67c3bceabb
Remove memset(0) after dma_alloc_coherent(), which already zeroes out the memory, and fix the following two Coccinelle/coccicheck warnings reported by zalloc-simple.cocci: btintel_pcie.c:837:19-37: WARNING: dma_alloc_coherent used in /* Allocate full chunk of data buffer for DMA first and do indexing and * initialization next, so it can be freed easily */ rxq->buf_v_addr already zeroes out memory, so memset is not needed btintel_pcie.c:792:19-37: WARNING: dma_alloc_coherent used in /* Allocate full chunk of data buffer for DMA first and do indexing and * initialization next, so it can be freed easily */ txq->buf_v_addr already zeroes out memory, so memset is not needed Fixes: c2b636b3f788 ("Bluetooth: btintel_pcie: Add support for PCIe transport") Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
1364 lines
35 KiB
C
1364 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
*
|
|
* Bluetooth support for Intel PCIe devices
|
|
*
|
|
* Copyright (C) 2024 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <net/bluetooth/bluetooth.h>
|
|
#include <net/bluetooth/hci_core.h>
|
|
|
|
#include "btintel.h"
|
|
#include "btintel_pcie.h"
|
|
|
|
#define VERSION "0.1"
|
|
|
|
#define BTINTEL_PCI_DEVICE(dev, subdev) \
|
|
.vendor = PCI_VENDOR_ID_INTEL, \
|
|
.device = (dev), \
|
|
.subvendor = PCI_ANY_ID, \
|
|
.subdevice = (subdev), \
|
|
.driver_data = 0
|
|
|
|
#define POLL_INTERVAL_US 10
|
|
|
|
/* Intel Bluetooth PCIe device id table */
|
|
static const struct pci_device_id btintel_pcie_table[] = {
|
|
{ BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) },
|
|
{ 0 }
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, btintel_pcie_table);
|
|
|
|
/* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */
|
|
#define BTINTEL_PCIE_HCI_TYPE_LEN 4
|
|
#define BTINTEL_PCIE_HCI_CMD_PKT 0x00000001
|
|
#define BTINTEL_PCIE_HCI_ACL_PKT 0x00000002
|
|
#define BTINTEL_PCIE_HCI_SCO_PKT 0x00000003
|
|
#define BTINTEL_PCIE_HCI_EVT_PKT 0x00000004
|
|
|
|
static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia,
|
|
u16 queue_num)
|
|
{
|
|
bt_dev_dbg(hdev, "IA: %s: tr-h:%02u tr-t:%02u cr-h:%02u cr-t:%02u",
|
|
queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ",
|
|
ia->tr_hia[queue_num], ia->tr_tia[queue_num],
|
|
ia->cr_hia[queue_num], ia->cr_tia[queue_num]);
|
|
}
|
|
|
|
static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1,
|
|
u16 index)
|
|
{
|
|
bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x",
|
|
index, urbd1->frbd_tag, urbd1->status, urbd1->fixed);
|
|
}
|
|
|
|
static int btintel_pcie_poll_bit(struct btintel_pcie_data *data, u32 offset,
|
|
u32 bits, u32 mask, int timeout_us)
|
|
{
|
|
int t = 0;
|
|
u32 reg;
|
|
|
|
do {
|
|
reg = btintel_pcie_rd_reg32(data, offset);
|
|
|
|
if ((reg & mask) == (bits & mask))
|
|
return t;
|
|
udelay(POLL_INTERVAL_US);
|
|
t += POLL_INTERVAL_US;
|
|
} while (t < timeout_us);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry)
|
|
{
|
|
u8 queue = entry->entry;
|
|
struct msix_entry *entries = entry - queue;
|
|
|
|
return container_of(entries, struct btintel_pcie_data, msix_entries[0]);
|
|
}
|
|
|
|
/* Set the doorbell for TXQ to notify the device that @index (actually index-1)
|
|
* of the TFD is updated and ready to transmit.
|
|
*/
|
|
static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index)
|
|
{
|
|
u32 val;
|
|
|
|
val = index;
|
|
val |= (BTINTEL_PCIE_TX_DB_VEC << 16);
|
|
|
|
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
|
|
}
|
|
|
|
/* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer
|
|
* descriptor) with the data length and the DMA address of the data buffer.
|
|
*/
|
|
static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct data_buf *buf;
|
|
struct tfd *tfd;
|
|
|
|
tfd = &txq->tfds[tfd_index];
|
|
memset(tfd, 0, sizeof(*tfd));
|
|
|
|
buf = &txq->bufs[tfd_index];
|
|
|
|
tfd->size = skb->len;
|
|
tfd->addr = buf->data_p_addr;
|
|
|
|
/* Copy the outgoing data to DMA buffer */
|
|
memcpy(buf->data, skb->data, tfd->size);
|
|
}
|
|
|
|
static int btintel_pcie_send_sync(struct btintel_pcie_data *data,
|
|
struct sk_buff *skb)
|
|
{
|
|
int ret;
|
|
u16 tfd_index;
|
|
struct txq *txq = &data->txq;
|
|
|
|
tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM];
|
|
|
|
if (tfd_index > txq->count)
|
|
return -ERANGE;
|
|
|
|
/* Prepare for TX. It updates the TFD with the length of data and
|
|
* address of the DMA buffer, and copy the data to the DMA buffer
|
|
*/
|
|
btintel_pcie_prepare_tx(txq, tfd_index, skb);
|
|
|
|
tfd_index = (tfd_index + 1) % txq->count;
|
|
data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index;
|
|
|
|
/* Arm wait event condition */
|
|
data->tx_wait_done = false;
|
|
|
|
/* Set the doorbell to notify the device */
|
|
btintel_pcie_set_tx_db(data, tfd_index);
|
|
|
|
/* Wait for the complete interrupt - URBD0 */
|
|
ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done,
|
|
msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS));
|
|
if (!ret)
|
|
return -ETIME;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Set the doorbell for RXQ to notify the device that @index (actually index-1)
|
|
* is available to receive the data
|
|
*/
|
|
static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index)
|
|
{
|
|
u32 val;
|
|
|
|
val = index;
|
|
val |= (BTINTEL_PCIE_RX_DB_VEC << 16);
|
|
|
|
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
|
|
}
|
|
|
|
/* Update the FRBD (free buffer descriptor) with the @frbd_index and the
|
|
* DMA address of the free buffer.
