware data (%d)",
err);
goto done;
}
fw_ptr += frag_len;
frag_len = 0;
}
}
done:
return err;
}
static bool btintel_firmware_version(struct hci_dev *hdev,
u8 num, u8 ww, u8 yy,
const struct firmware *fw,
u32 *boot_addr)
{
const u8 *fw_ptr;
fw_ptr = fw->data;
while (fw_ptr - fw->data < fw->size) {
struct hci_command_hdr *cmd = (void *)(fw_ptr);
/* Each SKU has a different reset parameter to use in the
* HCI_Intel_Reset command and it is embedded in the firmware
* data. So, instead of using static value per SKU, check
* the firmware data and save it for later use.
*/
if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
struct cmd_write_boot_params *params;
params = (void *)(fw_ptr + sizeof(*cmd));
*boot_addr = le32_to_cpu(params->boot_addr);
bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
params->fw_build_num, params->fw_build_ww,
params->fw_build_yy);
return (num == params->fw_build_num &&
ww == params->fw_build_ww &&
yy == params->fw_build_yy);
}
fw_ptr += sizeof(*cmd) + cmd->plen;
}
return false;
}
int btintel_download_firmware(struct hci_dev *hdev,
struct intel_version *ver,
const struct firmware *fw,
u32 *boot_param)
{
int err;
/* SfP and WsP don't seem to update the firmware version on file
* so version checking is currently not possible.
*/
switch (ver->hw_variant) {
case 0x0b: /* SfP */
case 0x0c: /* WsP */
/* Skip version checking */
break;
default:
/* Skip download if firmware has the same version */
if (btintel_firmware_version(hdev, ver->fw_build_num,
ver->fw_build_ww, ver->fw_build_yy,
fw, boot_param)) {
bt_dev_info(hdev, "Firmware already loaded");
/* Return -EALREADY to indicate that the firmware has
* already been loaded.
*/
return -EALREADY;
}
}
/* The firmware variant determines if the device is in bootloader
* mode or is running operational firmware. The value 0x06 identifies
* the bootloader and the value 0x23 identifies the operational
* firmware.
*
* If the firmware version has changed that means it needs to be reset
* to bootloader when operational so the new firmware can be loaded.
*/
if (ver->fw_variant == 0x23)
return -EINVAL;
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
if (err)
return err;
return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
}
EXPORT_SYMBOL_GPL(btintel_download_firmware);
static int btintel_download_fw_tlv(struct hci_dev *hdev,
struct intel_version_tlv *ver,
const struct firmware *fw, u32 *boot_param,
u8 hw_variant, u8 sbe_type)
{
int err;
u32 css_header_ver;
/* Skip download if firmware has the same version */
if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
ver->min_fw_build_cw,
ver->min_fw_build_yy,
fw, boot_param)) {
bt_dev_info(hdev, "Firmware already loaded");
/* Return -EALREADY to indicate that firmware has
* already been loaded.
*/
return -EALREADY;
}
/* The firmware variant determines if the device is in bootloader
* mode or is running operational firmware. The value 0x01 identifies
* the bootloader and the value 0x03 identifies the operational
* firmware.
*
* If the firmware version has changed that means it needs to be reset
* to bootloader when operational so the new firmware can be loaded.
*/
if (ver->img_type == BTINTEL_IMG_OP)
return -EINVAL;
/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
* only RSA secure boot engine. Hence, the corresponding sfi file will
* have RSA header of 644 bytes followed by Command Buffer.
*
* iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
* secure boot engine. As a result, the corresponding sfi file will
* have RSA header of 644, ECDSA header of 320 bytes followed by
* Command Buffer.
*
* CSS Header byte positions 0x08 to 0x0B represent the CSS Header
* version: RSA(0x00010000) , ECDSA (0x00020000)
*/
css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
if (css_header_ver != 0x00010000) {
bt_dev_err(hdev, "Invalid CSS Header version");
return -EINVAL;
}
if (hw_variant <= 0x14) {
if (sbe_type != 0x00) {
bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
hw_variant);
return -EINVAL;
}
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
if (err)
return err;
err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
if (err)
return err;
} else if (hw_variant >= 0x17) {
/* Check if CSS header for ECDSA follows the RSA header */
if (fw->data[ECDSA_OFFSET] != 0x06)
return -EINVAL;
/* Check if the CSS Header version is ECDSA(0x00020000) */
css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
if (css_header_ver != 0x00020000) {
bt_dev_err(hdev, "Invalid CSS Header version");
return -EINVAL;
}
if (sbe_type == 0x00) {
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
if (err)
return err;
err = btintel_download_firmware_payload(hdev, fw,
RSA_HEADER_LEN + ECDSA_HEADER_LEN);
if (err)
return err;
} else if (sbe_type == 0x01) {
err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
if (err)
return err;
err = btintel_download_firmware_payload(hdev, fw,
RSA_HEADER_LEN + ECDSA_HEADER_LEN);
if (err)
return err;
}
}
return 0;
}
static void btintel_reset_to_bootloader(struct hci_dev *hdev)
{
struct intel_reset params;
struct sk_buff *skb;
/* Send Intel Reset command. This will result in
* re-enumeration of BT controller.
*
* Intel Reset parameter description:
* reset_type : 0x00 (Soft reset),
* 0x01 (Hard reset)
* patch_enable : 0x00 (Do not enable),
* 0x01 (Enable)
* ddc_reload : 0x00 (Do not reload),
* 0x01 (Reload)
* boot_option: 0x00 (Current image),
* 0x01 (Specified boot address)
* boot_param: Boot address
*
*/
params.reset_type = 0x01;
params.patch_enable = 0x01;
params.ddc_reload = 0x01;
params.boot_option = 0x00;
params.boot_param = cpu_to_le32(0x00000000);
skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
&params, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "FW download error recovery failed (%ld)",
PTR_ERR(skb));
return;
}
bt_dev_info(hdev, "Intel reset sent to retry FW download");
kfree_skb(skb);
/* Current Intel BT controllers(ThP/JfP) hold the USB reset
* lines for 2ms when it receives Intel Reset in bootloader mode.
* Whereas, the upcoming Intel BT controllers will hold USB reset
* for 150ms. To keep the delay generic, 150ms is chosen here.