|
|
*/
|
|
static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index)
|
|
{
|
|
struct data_buf *buf;
|
|
struct frbd *frbd;
|
|
|
|
/* Get the buffer of the FRBD for DMA */
|
|
buf = &rxq->bufs[frbd_index];
|
|
|
|
frbd = &rxq->frbds[frbd_index];
|
|
memset(frbd, 0, sizeof(*frbd));
|
|
|
|
/* Update FRBD */
|
|
frbd->tag = frbd_index;
|
|
frbd->addr = buf->data_p_addr;
|
|
}
|
|
|
|
static int btintel_pcie_submit_rx(struct btintel_pcie_data *data)
|
|
{
|
|
u16 frbd_index;
|
|
struct rxq *rxq = &data->rxq;
|
|
|
|
frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM];
|
|
|
|
if (frbd_index > rxq->count)
|
|
return -ERANGE;
|
|
|
|
/* Prepare for RX submit. It updates the FRBD with the address of DMA
|
|
* buffer
|
|
*/
|
|
btintel_pcie_prepare_rx(rxq, frbd_index);
|
|
|
|
frbd_index = (frbd_index + 1) % rxq->count;
|
|
data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index;
|
|
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
|
|
|
|
/* Set the doorbell to notify the device */
|
|
btintel_pcie_set_rx_db(data, frbd_index);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_pcie_start_rx(struct btintel_pcie_data *data)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) {
|
|
ret = btintel_pcie_submit_rx(data);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btintel_pcie_reset_ia(struct btintel_pcie_data *data)
|
|
{
|
|
memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
|
|
memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
|
|
memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
|
|
memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
|
|
}
|
|
|
|
static void btintel_pcie_reset_bt(struct btintel_pcie_data *data)
|
|
{
|
|
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
|
|
BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
|
|
}
|
|
|
|
/* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in
|
|
* BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with
|
|
* BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0.
|
|
* Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage
|
|
* from BTINTEL_PCIE_CSR_BOOT_STAGE_REG.
|
|
*/
|
|
static int btintel_pcie_enable_bt(struct btintel_pcie_data *data)
|
|
{
|
|
int err;
|
|
|
|
data->gp0_received = false;
|
|
|
|
/* Update the DMA address of CI struct to CSR */
|
|
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG,
|
|
data->ci_p_addr & 0xffffffff);
|
|
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG,
|
|
(u64)data->ci_p_addr >> 32);
|
|
|
|
/* Reset the cached value of boot stage. it is updated by the MSI-X
|
|
* gp0 interrupt handler.
|
|
*/
|
|
data->boot_stage_cache = 0x0;
|
|
|
|
/* Set MAC_INIT bit to start primary bootloader */
|
|
btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
|
|
|
|
btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
|
|
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
|
|
|
|
/* Wait until MAC_ACCESS is granted */
|
|
err = btintel_pcie_poll_bit(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
|
|
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS,
|
|
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS,
|
|
BTINTEL_DEFAULT_MAC_ACCESS_TIMEOUT_US);
|
|
if (err < 0)
|
|
return -ENODEV;
|
|
|
|
/* MAC is ready. Enable BT FUNC */
|
|
btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
|
|
BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
|
|
BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
|
|
|
|
btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
|
|
|
|
/* wait for interrupt from the device after booting up to primary
|
|
* bootloader.
|
|
*/
|
|
err = wait_event_timeout(data->gp0_wait_q, data->gp0_received,
|
|
msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT));
|
|
if (!err)
|
|
return -ETIME;
|
|
|
|
/* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */
|
|
if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM)
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function handles the MSI-X interrupt for gp0 cause (bit 0 in
|
|
* BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response.
|
|
*/
|
|
static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data)
|
|
{
|
|
u32 reg;
|
|
|
|
/* This interrupt is for three different causes and it is not easy to
|
|
* know what causes the interrupt. So, it compares each register value
|
|
* with cached value and update it before it wake up the queue.