*/
msleep(150);
}
static int btintel_read_debug_features(struct hci_dev *hdev,
struct intel_debug_features *features)
{
struct sk_buff *skb;
u8 page_no = 1;
/* Intel controller supports two pages, each page is of 128-bit
* feature bit mask. And each bit defines specific feature support
*/
skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading supported features failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != (sizeof(features->page1) + 3)) {
bt_dev_err(hdev, "Supported features event size mismatch");
kfree_skb(skb);
return -EILSEQ;
}
memcpy(features->page1, skb->data + 3, sizeof(features->page1));
/* Read the supported features page2 if required in future.
*/
kfree_skb(skb);
return 0;
}
static int btintel_set_debug_features(struct hci_dev *hdev,
const struct intel_debug_features *features)
{
u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00 };
u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
u8 trace_enable = 0x02;
struct sk_buff *skb;
if (!features) {
bt_dev_warn(hdev, "Debug features not read");
return -EINVAL;
}
if (!(features->page1[0] & 0x3f)) {
bt_dev_info(hdev, "Telemetry exception format not supported");
return 0;
}
skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
trace_enable, mask[3]);
return 0;
}
static int btintel_reset_debug_features(struct hci_dev *hdev,
const struct intel_debug_features *features)
{
u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00 };
u8 trace_enable = 0x00;
struct sk_buff *skb;
if (!features) {
bt_dev_warn(hdev, "Debug features not read");
return -EINVAL;
}
if (!(features->page1[0] & 0x3f)) {
bt_dev_info(hdev, "Telemetry exception format not supported");
return 0;
}
/* Should stop the trace before writing ddc event mask. */
skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
trace_enable, mask[3]);
return 0;
}
int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
{
struct intel_debug_features features;
int err;
bt_dev_dbg(hdev, "enable %d", enable);
/* Read the Intel supported features and if new exception formats
* supported, need to load the additional DDC config to enable.
*/
err = btintel_read_debug_features(hdev, &features);
if (err)
return err;
/* Set or reset the debug features. */
if (enable)
err = btintel_set_debug_features(hdev, &features);
else
err = btintel_reset_debug_features(hdev, &features);
return err;
}
EXPORT_SYMBOL_GPL(btintel_set_quality_report);
static void btintel_coredump(struct hci_dev *hdev)
{
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb));
return;
}
kfree_skb(skb);
}
static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
{
char buf[80];
snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
coredump_info.hw_variant);
skb_put_data(skb, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n",
coredump_info.fw_build_num);
skb_put_data(skb, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name);
skb_put_data(skb, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Vendor: Intel\n");
skb_put_data(skb, buf, strlen(buf));
}
static int btintel_register_devcoredump_support(struct hci_dev *hdev)
{
struct intel_debug_features features;
int err;
err = btintel_read_debug_features(hdev, &features);
if (err) {
bt_dev_info(hdev, "Error reading debug features");
return err;
}
if (!(features.page1[0] & 0x3f)) {
bt_dev_dbg(hdev, "Telemetry exception format not supported");
return -EOPNOTSUPP;
}
hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL);
return err;
}
static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
struct intel_version *ver)
{
const struct firmware *fw;
char fwname[64];
int ret;
snprintf(fwname, sizeof(fwname),
"intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
ver->hw_platform, ver->hw_variant, ver->hw_revision,
ver->fw_variant, ver->fw_revision, ver->fw_build_num,
ver->fw_build_ww, ver->fw_build_yy);
ret = request_firmware(&fw, fwname, &hdev->dev);
if (ret < 0) {
if (ret == -EINVAL) {
bt_dev_err(hdev, "Intel firmware file request failed (%d)",
ret);
return NULL;
}
bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
fwname, ret);
/* If the correct firmware patch file is not found, use the
* default firmware patch file instead
*/
snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
ver->hw_platform, ver->hw_variant);
if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
bt_dev_err(hdev, "failed to open default fw file: %s",
fwname);
return NULL;
}
}
bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
return fw;
}
static int btintel_legacy_rom_patching(struct hci_dev *hdev,
const struct firmware *fw,
const u8 **fw_ptr, int *disable_patch)
{
struct sk_buff *skb;
struct hci_command_hdr *cmd;
const u8 *cmd_param;
struct hci_event_hdr *evt = NULL;
const u8 *evt_param = NULL;
int remain = fw->size - (*fw_ptr - fw->data);
/* The first byte indicates the types of the patch command or event.
* 0x01 means HCI command and 0x02 is HCI event. If the first bytes
* in the current firmware buffer doesn't start with 0x01 or
* the size of remain buffer is smaller than HCI command header,
* the firmware file is corrupted and it should stop the patching
* process.
*/
if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
return -EINVAL;
}
(*fw_ptr)++;
remain--;
cmd = (struct hci_command_hdr *)(*fw_ptr);
*fw_ptr += sizeof(*cmd);
remain -= sizeof(*cmd);
/* Ensure that the remain firmware data is long enough than the length
* of command parameter. If not, the firmware file is corrupted.
*/
if (remain < cmd->plen) {
bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
return -EFAULT;
}
/* If there is a command that loads a patch in the firmware
* file, then enable the patch upon success, otherwise just
* disable the manufacturer mode, for example patch activation
* is not required when the default firmware patch file is used
* because there are no patch data to load.
*/
if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
*disable_patch = 0;
cmd_param = *fw_ptr;
*fw_ptr += cmd->plen;
remain -= cmd->plen;
/* This reads the expected events when the above command is sent to the
* device. Some vendor commands expects more than one events, for
* example command status event followed by vendor specific event.
* For this case, it only keeps the last expected event. so the command
* can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
* last expected event.
*/
while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
(*fw_ptr)++;
remain--;
evt = (struct hci_event_hdr *)(*fw_ptr);
*fw_ptr += sizeof(*evt);
remain -= sizeof(*evt);
if (remain < evt->plen) {
bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
return -EFAULT;
}
evt_param = *fw_ptr;
*fw_ptr += evt->plen;
remain -= evt->plen;
}
/* Every HCI commands in the firmware file has its correspond event.
* If event is not found or remain is smaller than zero, the firmware
* file is corrupted.