|
|
*/
|
|
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
|
|
if (reg != data->boot_stage_cache)
|
|
data->boot_stage_cache = reg;
|
|
|
|
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG);
|
|
if (reg != data->img_resp_cache)
|
|
data->img_resp_cache = reg;
|
|
|
|
data->gp0_received = true;
|
|
|
|
/* If the boot stage is OP or IML, reset IA and start RX again */
|
|
if (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW ||
|
|
data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML) {
|
|
btintel_pcie_reset_ia(data);
|
|
btintel_pcie_start_rx(data);
|
|
}
|
|
|
|
wake_up(&data->gp0_wait_q);
|
|
}
|
|
|
|
/* This function handles the MSX-X interrupt for rx queue 0 which is for TX
|
|
*/
|
|
static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data)
|
|
{
|
|
u16 cr_tia, cr_hia;
|
|
struct txq *txq;
|
|
struct urbd0 *urbd0;
|
|
|
|
cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
|
|
cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
|
|
|
|
if (cr_tia == cr_hia)
|
|
return;
|
|
|
|
txq = &data->txq;
|
|
|
|
while (cr_tia != cr_hia) {
|
|
data->tx_wait_done = true;
|
|
wake_up(&data->tx_wait_q);
|
|
|
|
urbd0 = &txq->urbd0s[cr_tia];
|
|
|
|
if (urbd0->tfd_index > txq->count)
|
|
return;
|
|
|
|
cr_tia = (cr_tia + 1) % txq->count;
|
|
data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia;
|
|
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM);
|
|
}
|
|
}
|
|
|
|
/* Process the received rx data
|
|
* It check the frame header to identify the data type and create skb
|
|
* and calling HCI API
|
|
*/
|
|
static int btintel_pcie_recv_frame(struct btintel_pcie_data *data,
|
|
struct sk_buff *skb)
|
|
{
|
|
int ret;
|
|
u8 pkt_type;
|
|
u16 plen;
|
|
u32 pcie_pkt_type;
|
|
struct sk_buff *new_skb;
|
|
void *pdata;
|
|
struct hci_dev *hdev = data->hdev;
|
|
|
|
spin_lock(&data->hci_rx_lock);
|
|
|
|
/* The first 4 bytes indicates the Intel PCIe specific packet type */
|
|
pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN);
|
|
if (!pdata) {
|
|
bt_dev_err(hdev, "Corrupted packet received");
|
|
ret = -EILSEQ;
|
|
goto exit_error;
|
|
}
|
|
|
|
pcie_pkt_type = get_unaligned_le32(pdata);
|
|
|
|
switch (pcie_pkt_type) {
|
|
case BTINTEL_PCIE_HCI_ACL_PKT:
|
|
if (skb->len >= HCI_ACL_HDR_SIZE) {
|
|
plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen);
|
|
pkt_type = HCI_ACLDATA_PKT;
|
|
} else {
|
|
bt_dev_err(hdev, "ACL packet is too short");
|
|
ret = -EILSEQ;
|
|
goto exit_error;
|
|
}
|
|
break;
|
|
|
|
case BTINTEL_PCIE_HCI_SCO_PKT:
|
|
if (skb->len >= HCI_SCO_HDR_SIZE) {
|
|
plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen;
|
|
pkt_type = HCI_SCODATA_PKT;
|
|
} else {
|
|
bt_dev_err(hdev, "SCO packet is too short");
|
|
ret = -EILSEQ;
|
|
goto exit_error;
|
|
}
|
|
break;
|
|
|
|
case BTINTEL_PCIE_HCI_EVT_PKT:
|
|
if (skb->len >= HCI_EVENT_HDR_SIZE) {
|
|
plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen;
|
|
pkt_type = HCI_EVENT_PKT;
|
|
} else {
|
|
bt_dev_err(hdev, "Event packet is too short");
|
|
ret = -EILSEQ;
|
|
goto exit_error;
|
|
}
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x",
|
|
pcie_pkt_type);
|
|
ret = -EINVAL;
|
|
goto exit_error;
|
|
}
|
|
|
|
if (skb->len < plen) {
|
|
bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x",
|
|
pkt_type);
|
|
ret = -EILSEQ;
|
|
goto exit_error;
|
|
}
|
|
|
|
bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen);
|
|
|
|
new_skb = bt_skb_alloc(plen, GFP_ATOMIC);
|
|
if (!new_skb) {
|
|
bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u",
|
|
skb->len);
|
|
ret = -ENOMEM;
|
|
goto exit_error;
|
|
}
|
|
|
|
hci_skb_pkt_type(new_skb) = pkt_type;
|
|
skb_put_data(new_skb, skb->data, plen);
|
|
hdev->stat.byte_rx += plen;
|
|
|
|
if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT)
|
|
ret = btintel_recv_event(hdev, new_skb);
|
|
else
|
|
ret = hci_recv_frame(hdev, new_skb);
|
|
|
|
exit_error:
|
|
if (ret)
|
|
hdev->stat.err_rx++;
|
|
|
|
spin_unlock(&data->hci_rx_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btintel_pcie_rx_work(struct work_struct *work)
|
|
{
|
|
struct btintel_pcie_data *data = container_of(work,
|
|
struct btintel_pcie_data, rx_work);
|
|
struct sk_buff *skb;
|
|
int err;
|
|
struct hci_dev *hdev = data->hdev;
|
|
|
|
/* Process the sk_buf in queue and send to the HCI layer */
|
|
while ((skb = skb_dequeue(&data->rx_skb_q))) {
|
|
err = btintel_pcie_recv_frame(data, skb);
|
|
if (err)
|
|
bt_dev_err(hdev, "Failed to send received frame: %d",
|
|
err);
|
|
kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
/* create sk_buff with data and save it to queue and start RX work */
|
|
static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status,
|
|
void *buf)
|
|
{
|
|
int ret, len;
|
|
struct rfh_hdr *rfh_hdr;
|
|
struct sk_buff *skb;
|
|
|
|
rfh_hdr = buf;
|
|
|
|
len = rfh_hdr->packet_len;
|
|
if (len <= 0) {
|
|
ret = -EINVAL;
|
|
goto resubmit;
|
|
}
|
|
|
|
/* Remove RFH header */
|
|
buf += sizeof(*rfh_hdr);
|
|
|
|
skb = alloc_skb(len, GFP_ATOMIC);
|
|
if (!skb) {
|
|
ret = -ENOMEM;
|
|
goto resubmit;