*/
if (!evt || !evt_param || remain < 0) {
bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
return -EFAULT;
}
skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
cmd_param, evt->evt, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
cmd->opcode, PTR_ERR(skb));
return PTR_ERR(skb);
}
/* It ensures that the returned event matches the event data read from
* the firmware file. At fist, it checks the length and then
* the contents of the event.
*/
if (skb->len != evt->plen) {
bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
le16_to_cpu(cmd->opcode));
kfree_skb(skb);
return -EFAULT;
}
if (memcmp(skb->data, evt_param, evt->plen)) {
bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
le16_to_cpu(cmd->opcode));
kfree_skb(skb);
return -EFAULT;
}
kfree_skb(skb);
return 0;
}
static int btintel_legacy_rom_setup(struct hci_dev *hdev,
struct intel_version *ver)
{
const struct firmware *fw;
const u8 *fw_ptr;
int disable_patch, err;
struct intel_version new_ver;
BT_DBG("%s", hdev->name);
/* fw_patch_num indicates the version of patch the device currently
* have. If there is no patch data in the device, it is always 0x00.
* So, if it is other than 0x00, no need to patch the device again.
*/
if (ver->fw_patch_num) {
bt_dev_info(hdev,
"Intel device is already patched. patch num: %02x",
ver->fw_patch_num);
goto complete;
}
/* Opens the firmware patch file based on the firmware version read
* from the controller. If it fails to open the matching firmware
* patch file, it tries to open the default firmware patch file.
* If no patch file is found, allow the device to operate without
* a patch.
*/
fw = btintel_legacy_rom_get_fw(hdev, ver);
if (!fw)
goto complete;
fw_ptr = fw->data;
/* Enable the manufacturer mode of the controller.
* Only while this mode is enabled, the driver can download the
* firmware patch data and configuration parameters.
*/
err = btintel_enter_mfg(hdev);
if (err) {
release_firmware(fw);
return err;
}
disable_patch = 1;
/* The firmware data file consists of list of Intel specific HCI
* commands and its expected events. The first byte indicates the
* type of the message, either HCI command or HCI event.
*
* It reads the command and its expected event from the firmware file,
* and send to the controller. Once __hci_cmd_sync_ev() returns,
* the returned event is compared with the event read from the firmware
* file and it will continue until all the messages are downloaded to
* the controller.
*
* Once the firmware patching is completed successfully,
* the manufacturer mode is disabled with reset and activating the
* downloaded patch.
*
* If the firmware patching fails, the manufacturer mode is
* disabled with reset and deactivating the patch.
*
* If the default patch file is used, no reset is done when disabling
* the manufacturer.
*/
while (fw->size > fw_ptr - fw->data) {
int ret;
ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
&disable_patch);
if (ret < 0)
goto exit_mfg_deactivate;
}
release_firmware(fw);
if (disable_patch)
goto exit_mfg_disable;
/* Patching completed successfully and disable the manufacturer mode
* with reset and activate the downloaded firmware patches.
*/
err = btintel_exit_mfg(hdev, true, true);
if (err)
return err;
/* Need build number for downloaded fw patches in
* every power-on boot
*/
err = btintel_read_version(hdev, &new_ver);
if (err)
return err;
bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
new_ver.fw_patch_num);
goto complete;
exit_mfg_disable:
/* Disable the manufacturer mode without reset */
err = btintel_exit_mfg(hdev, false, false);
if (err)
return err;
bt_dev_info(hdev, "Intel firmware patch completed");
goto complete;
exit_mfg_deactivate:
release_firmware(fw);
/* Patching failed. Disable the manufacturer mode with reset and
* deactivate the downloaded firmware patches.
*/
err = btintel_exit_mfg(hdev, true, false);
if (err)
return err;
bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
complete:
/* Set the event mask for Intel specific vendor events. This enables
* a few extra events that are useful during general operation.
*/
btintel_set_event_mask_mfg(hdev, false);
btintel_check_bdaddr(hdev);
return 0;
}
static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
{
ktime_t delta, rettime;
unsigned long long duration;
int err;
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
bt_dev_info(hdev, "Waiting for firmware download to complete");
err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
TASK_INTERRUPTIBLE,
msecs_to_jiffies(msec));
if (err == -EINTR) {
bt_dev_err(hdev, "Firmware loading interrupted");
return err;
}
if (err) {
bt_dev_err(hdev, "Firmware loading timeout");
return -ETIMEDOUT;
}
if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
bt_dev_err(hdev, "Firmware loading failed");
return -ENOEXEC;
}
rettime = ktime_get();
delta = ktime_sub(rettime, calltime);
duration = (unsigned long long)ktime_to_ns(delta) >> 10;
bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
return 0;
}
static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
{
ktime_t delta, rettime;
unsigned long long duration;
int err;
bt_dev_info(hdev, "Waiting for device to boot");
err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
TASK_INTERRUPTIBLE,
msecs_to_jiffies(msec));
if (err == -EINTR) {
bt_dev_err(hdev, "Device boot interrupted");
return -EINTR;
}
if (err) {
bt_dev_err(hdev, "Device boot timeout");
return -ETIMEDOUT;
}
rettime = ktime_get();
delta = ktime_sub(rettime, calltime);
duration = (unsigned long long) ktime_to_ns(delta) >> 10;
bt_dev_info(hdev, "Device booted in %llu usecs", duration);
return 0;
}
static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
{
ktime_t calltime;
int err;
calltime = ktime_get();
btintel_set_flag(hdev, INTEL_BOOTING);
err = btintel_send_intel_reset(hdev, boot_addr);
if (err) {
bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
btintel_reset_to_bootloader(hdev);
return err;
}
/* The bootloader will not indicate when the device is ready. This
* is done by the operational firmware sending bootup notification.
*
* Booting into operational firmware should not take longer than
* 1 second. However if that happens, then just fail the setup
* since something went wrong.
*/
err = btintel_boot_wait(hdev, calltime, 1000);
if (err == -ETIMEDOUT)
btintel_reset_to_bootloader(hdev);
return err;
}
static int btintel_get_fw_name(struct intel_version *ver,
struct intel_boot_params *params,
char *fw_name, size_t len,
const char *suffix)
{
switch (ver->hw_variant) {
case 0x0b: /* SfP */
case 0x0c: /* WsP */
snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
ver->hw_variant,
le16_to_cpu(params->dev_revid),
suffix);
break;
case 0x11: /* JfP */
case 0x12: /* ThP */
case 0x13: /* HrP */
case 0x14: /* CcP */
snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
ver->hw_variant,
ver->hw_revision,
ver->fw_revision,
suffix);
break;
default:
return -EINVAL;
}
return 0;
}
static int btintel_download_fw(struct hci_dev *hdev,
struct intel_version *ver,
struct intel_boot_params *params,
u32 *boot_param)
{
const struct firmware *fw;
char fwname[64];
int err;
ktime_t calltime;
if (!ver || !params)
return -EINVAL;
/* The firmware variant determines if the device is in bootloader
* mode or is running operational firmware. The value 0x06 identifies
* the bootloader and the value 0x23 identifies the operational
* firmware.
*
* When the operational firmware is already present, then only
* the check for valid Bluetooth device address is needed. This
* determines if the device will be added as configured or
* unconfigured controller.
*
* It is not possible to use the Secure Boot Parameters in this
* case since that command is only available in bootloader mode.
*/
if (ver->fw_variant == 0x23) {
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
btintel_check_bdaddr(hdev);
/* SfP and WsP don't seem to update the firmware version on file
* so version checking is currently possible.
*/
switch (ver->hw_variant) {
case 0x0b: /* SfP */
case 0x0c: /* WsP */
return 0;
}
/* Proceed to download to check if the version matches */
goto download;
}
/* Read the secure boot parameters to identify the operating
* details of the bootloader.
*/
err = btintel_read_boot_params(hdev, params);
if (err)
return err;
/* It is required that every single firmware fragment is acknowledged
* with a command complete event. If the boot parameters indicate
* that this bootloader does not send them, then abort the setup.
*/
if (params->limited_cce != 0x00) {
bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
params->limited_cce);
return -EINVAL;
}
/* If the OTP has no valid Bluetooth device address, then there will
* also be no valid address for the operational firmware.
*/
if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
bt_dev_info(hdev, "No device address configured");
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
}
download:
/* With this Intel bootloader only the hardware variant and device
* revision information are used to select the right firmware for SfP
* and WsP.
*
* The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
*
* Currently the supported hardware variants are:
* 11 (0x0b) for iBT3.0 (LnP/SfP)
* 12 (0x0c) for iBT3.5 (WsP)
*
* For ThP/JfP and for future SKU's, the FW name varies based on HW
* variant, HW revision and FW revision, as these are dependent on CNVi
* and RF Combination.
*
* 17 (0x11) for iBT3.5 (JfP)
* 18 (0x12) for iBT3.5 (ThP)
*
* The firmware file name for these will be
* ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
*
*/
err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
if (err < 0) {
if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
/* Firmware has already been loaded */
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
return 0;
}
bt_dev_err(hdev, "Unsupported Intel firmware naming");
return -EINVAL;
}
err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
if (err < 0) {
if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
/* Firmware has already been loaded */
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
return 0;
}
bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
fwname, err);
return err;
}
bt_dev_info(hdev, "Found device firmware: %s", fwname);
if (fw->size < 644) {
bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
fw->size);
err = -EBADF;
goto done;
}
calltime = ktime_get();
btintel_set_flag(hdev, INTEL_DOWNLOADING);
/* Start firmware downloading and get boot parameter */
err = btintel_download_firmware(hdev, ver, fw, boot_param);
if (err < 0) {
if (err == -EALREADY) {
/* Firmware has already been loaded */
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
err = 0;
goto done;
}
/* When FW download fails, send Intel Reset to retry
* FW download.
*/
btintel_reset_to_bootloader(hdev);
goto done;
}
/* Before switching the device into operational mode and with that
* booting the loaded firmware, wait for the bootloader notification
* that all fragments have been successfully received.
*
* When the event processing receives the notification, then the
* INTEL_DOWNLOADING flag will be cleared.
*
* The firmware loading should not take longer than 5 seconds
* and thus just timeout if that happens and fail the setup
* of this device.
*/
err = btintel_download_wait(hdev, calltime, 5000);
if (err == -ETIMEDOUT)
btintel_reset_to_bootloader(hdev);
done:
release_firmware(fw);
return err;
}
static int btintel_bootloader_setup(struct hci_dev *hdev,
struct intel_version *ver)
{
struct intel_version new_ver;
struct intel_boot_params params;
u32 boot_param;
char ddcname[64];
int err;
BT_DBG("%s", hdev->name);
/* Set the default boot parameter to 0x0 and it is updated to
* SKU specific boot parameter after reading Intel_Write_Boot_Params
* command while downloading the firmware.
*/
boot_param = 0x00000000;
btintel_set_flag(hdev, INTEL_BOOTLOADER);
err = btintel_download_fw(hdev, ver, &params, &boot_param);
if (err)
return err;
/* controller is already having an operational firmware */
if (ver->fw_variant == 0x23)
goto finish;
err = btintel_boot(hdev, boot_param);
if (err)
return err;
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
err = btintel_get_fw_name(ver, &params, ddcname,
sizeof(ddcname), "ddc");
if (err < 0) {
bt_dev_err(hdev, "Unsupported Intel firmware naming");
} else {
/* Once the device is running in operational mode, it needs to
* apply the device configuration (DDC) parameters.
*
* The device can work without DDC parameters, so even if it
* fails to load the file, no need to fail the setup.
*/
btintel_load_ddc_config(hdev, ddcname);
}
hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
/* Read the Intel version information after loading the FW */
err = btintel_read_version(hdev, &new_ver);
if (err)
return err;
btintel_version_info(hdev, &new_ver);
finish:
/* Set the event mask for Intel specific vendor events. This enables
* a few extra events that are useful during general operation. It
* does not enable any debugging related events.
*
* The device will function correctly without these events enabled
* and thus no need to fail the setup.