|
|
}
|
|
|
|
skb_put_data(skb, buf, len);
|
|
skb_queue_tail(&data->rx_skb_q, skb);
|
|
queue_work(data->workqueue, &data->rx_work);
|
|
|
|
resubmit:
|
|
ret = btintel_pcie_submit_rx(data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Handles the MSI-X interrupt for rx queue 1 which is for RX */
|
|
static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data)
|
|
{
|
|
u16 cr_hia, cr_tia;
|
|
struct rxq *rxq;
|
|
struct urbd1 *urbd1;
|
|
struct data_buf *buf;
|
|
int ret;
|
|
struct hci_dev *hdev = data->hdev;
|
|
|
|
cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
|
|
cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
|
|
|
|
bt_dev_dbg(hdev, "RXQ: cr_hia: %u cr_tia: %u", cr_hia, cr_tia);
|
|
|
|
/* Check CR_TIA and CR_HIA for change */
|
|
if (cr_tia == cr_hia) {
|
|
bt_dev_warn(hdev, "RXQ: no new CD found");
|
|
return;
|
|
}
|
|
|
|
rxq = &data->rxq;
|
|
|
|
/* The firmware sends multiple CD in a single MSI-X and it needs to
|
|
* process all received CDs in this interrupt.
|
|
*/
|
|
while (cr_tia != cr_hia) {
|
|
urbd1 = &rxq->urbd1s[cr_tia];
|
|
ipc_print_urbd1(data->hdev, urbd1, cr_tia);
|
|
|
|
buf = &rxq->bufs[urbd1->frbd_tag];
|
|
if (!buf) {
|
|
bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d",
|
|
urbd1->frbd_tag);
|
|
return;
|
|
}
|
|
|
|
ret = btintel_pcie_submit_rx_work(data, urbd1->status,
|
|
buf->data);
|
|
if (ret) {
|
|
bt_dev_err(hdev, "RXQ: failed to submit rx request");
|
|
return;
|
|
}
|
|
|
|
cr_tia = (cr_tia + 1) % rxq->count;
|
|
data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia;
|
|
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t btintel_pcie_msix_isr(int irq, void *data)
|
|
{
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id)
|
|
{
|
|
struct msix_entry *entry = dev_id;
|
|
struct btintel_pcie_data *data = btintel_pcie_get_data(entry);
|
|
u32 intr_fh, intr_hw;
|
|
|
|
spin_lock(&data->irq_lock);
|
|
intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES);
|
|
intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES);
|
|
|
|
/* Clear causes registers to avoid being handling the same cause */
|
|
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh);
|
|
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw);
|
|
spin_unlock(&data->irq_lock);
|
|
|
|
if (unlikely(!(intr_fh | intr_hw))) {
|
|
/* Ignore interrupt, inta == 0 */
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/* This interrupt is triggered by the firmware after updating
|
|
* boot_stage register and image_response register
|
|
*/
|
|
if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0)
|
|
btintel_pcie_msix_gp0_handler(data);
|
|
|
|
/* For TX */
|
|
if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0)
|
|
btintel_pcie_msix_tx_handle(data);
|
|
|
|
/* For RX */
|
|
if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1)
|
|
btintel_pcie_msix_rx_handle(data);
|
|
|
|
/*
|
|
* Before sending the interrupt the HW disables it to prevent a nested
|
|
* interrupt. This is done by writing 1 to the corresponding bit in
|
|
* the mask register. After handling the interrupt, it should be
|
|
* re-enabled by clearing this bit. This register is defined as write 1
|
|
* clear (W1C) register, meaning that it's cleared by writing 1
|
|
* to the bit.
|
|
*/
|
|
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST,
|
|
BIT(entry->entry));
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* This function requests the irq for MSI-X and registers the handlers per irq.
|
|
* Currently, it requests only 1 irq for all interrupt causes.
|
|
*/
|
|
static int btintel_pcie_setup_irq(struct btintel_pcie_data *data)
|
|
{
|
|
int err;
|
|
int num_irqs, i;
|
|
|
|
for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++)
|
|
data->msix_entries[i].entry = i;
|
|
|
|
num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN,
|
|
BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX);
|
|
if (num_irqs < 0)
|
|
return num_irqs;
|
|
|
|
data->alloc_vecs = num_irqs;
|
|
data->msix_enabled = 1;
|
|
data->def_irq = 0;
|
|
|
|
/* setup irq handler */
|
|
for (i = 0; i < data->alloc_vecs; i++) {
|
|
struct msix_entry *msix_entry;
|
|
|
|
msix_entry = &data->msix_entries[i];
|
|
msix_entry->vector = pci_irq_vector(data->pdev, i);
|
|
|
|
err = devm_request_threaded_irq(&data->pdev->dev,
|
|
msix_entry->vector,
|
|
btintel_pcie_msix_isr,
|
|
btintel_pcie_irq_msix_handler,
|
|
IRQF_SHARED,
|
|
KBUILD_MODNAME,
|
|
msix_entry);
|
|
if (err) {
|
|
pci_free_irq_vectors(data->pdev);
|
|
data->alloc_vecs = 0;
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct btintel_pcie_causes_list {
|
|
u32 cause;
|
|
u32 mask_reg;
|
|
u8 cause_num;
|
|
};
|
|
|
|
static struct btintel_pcie_causes_list causes_list[] = {
|
|
{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x00 },
|
|
{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x01 },
|
|
{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x20 },
|
|
};
|
|
|
|
/* This function configures the interrupt masks for both HW_INT_CAUSES and
|
|
* FH_INT_CAUSES which are meaningful to us.