*/
btintel_set_event_mask(hdev, false);
return 0;
}
static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
char *fw_name, size_t len,
const char *suffix)
{
const char *format;
u32 cnvi, cnvr;
cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
INTEL_CNVX_TOP_STEP(ver->cnvi_top));
cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
INTEL_CNVX_TOP_STEP(ver->cnvr_top));
/* Only Blazar product supports downloading of intermediate loader
* image
*/
if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) {
u8 zero[BTINTEL_FWID_MAXLEN];
if (ver->img_type == BTINTEL_IMG_BOOTLOADER) {
format = "intel/ibt-%04x-%04x-iml.%s";
snprintf(fw_name, len, format, cnvi, cnvr, suffix);
return;
}
memset(zero, 0, sizeof(zero));
/* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step-fw_id> */
if (memcmp(ver->fw_id, zero, sizeof(zero))) {
format = "intel/ibt-%04x-%04x-%s.%s";
snprintf(fw_name, len, format, cnvi, cnvr,
ver->fw_id, suffix);
return;
}
/* If firmware id is not present, fallback to legacy naming
* convention
*/
}
/* Fallback to legacy naming convention for other controllers
* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
*/
format = "intel/ibt-%04x-%04x.%s";
snprintf(fw_name, len, format, cnvi, cnvr, suffix);
}
static void btintel_get_iml_tlv(const struct intel_version_tlv *ver,
char *fw_name, size_t len,
const char *suffix)
{
const char *format;
u32 cnvi, cnvr;
cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
INTEL_CNVX_TOP_STEP(ver->cnvi_top));
cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
INTEL_CNVX_TOP_STEP(ver->cnvr_top));
format = "intel/ibt-%04x-%04x-iml.%s";
snprintf(fw_name, len, format, cnvi, cnvr, suffix);
}
static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
struct intel_version_tlv *ver,
u32 *boot_param)
{
const struct firmware *fw;
char fwname[128];
int err;
ktime_t calltime;
if (!ver || !boot_param)
return -EINVAL;
/* The firmware variant determines if the device is in bootloader
* mode or is running operational firmware. The value 0x03 identifies
* the bootloader and the value 0x23 identifies the operational
* firmware.
*
* When the operational firmware is already present, then only
* the check for valid Bluetooth device address is needed. This
* determines if the device will be added as configured or
* unconfigured controller.
*
* It is not possible to use the Secure Boot Parameters in this
* case since that command is only available in bootloader mode.
*/
if (ver->img_type == BTINTEL_IMG_OP) {
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
btintel_check_bdaddr(hdev);
} else {
/*
* Check for valid bd address in boot loader mode. Device
* will be marked as unconfigured if empty bd address is
* found.
*/
if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
bt_dev_info(hdev, "No device address configured");
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
}
}
if (ver->img_type == BTINTEL_IMG_OP) {
/* Controller running OP image. In case of FW downgrade,
* FWID TLV may not be present and driver may attempt to load
* firmware image which doesn't exist. Lets compare the version
* of IML image
*/
if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e)
btintel_get_iml_tlv(ver, fwname, sizeof(fwname), "sfi");
else
btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
} else {
btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
}
err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
if (err < 0) {
if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
/* Firmware has already been loaded */
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
return 0;
}
bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
fwname, err);
return err;
}
bt_dev_info(hdev, "Found device firmware: %s", fwname);
if (fw->size < 644) {
bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
fw->size);
err = -EBADF;
goto done;
}
calltime = ktime_get();
btintel_set_flag(hdev, INTEL_DOWNLOADING);
/* Start firmware downloading and get boot parameter */
err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
INTEL_HW_VARIANT(ver->cnvi_bt),
ver->sbe_type);
if (err < 0) {
if (err == -EALREADY) {
/* Firmware has already been loaded */
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
err = 0;
goto done;
}
/* When FW download fails, send Intel Reset to retry
* FW download.
*/
btintel_reset_to_bootloader(hdev);
goto done;
}
/* Before switching the device into operational mode and with that
* booting the loaded firmware, wait for the bootloader notification
* that all fragments have been successfully received.
*
* When the event processing receives the notification, then the
* BTUSB_DOWNLOADING flag will be cleared.
*
* The firmware loading should not take longer than 5 seconds
* and thus just timeout if that happens and fail the setup
* of this device.
*/
err = btintel_download_wait(hdev, calltime, 5000);
if (err == -ETIMEDOUT)
btintel_reset_to_bootloader(hdev);
done:
release_firmware(fw);
return err;
}
static int btintel_get_codec_config_data(struct hci_dev *hdev,
__u8 link, struct bt_codec *codec,
__u8 *ven_len, __u8 **ven_data)
{
int err = 0;
if (!ven_data || !ven_len)
return -EINVAL;
*ven_len = 0;
*ven_data = NULL;
if (link != ESCO_LINK) {
bt_dev_err(hdev, "Invalid link type(%u)", link);
return -EINVAL;
}
*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
if (!*ven_data) {
err = -ENOMEM;
goto error;
}
/* supports only CVSD and mSBC offload codecs */
switch (codec->id) {
case 0x02:
**ven_data = 0x00;
break;
case 0x05:
**ven_data = 0x01;
break;
default:
err = -EINVAL;
bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
goto error;
}
/* codec and its capabilities are pre-defined to ids
* preset id = 0x00 represents CVSD codec with sampling rate 8K
* preset id = 0x01 represents mSBC codec with sampling rate 16K
*/
*ven_len = sizeof(__u8);
return err;
error:
kfree(*ven_data);
*ven_data = NULL;
return err;
}
static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
{
/* Intel uses 1 as data path id for all the usecases */
*data_path_id = 1;
return 0;
}
static int btintel_configure_offload(struct hci_dev *hdev)
{
struct sk_buff *skb;
int err = 0;
struct intel_offload_use_cases *use_cases;
skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len < sizeof(*use_cases)) {
err = -EIO;
goto error;
}
use_cases = (void *)skb->data;
if (use_cases->status) {
err = -bt_to_errno(skb->data[0]);
goto error;
}
if (use_cases->preset[0] & 0x03) {
hdev->get_data_path_id = btintel_get_data_path_id;
hdev->get_codec_config_data = btintel_get_codec_config_data;
}
error:
kfree_skb(skb);
return err;
}
static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver)
{
struct sk_buff *skb;
struct hci_ppag_enable_cmd ppag_cmd;
acpi_handle handle;
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
union acpi_object *p, *elements;
u32 domain, mode;
acpi_status status;
/* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */
switch (ver->cnvr_top & 0xFFF) {
case 0x504: /* Hrp2 */
case 0x202: /* Jfp2 */
case 0x201: /* Jfp1 */
bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)",
ver->cnvr_top & 0xFFF);
return;
}
handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
if (!handle) {
bt_dev_info(hdev, "No support for BT device in ACPI firmware");
return;
}
status = acpi_evaluate_object(handle, "PPAG", NULL, &buffer);
if (ACPI_FAILURE(status)) {
if (status == AE_NOT_FOUND) {
bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found");
return;
}
bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
return;
}
p = buffer.pointer;
if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) {
bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d",
p->type, p->package.count);
kfree(buffer.pointer);
return;
}
elements = p->package.elements;
/* PPAG table is located at element[1] */
p = &elements[1];
domain = (u32)p->package.elements[0].integer.value;
mode = (u32)p->package.elements[1].integer.value;
kfree(buffer.pointer);
if (domain != 0x12) {
bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware");
return;
}
/* PPAG mode
* BIT 0 : 0 Disabled in EU
* 1 Enabled in EU
* BIT 1 : 0 Disabled in China
* 1 Enabled in China
*/
mode &= 0x03;
if (!mode) {
bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in BIOS");
return;
}
ppag_cmd.ppag_enable_flags = cpu_to_le32(mode);
skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd),
&ppag_cmd, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb));
return;
}
bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", mode);
kfree_skb(skb);
}
static int btintel_acpi_reset_method(struct hci_dev *hdev)
{
int ret = 0;
acpi_status status;
union acpi_object *p, *ref;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer);
if (ACPI_FAILURE(status)) {
bt_dev_err(hdev, "Failed to run _PRR method");
ret = -ENODEV;
return ret;
}
p = buffer.pointer;
if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) {
bt_dev_err(hdev, "Invalid arguments");
ret = -EINVAL;
goto exit_on_error;
}
ref = &p->package.elements[0];
if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) {
bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type);
ret = -EINVAL;
goto exit_on_error;
}
status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL);
if (ACPI_FAILURE(status)) {
bt_dev_err(hdev, "Failed to run_RST method");
ret = -ENODEV;
goto exit_on_error;
}
exit_on_error:
kfree(buffer.pointer);
return ret;
}
static void btintel_set_dsm_reset_method(struct hci_dev *hdev,
struct intel_version_tlv *ver_tlv)
{
struct btintel_data *data = hci_get_priv(hdev);
acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00};
union acpi_object *obj, argv4;
enum {
RESET_TYPE_WDISABLE2,
RESET_TYPE_VSEC
};
handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
if (!handle) {
bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware");
return;
}
if (!acpi_has_method(handle, "_PRR")) {
bt_dev_err(hdev, "No support for _PRR ACPI method");
return;
}
switch (ver_tlv->cnvi_top & 0xfff) {
case 0x910: /* GalePeak2 */
reset_payload[2] = RESET_TYPE_VSEC;
break;
default:
/* WDISABLE2 is the default reset method */
reset_payload[2] = RESET_TYPE_WDISABLE2;
if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
BIT(DSM_SET_WDISABLE2_DELAY))) {
bt_dev_err(hdev, "No dsm support to set reset delay");
return;
}
argv4.integer.type = ACPI_TYPE_INTEGER;
/* delay required to toggle BT power */
argv4.integer.value = 160;
obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
DSM_SET_WDISABLE2_DELAY, &argv4);
if (!obj) {
bt_dev_err(hdev, "Failed to call dsm to set reset delay");
return;
}
ACPI_FREE(obj);
}
bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]);
if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
DSM_SET_RESET_METHOD)) {
bt_dev_warn(hdev, "No support for dsm to set reset method");
return;
}
argv4.buffer.type = ACPI_TYPE_BUFFER;
argv4.buffer.length = sizeof(reset_payload);
argv4.buffer.pointer = reset_payload;
obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
DSM_SET_RESET_METHOD, &argv4);
if (!obj) {
bt_dev_err(hdev, "Failed to call dsm to set reset method");
return;
}
ACPI_FREE(obj);
data->acpi_reset_method = btintel_acpi_reset_method;
}
#define BTINTEL_ISODATA_HANDLE_BASE 0x900
static u8 btintel_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
{
/*
* Distinguish ISO data packets form ACL data packets
* based on their connection handle value range.
*/
if (hci_skb_pkt_type(skb) == HCI_ACLDATA_PKT) {
__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
if (hci_handle(handle) >= BTINTEL_ISODATA_HANDLE_BASE)
return HCI_ISODATA_PKT;
}
return hci_skb_pkt_type(skb);
}
int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
struct intel_version_tlv *ver)
{
u32 boot_param;
char ddcname[64];
int err;
struct intel_version_tlv new_ver;
bt_dev_dbg(hdev, "");
/* Set the default boot parameter to 0x0 and it is updated to
* SKU specific boot parameter after reading Intel_Write_Boot_Params
* command while downloading the firmware.
*/
boot_param = 0x00000000;
btintel_set_flag(hdev, INTEL_BOOTLOADER);
err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
if (err)
return err;
/* check if controller is already having an operational firmware */
if (ver->img_type == BTINTEL_IMG_OP)
goto finish;
err = btintel_boot(hdev, boot_param);
if (err)
return err;
err = btintel_read_version_tlv(hdev, ver);
if (err)
return err;
/* If image type returned is BTINTEL_IMG_IML, then controller supports
* intermediate loader image
*/
if (ver->img_type == BTINTEL_IMG_IML) {
err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
if (err)
return err;
err = btintel_boot(hdev, boot_param);
if (err)
return err;
}
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
/* Once the device is running in operational mode, it needs to
* apply the device configuration (DDC) parameters.
*
* The device can work without DDC parameters, so even if it
* fails to load the file, no need to fail the setup.
*/
btintel_load_ddc_config(hdev, ddcname);
/* Read supported use cases and set callbacks to fetch datapath id */
btintel_configure_offload(hdev);
hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
/* Set PPAG feature */
btintel_set_ppag(hdev, ver);
/* Read the Intel version information after loading the FW */
err = btintel_read_version_tlv(hdev, &new_ver);
if (err)
return err;
btintel_version_info_tlv(hdev, &new_ver);
finish:
/* Set the event mask for Intel specific vendor events. This enables
* a few extra events that are useful during general operation. It
* does not enable any debugging related events.