|
|
*
|
|
* After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver
|
|
* need to call this function again to configure since the masks
|
|
* are reset to 0xFFFFFFFF after reset.
|
|
*/
|
|
static void btintel_pcie_config_msix(struct btintel_pcie_data *data)
|
|
{
|
|
int i;
|
|
int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE;
|
|
|
|
/* Set Non Auto Clear Cause */
|
|
for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
|
|
btintel_pcie_wr_reg8(data,
|
|
BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num),
|
|
val);
|
|
btintel_pcie_clr_reg_bits(data,
|
|
causes_list[i].mask_reg,
|
|
causes_list[i].cause);
|
|
}
|
|
|
|
/* Save the initial interrupt mask */
|
|
data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK);
|
|
data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK);
|
|
}
|
|
|
|
static int btintel_pcie_config_pcie(struct pci_dev *pdev,
|
|
struct btintel_pcie_data *data)
|
|
{
|
|
int err;
|
|
|
|
err = pcim_enable_device(pdev);
|
|
if (err)
|
|
return err;
|
|
|
|
pci_set_master(pdev);
|
|
|
|
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
|
|
if (err) {
|
|
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
|
|
if (err)
|
|
return err;
|
|
|
|
data->base_addr = pcim_iomap_table(pdev)[0];
|
|
if (!data->base_addr)
|
|
return -ENODEV;
|
|
|
|
err = btintel_pcie_setup_irq(data);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Configure MSI-X with causes list */
|
|
btintel_pcie_config_msix(data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btintel_pcie_init_ci(struct btintel_pcie_data *data,
|
|
struct ctx_info *ci)
|
|
{
|
|
ci->version = 0x1;
|
|
ci->size = sizeof(*ci);
|
|
ci->config = 0x0000;
|
|
ci->addr_cr_hia = data->ia.cr_hia_p_addr;
|
|
ci->addr_tr_tia = data->ia.tr_tia_p_addr;
|
|
ci->addr_cr_tia = data->ia.cr_tia_p_addr;
|
|
ci->addr_tr_hia = data->ia.tr_hia_p_addr;
|
|
ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES;
|
|
ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES;
|
|
ci->addr_urbdq0 = data->txq.urbd0s_p_addr;
|
|
ci->addr_tfdq = data->txq.tfds_p_addr;
|
|
ci->num_tfdq = data->txq.count;
|
|
ci->num_urbdq0 = data->txq.count;
|
|
ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM;
|
|
ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM;
|
|
ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K;
|
|
ci->addr_frbdq = data->rxq.frbds_p_addr;
|
|
ci->num_frbdq = data->rxq.count;
|
|
ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
|
|
ci->addr_urbdq1 = data->rxq.urbd1s_p_addr;
|
|
ci->num_urbdq1 = data->rxq.count;
|
|
ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
|
|
}
|
|
|
|
static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data,
|
|
struct txq *txq)
|
|
{
|
|
/* Free data buffers first */
|
|
dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE,
|
|
txq->buf_v_addr, txq->buf_p_addr);
|
|
kfree(txq->bufs);
|
|
}
|
|
|
|
static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data,
|
|
struct txq *txq)
|
|
{
|
|
int i;
|
|
struct data_buf *buf;
|
|
|
|
/* Allocate the same number of buffers as the descriptor */
|
|
txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL);
|
|
if (!txq->bufs)
|
|
return -ENOMEM;
|
|
|
|
/* Allocate full chunk of data buffer for DMA first and do indexing and
|
|
* initialization next, so it can be freed easily
|
|
*/
|
|
txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
|
|
txq->count * BTINTEL_PCIE_BUFFER_SIZE,
|
|
&txq->buf_p_addr,
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!txq->buf_v_addr) {
|
|
kfree(txq->bufs);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Setup the allocated DMA buffer to bufs. Each data_buf should
|
|
* have virtual address and physical address
|
|
*/
|
|
for (i = 0; i < txq->count; i++) {
|
|
buf = &txq->bufs[i];
|
|
buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
|
|
buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data,
|
|
struct rxq *rxq)
|
|
{
|
|
/* Free data buffers first */
|
|
dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
|
|
rxq->buf_v_addr, rxq->buf_p_addr);
|
|
kfree(rxq->bufs);
|
|
}
|
|
|
|
static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data,
|
|
struct rxq *rxq)
|
|
{
|
|
int i;
|
|
struct data_buf *buf;
|
|
|
|
/* Allocate the same number of buffers as the descriptor */
|
|
rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL);
|
|
if (!rxq->bufs)
|
|
return -ENOMEM;
|
|
|
|
/* Allocate full chunk of data buffer for DMA first and do indexing and
|
|
* initialization next, so it can be freed easily
|
|
*/
|
|
rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
|
|
rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
|
|
&rxq->buf_p_addr,
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!rxq->buf_v_addr) {
|
|
kfree(rxq->bufs);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Setup the allocated DMA buffer to bufs. Each data_buf should
|
|
* have virtual address and physical address
|
|
*/
|
|
for (i = 0; i < rxq->count; i++) {
|
|
buf = &rxq->bufs[i];
|
|
buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
|
|
buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btintel_pcie_setup_ia(struct btintel_pcie_data *data,
|
|
dma_addr_t p_addr, void *v_addr,
|
|
struct ia *ia)
|
|
{
|
|
/* TR Head Index Array */
|
|
ia->tr_hia_p_addr = p_addr;
|
|
ia->tr_hia = v_addr;
|
|
|
|
/* TR Tail Index Array */
|
|
ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
|
|
ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
|
|
|
|
/* CR Head index Array */
|
|
ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
|
|
ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
|
|
|
|
/* CR Tail Index Array */
|
|
ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
|
|
ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
|
|
}
|
|
|
|
static void btintel_pcie_free(struct btintel_pcie_data *data)
|
|
{
|
|
btintel_pcie_free_rxq_bufs(data, &data->rxq);
|
|
btintel_pcie_free_txq_bufs(data, &data->txq);
|
|
|
|
dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
|
|
dma_pool_destroy(data->dma_pool);
|
|
}
|
|
|
|
/* Allocate tx and rx queues, any related data structures and buffers.