*
* The device will function correctly without these events enabled
* and thus no need to fail the setup.
*/
btintel_set_event_mask(hdev, false);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv);
void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
{
switch (hw_variant) {
/* Legacy bootloader devices that supports MSFT Extension */
case 0x11: /* JfP */
case 0x12: /* ThP */
case 0x13: /* HrP */
case 0x14: /* CcP */
/* All Intel new genration controllers support the Microsoft vendor
* extension are using 0xFC1E for VsMsftOpCode.
*/
case 0x17:
case 0x18:
case 0x19:
case 0x1b:
case 0x1c:
case 0x1d:
case 0x1e:
hci_set_msft_opcode(hdev, 0xFC1E);
break;
default:
/* Not supported */
break;
}
}
EXPORT_SYMBOL_GPL(btintel_set_msft_opcode);
void btintel_print_fseq_info(struct hci_dev *hdev)
{
struct sk_buff *skb;
u8 *p;
u32 val;
const char *str;
skb = __hci_cmd_sync(hdev, 0xfcb3, 0, NULL, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)",
PTR_ERR(skb));
return;
}
if (skb->len < (sizeof(u32) * 16 + 2)) {
bt_dev_dbg(hdev, "Malformed packet of length %u received",
skb->len);
kfree_skb(skb);
return;
}
p = skb_pull_data(skb, 1);
if (*p) {
bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p);
kfree_skb(skb);
return;
}
p = skb_pull_data(skb, 1);
switch (*p) {
case 0:
str = "Success";
break;
case 1:
str = "Fatal error";
break;
case 2:
str = "Semaphore acquire error";
break;
default:
str = "Unknown error";
break;
}
if (*p) {
bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
kfree_skb(skb);
return;
}
bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Reason: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Global version: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val);
p = skb->data;
skb_pull_data(skb, 4);
bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
p[2], p[3]);
p = skb->data;
skb_pull_data(skb, 4);
bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
p[2], p[3]);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val);
val = get_unaligned_le32(skb_pull_data(skb, 4));
bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val);
kfree_skb(skb);
}
EXPORT_SYMBOL_GPL(btintel_print_fseq_info);
static int btintel_setup_combined(struct hci_dev *hdev)
{
const u8 param[1] = { 0xFF };
struct intel_version ver;
struct intel_version_tlv ver_tlv;
struct sk_buff *skb;
int err;
BT_DBG("%s", hdev->name);
/* The some controllers have a bug with the first HCI command sent to it
* returning number of completed commands as zero. This would stall the
* command processing in the Bluetooth core.
*
* As a workaround, send HCI Reset command first which will reset the
* number of completed commands and allow normal command processing
* from now on.
*
* Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
* in the SW_RFKILL ON state as a workaround of fixing LED issue during
* the shutdown() procedure, and once the device is in SW_RFKILL ON
* state, the only way to exit out of it is sending the HCI_Reset
* command.
*/
if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev,
"sending initial HCI reset failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
}
/* Starting from TyP device, the command parameter and response are
* changed even though the OCF for HCI_Intel_Read_Version command
* remains same. The legacy devices can handle even if the
* command has a parameter and returns a correct version information.
* So, it uses new format to support both legacy and new format.
*/
skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
/* Check the status */
if (skb->data[0]) {
bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
skb->data[0]);
err = -EIO;
goto exit_error;
}
/* Apply the common HCI quirks for Intel device */
set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
/* Set up the quality report callback for Intel devices */
hdev->set_quality_report = btintel_set_quality_report;
/* For Legacy device, check the HW platform value and size */
if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
bt_dev_dbg(hdev, "Read the legacy Intel version information");
memcpy(&ver, skb->data, sizeof(ver));
/* Display version information */
btintel_version_info(hdev, &ver);
/* Check for supported iBT hardware variants of this firmware
* loading method.
*
* This check has been put in place to ensure correct forward
* compatibility options when newer hardware variants come
* along.
*/
switch (ver.hw_variant) {
case 0x07: /* WP */
case 0x08: /* StP */
/* Legacy ROM product */
btintel_set_flag(hdev, INTEL_ROM_LEGACY);
/* Apply the device specific HCI quirks
*
* WBS for SdP - For the Legacy ROM products, only SdP
* supports the WBS. But the version information is not
* enough to use here because the StP2 and SdP have same
* hw_variant and fw_variant. So, this flag is set by
* the transport driver (btusb) based on the HW info
* (idProduct)
*/
if (!btintel_test_flag(hdev,
INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
&hdev->quirks);
if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22)
set_bit(HCI_QUIRK_VALID_LE_STATES,
&hdev->quirks);
err = btintel_legacy_rom_setup(hdev, &ver);
break;
case 0x0b: /* SfP */
case 0x11: /* JfP */
case 0x12: /* ThP */
case 0x13: /* HrP */
case 0x14: /* CcP */
set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
fallthrough;
case 0x0c: /* WsP */
/* Apply the device specific HCI quirks
*
* All Legacy bootloader devices support WBS
*/
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
&hdev->quirks);
/* These variants don't seem to support LE Coded PHY */
set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
/* Setup MSFT Extension support */
btintel_set_msft_opcode(hdev, ver.hw_variant);
err = btintel_bootloader_setup(hdev, &ver);
btintel_register_devcoredump_support(hdev);
break;
default:
bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
ver.hw_variant);
err = -EINVAL;
}
hci_set_hw_info(hdev,
"INTEL platform=%u variant=%u revision=%u",
ver.hw_platform, ver.hw_variant,
ver.hw_revision);
goto exit_error;
}
/* memset ver_tlv to start with clean state as few fields are exclusive
* to bootloader mode and are not populated in operational mode
*/
memset(&ver_tlv, 0, sizeof(ver_tlv));
/* For TLV type device, parse the tlv data */
err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
if (err) {
bt_dev_err(hdev, "Failed to parse TLV version information");
goto exit_error;
}
if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
err = -EINVAL;
goto exit_error;
}
/* Check for supported iBT hardware variants of this firmware
* loading method.