|
|
*/
|
|
static int btintel_pcie_alloc(struct btintel_pcie_data *data)
|
|
{
|
|
int err = 0;
|
|
size_t total;
|
|
dma_addr_t p_addr;
|
|
void *v_addr;
|
|
|
|
/* Allocate the chunk of DMA memory for descriptors, index array, and
|
|
* context information, instead of allocating individually.
|
|
* The DMA memory for data buffer is allocated while setting up the
|
|
* each queue.
|
|
*
|
|
* Total size is sum of the following
|
|
* + size of TFD * Number of descriptors in queue
|
|
* + size of URBD0 * Number of descriptors in queue
|
|
* + size of FRBD * Number of descriptors in queue
|
|
* + size of URBD1 * Number of descriptors in queue
|
|
* + size of index * Number of queues(2) * type of index array(4)
|
|
* + size of context information
|
|
*/
|
|
total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd)
|
|
+ sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT;
|
|
|
|
/* Add the sum of size of index array and size of ci struct */
|
|
total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info);
|
|
|
|
/* Allocate DMA Pool */
|
|
data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev,
|
|
total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0);
|
|
if (!data->dma_pool) {
|
|
err = -ENOMEM;
|
|
goto exit_error;
|
|
}
|
|
|
|
v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN,
|
|
&p_addr);
|
|
if (!v_addr) {
|
|
dma_pool_destroy(data->dma_pool);
|
|
err = -ENOMEM;
|
|
goto exit_error;
|
|
}
|
|
|
|
data->dma_p_addr = p_addr;
|
|
data->dma_v_addr = v_addr;
|
|
|
|
/* Setup descriptor count */
|
|
data->txq.count = BTINTEL_DESCS_COUNT;
|
|
data->rxq.count = BTINTEL_DESCS_COUNT;
|
|
|
|
/* Setup tfds */
|
|
data->txq.tfds_p_addr = p_addr;
|
|
data->txq.tfds = v_addr;
|
|
|
|
p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
|
|
v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
|
|
|
|
/* Setup urbd0 */
|
|
data->txq.urbd0s_p_addr = p_addr;
|
|
data->txq.urbd0s = v_addr;
|
|
|
|
p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
|
|
v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
|
|
|
|
/* Setup FRBD*/
|
|
data->rxq.frbds_p_addr = p_addr;
|
|
data->rxq.frbds = v_addr;
|
|
|
|
p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
|
|
v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
|
|
|
|
/* Setup urbd1 */
|
|
data->rxq.urbd1s_p_addr = p_addr;
|
|
data->rxq.urbd1s = v_addr;
|
|
|
|
p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
|
|
v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
|
|
|
|
/* Setup data buffers for txq */
|
|
err = btintel_pcie_setup_txq_bufs(data, &data->txq);
|
|
if (err)
|
|
goto exit_error_pool;
|
|
|
|
/* Setup data buffers for rxq */
|
|
err = btintel_pcie_setup_rxq_bufs(data, &data->rxq);
|
|
if (err)
|
|
goto exit_error_txq;
|
|
|
|
/* Setup Index Array */
|
|
btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia);
|
|
|
|
/* Setup Context Information */
|
|
p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
|
|
v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
|
|
|
|
data->ci = v_addr;
|
|
data->ci_p_addr = p_addr;
|
|
|
|
/* Initialize the CI */
|
|
btintel_pcie_init_ci(data, data->ci);
|
|
|
|
return 0;
|
|
|
|
exit_error_txq:
|
|
btintel_pcie_free_txq_bufs(data, &data->txq);
|
|
exit_error_pool:
|
|
dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
|
|
dma_pool_destroy(data->dma_pool);
|
|
exit_error:
|
|
return err;
|
|
}
|
|
|
|
static int btintel_pcie_open(struct hci_dev *hdev)
|
|
{
|
|
bt_dev_dbg(hdev, "");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_pcie_close(struct hci_dev *hdev)
|
|
{
|
|
bt_dev_dbg(hdev, "");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct hci_event_hdr *hdr;
|
|
struct hci_ev_cmd_complete *evt;
|
|
|
|
skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
|
|
hdr->evt = HCI_EV_CMD_COMPLETE;
|
|
hdr->plen = sizeof(*evt) + 1;
|
|
|
|
evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
|
|
evt->ncmd = 0x01;
|
|
evt->opcode = cpu_to_le16(opcode);
|
|
|
|
*(u8 *)skb_put(skb, 1) = 0x00;
|
|
|
|
hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
|
|
|
|
return hci_recv_frame(hdev, skb);
|
|
}
|
|
|
|
static int btintel_pcie_send_frame(struct hci_dev *hdev,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct btintel_pcie_data *data = hci_get_drvdata(hdev);
|
|
int ret;
|
|
u32 type;
|
|
|
|
/* Due to the fw limitation, the type header of the packet should be
|
|
* 4 bytes unlike 1 byte for UART. In UART, the firmware can read
|
|
* the first byte to get the packet type and redirect the rest of data
|
|
* packet to the right handler.
|
|
*
|
|
* But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data
|
|
* from DMA memory and by the time it reads the first 4 bytes, it has
|
|
* already consumed some part of packet. Thus the packet type indicator
|
|
* for iBT PCIe is 4 bytes.
|
|
*
|
|
* Luckily, when HCI core creates the skb, it allocates 8 bytes of
|
|
* head room for profile and driver use, and before sending the data
|
|
* to the device, append the iBT PCIe packet type in the front.
|
|
*/
|
|
switch (hci_skb_pkt_type(skb)) {
|
|
case HCI_COMMAND_PKT:
|
|
type = BTINTEL_PCIE_HCI_CMD_PKT;
|
|
if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
|
|
struct hci_command_hdr *cmd = (void *)skb->data;
|
|
__u16 opcode = le16_to_cpu(cmd->opcode);
|
|
|
|
/* When the 0xfc01 command is issued to boot into
|
|
* the operational firmware, it will actually not
|
|
* send a command complete event. To keep the flow
|
|
* control working inject that event here.
|
|
*/
|
|
if (opcode == 0xfc01)
|
|
btintel_pcie_inject_cmd_complete(hdev, opcode);
|
|
}
|
|
hdev->stat.cmd_tx++;
|
|
break;
|
|
case HCI_ACLDATA_PKT:
|
|
type = BTINTEL_PCIE_HCI_ACL_PKT;
|
|
hdev->stat.acl_tx++;
|
|
break;
|
|
case HCI_SCODATA_PKT:
|
|
type = BTINTEL_PCIE_HCI_SCO_PKT;
|
|
hdev->stat.sco_tx++;
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unknown HCI packet type");
|
|
return -EILSEQ;
|
|
}
|
|
memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type,
|
|
BTINTEL_PCIE_HCI_TYPE_LEN);
|
|
|
|
ret = btintel_pcie_send_sync(data, skb);
|
|
if (ret) {
|
|
hdev->stat.err_tx++;
|
|
bt_dev_err(hdev, "Failed to send frame (%d)", ret);
|
|
goto exit_error;
|
|
}
|
|
hdev->stat.byte_tx += skb->len;
|
|
kfree_skb(skb);
|
|
|
|
exit_error:
|
|
return ret;
|
|
}
|
|
|
|
static void btintel_pcie_release_hdev(struct btintel_pcie_data *data)
|
|
{
|
|
struct hci_dev *hdev;
|
|
|
|
hdev = data->hdev;
|
|
hci_unregister_dev(hdev);
|
|
hci_free_dev(hdev);
|
|
data->hdev = NULL;
|
|
}
|
|
|
|
static int btintel_pcie_setup(struct hci_dev *hdev)
|
|
{
|
|
const u8 param[1] = { 0xFF };
|
|
struct intel_version_tlv ver_tlv;
|
|
struct sk_buff *skb;
|
|
int err;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
|
|
/* Check the status */
|
|
if (skb->data[0]) {
|
|
bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
|
|
skb->data[0]);
|
|
err = -EIO;
|
|
goto exit_error;
|
|
}
|
|
|
|
/* Apply the common HCI quirks for Intel device */
|
|
set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
|
|
set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
|
|
set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
|
|
|
|
/* Set up the quality report callback for Intel devices */
|
|
hdev->set_quality_report = btintel_set_quality_report;
|
|
|
|
memset(&ver_tlv, 0, sizeof(ver_tlv));
|
|
/* For TLV type device, parse the tlv data */
|
|
err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
|
|
if (err) {
|
|
bt_dev_err(hdev, "Failed to parse TLV version information");
|
|
goto exit_error;
|
|
}
|
|
|
|
switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) {
|
|
case 0x37:
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
|
|
INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
|
|
err = -EINVAL;
|
|
goto exit_error;
|
|
}
|
|
|
|
/* Check for supported iBT hardware variants of this firmware
|
|
* loading method.
|
|
*
|
|
* This check has been put in place to ensure correct forward
|
|
* compatibility options when newer hardware variants come
|
|
* along.