*
* This check has been put in place to ensure correct forward
* compatibility options when newer hardware variants come
* along.
*/
switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
case 0x11: /* JfP */
case 0x12: /* ThP */
case 0x13: /* HrP */
case 0x14: /* CcP */
/* Some legacy bootloader devices starting from JfP,
* the operational firmware supports both old and TLV based
* HCI_Intel_Read_Version command based on the command
* parameter.
*
* For upgrading firmware case, the TLV based version cannot
* be used because the firmware filename for legacy bootloader
* is based on the old format.
*
* Also, it is not easy to convert TLV based version from the
* legacy version format.
*
* So, as a workaround for those devices, use the legacy
* HCI_Intel_Read_Version to get the version information and
* run the legacy bootloader setup.
*/
err = btintel_read_version(hdev, &ver);
if (err)
break;
/* Apply the device specific HCI quirks
*
* All Legacy bootloader devices support WBS
*/
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
/* These variants don't seem to support LE Coded PHY */
set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
/* Set Valid LE States quirk */
set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
/* Setup MSFT Extension support */
btintel_set_msft_opcode(hdev, ver.hw_variant);
err = btintel_bootloader_setup(hdev, &ver);
btintel_register_devcoredump_support(hdev);
break;
case 0x18: /* GfP2 */
case 0x1c: /* GaP */
/* Re-classify packet type for controllers with LE audio */
hdev->classify_pkt_type = btintel_classify_pkt_type;
fallthrough;
case 0x17:
case 0x19:
case 0x1b:
case 0x1d:
case 0x1e:
/* Display version information of TLV type */
btintel_version_info_tlv(hdev, &ver_tlv);
/* Apply the device specific HCI quirks for TLV based devices
*
* All TLV based devices support WBS
*/
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
/* Apply LE States quirk from solar onwards */
set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
/* Setup MSFT Extension support */
btintel_set_msft_opcode(hdev,
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
btintel_set_dsm_reset_method(hdev, &ver_tlv);
err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
btintel_register_devcoredump_support(hdev);
btintel_print_fseq_info(hdev);
break;
default:
bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
err = -EINVAL;
break;
}
hci_set_hw_info(hdev, "INTEL platform=%u variant=%u",
INTEL_HW_PLATFORM(ver_tlv.cnvi_bt),
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
exit_error:
kfree_skb(skb);
return err;
}
int btintel_shutdown_combined(struct hci_dev *hdev)
{
struct sk_buff *skb;
int ret;
/* Send HCI Reset to the controller to stop any BT activity which
* were triggered. This will help to save power and maintain the
* sync b/w Host and controller
*/
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "HCI reset during shutdown failed");
return PTR_ERR(skb);
}
kfree_skb(skb);
/* Some platforms have an issue with BT LED when the interface is
* down or BT radio is turned off, which takes 5 seconds to BT LED
* goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
* device in the RFKILL ON state which turns off the BT LED immediately.
*/
if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
ret = PTR_ERR(skb);
bt_dev_err(hdev, "turning off Intel device LED failed");
return ret;
}
kfree_skb(skb);
}
return 0;
}
EXPORT_SYMBOL_GPL(btintel_shutdown_combined);
int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name)
{
hdev->manufacturer = 2;
hdev->setup = btintel_setup_combined;
hdev->shutdown = btintel_shutdown_combined;
hdev->hw_error = btintel_hw_error;
hdev->set_diag = btintel_set_diag_combined;
hdev->set_bdaddr = btintel_set_bdaddr;
coredump_info.driver_name = driver_name;
return 0;
}
EXPORT_SYMBOL_GPL(btintel_configure_setup);
static int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb)
{
struct intel_tlv *tlv = (void *)&skb->data[5];
/* The first event is always an event type TLV */
if (tlv->type != INTEL_TLV_TYPE_ID)
goto recv_frame;
switch (tlv->val[0]) {
case INTEL_TLV_SYSTEM_EXCEPTION:
case INTEL_TLV_FATAL_EXCEPTION:
case INTEL_TLV_DEBUG_EXCEPTION:
case INTEL_TLV_TEST_EXCEPTION:
/* Generate devcoredump from exception */
if (!hci_devcd_init(hdev, skb->len)) {
hci_devcd_append(hdev, skb);
hci_devcd_complete(hdev);
} else {
bt_dev_err(hdev, "Failed to generate devcoredump");
kfree_skb(skb);
}
return 0;
default:
bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]);
}
recv_frame:
return hci_recv_frame(hdev, skb);
}
int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_event_hdr *hdr = (void *)skb->data;
const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
hdr->plen > 0) {
const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
switch (skb->data[2]) {
case 0x02:
/* When switching to the operational firmware
* the device sends a vendor specific event
* indicating that the bootup completed.
*/
btintel_bootup(hdev, ptr, len);
break;
case 0x06:
/* When the firmware loading completes the
* device sends out a vendor specific event
* indicating the result of the firmware
* loading.
*/
btintel_secure_send_result(hdev, ptr, len);
break;
}
}
/* Handle all diagnostics events separately. May still call
* hci_recv_frame.
*/
if (len >= sizeof(diagnostics_hdr) &&
memcmp(&skb->data[2], diagnostics_hdr,
sizeof(diagnostics_hdr)) == 0) {
return btintel_diagnostics(hdev, skb);
}
}
return hci_recv_frame(hdev, skb);
}
EXPORT_SYMBOL_GPL(btintel_recv_event);
void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
{
const struct intel_bootup *evt = ptr;
if (len != sizeof(*evt))
return;
if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
btintel_wake_up_flag(hdev, INTEL_BOOTING);
}
EXPORT_SYMBOL_GPL(btintel_bootup);
void btintel_secure_send_result(struct hci_dev *hdev,
const void *ptr, unsigned int len)
{
const struct intel_secure_send_result *evt = ptr;
if (len != sizeof(*evt))
return;
if (evt->result)
btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
}
EXPORT_SYMBOL_GPL(btintel_secure_send_result);
MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("intel/ibt-11-5.sfi");
MODULE_FIRMWARE("intel/ibt-11-5.ddc");
MODULE_FIRMWARE("intel/ibt-12-16.sfi");
MODULE_FIRMWARE("intel/ibt-12-16.ddc");