|
|
*/
|
|
switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
|
|
case 0x1e: /* BzrI */
|
|
/* Display version information of TLV type */
|
|
btintel_version_info_tlv(hdev, &ver_tlv);
|
|
|
|
/* Apply the device specific HCI quirks for TLV based devices
|
|
*
|
|
* All TLV based devices support WBS
|
|
*/
|
|
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
|
|
|
|
/* Apply LE States quirk from solar onwards */
|
|
set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
|
|
|
|
/* Setup MSFT Extension support */
|
|
btintel_set_msft_opcode(hdev,
|
|
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
|
|
|
|
err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
|
|
if (err)
|
|
goto exit_error;
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
|
|
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
|
|
err = -EINVAL;
|
|
goto exit_error;
|
|
break;
|
|
}
|
|
|
|
btintel_print_fseq_info(hdev);
|
|
exit_error:
|
|
kfree_skb(skb);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data)
|
|
{
|
|
int err;
|
|
struct hci_dev *hdev;
|
|
|
|
hdev = hci_alloc_dev();
|
|
if (!hdev)
|
|
return -ENOMEM;
|
|
|
|
hdev->bus = HCI_PCI;
|
|
hci_set_drvdata(hdev, data);
|
|
|
|
data->hdev = hdev;
|
|
SET_HCIDEV_DEV(hdev, &data->pdev->dev);
|
|
|
|
hdev->manufacturer = 2;
|
|
hdev->open = btintel_pcie_open;
|
|
hdev->close = btintel_pcie_close;
|
|
hdev->send = btintel_pcie_send_frame;
|
|
hdev->setup = btintel_pcie_setup;
|
|
hdev->shutdown = btintel_shutdown_combined;
|
|
hdev->hw_error = btintel_hw_error;
|
|
hdev->set_diag = btintel_set_diag;
|
|
hdev->set_bdaddr = btintel_set_bdaddr;
|
|
|
|
err = hci_register_dev(hdev);
|
|
if (err < 0) {
|
|
BT_ERR("Failed to register to hdev (%d)", err);
|
|
goto exit_error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit_error:
|
|
hci_free_dev(hdev);
|
|
return err;
|
|
}
|
|
|
|
static int btintel_pcie_probe(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
int err;
|
|
struct btintel_pcie_data *data;
|
|
|
|
if (!pdev)
|
|
return -ENODEV;
|
|
|
|
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->pdev = pdev;
|
|
|
|
spin_lock_init(&data->irq_lock);
|
|
spin_lock_init(&data->hci_rx_lock);
|
|
|
|
init_waitqueue_head(&data->gp0_wait_q);
|
|
data->gp0_received = false;
|
|
|
|
init_waitqueue_head(&data->tx_wait_q);
|
|
data->tx_wait_done = false;
|
|
|
|
data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI);
|
|
if (!data->workqueue)
|
|
return -ENOMEM;
|
|
|
|
skb_queue_head_init(&data->rx_skb_q);
|
|
INIT_WORK(&data->rx_work, btintel_pcie_rx_work);
|
|
|
|
data->boot_stage_cache = 0x00;
|
|
data->img_resp_cache = 0x00;
|
|
|
|
err = btintel_pcie_config_pcie(pdev, data);
|
|
if (err)
|
|
goto exit_error;
|
|
|
|
pci_set_drvdata(pdev, data);
|
|
|
|
err = btintel_pcie_alloc(data);
|
|
if (err)
|
|
goto exit_error;
|
|
|
|
err = btintel_pcie_enable_bt(data);
|
|
if (err)
|
|
goto exit_error;
|
|
|
|
/* CNV information (CNVi and CNVr) is in CSR */
|
|
data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG);
|
|
|
|
data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG);
|
|
|
|
err = btintel_pcie_start_rx(data);
|
|
if (err)
|
|
goto exit_error;
|
|
|
|
err = btintel_pcie_setup_hdev(data);
|
|
if (err)
|
|
goto exit_error;
|
|
|
|
bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi,
|
|
data->cnvr);
|
|
return 0;
|
|
|
|
exit_error:
|
|
/* reset device before exit */
|
|
btintel_pcie_reset_bt(data);
|
|
|
|
pci_clear_master(pdev);
|
|
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void btintel_pcie_remove(struct pci_dev *pdev)
|
|
{
|
|
struct btintel_pcie_data *data;
|
|
|
|
data = pci_get_drvdata(pdev);
|
|
|
|
btintel_pcie_reset_bt(data);
|
|
for (int i = 0; i < data->alloc_vecs; i++) {
|
|
struct msix_entry *msix_entry;
|
|
|
|
msix_entry = &data->msix_entries[i];
|
|
free_irq(msix_entry->vector, msix_entry);
|
|
}
|
|
|
|
pci_free_irq_vectors(pdev);
|
|
|
|
btintel_pcie_release_hdev(data);
|
|
|
|
flush_work(&data->rx_work);
|
|
|
|
destroy_workqueue(data->workqueue);
|
|
|
|
btintel_pcie_free(data);
|
|
|
|
pci_clear_master(pdev);
|
|
|
|
pci_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
static struct pci_driver btintel_pcie_driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.id_table = btintel_pcie_table,
|
|
.probe = btintel_pcie_probe,
|
|
.remove = btintel_pcie_remove,
|
|
};
|
|
module_pci_driver(btintel_pcie_driver);
|
|
|
|
MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>");
|
|
MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION);
|
|
MODULE_VERSION(VERSION);
|
|
MODULE_LICENSE("GPL");
|