612a9aab56
Pull drm merge (part 1) from Dave Airlie: "So first of all my tree and uapi stuff has a conflict mess, its my fault as the nouveau stuff didn't hit -next as were trying to rebase regressions out of it before we merged. Highlights: - SH mobile modesetting driver and associated helpers - some DRM core documentation - i915 modesetting rework, haswell hdmi, haswell and vlv fixes, write combined pte writing, ilk rc6 support, - nouveau: major driver rework into a hw core driver, makes features like SLI a lot saner to implement, - psb: add eDP/DP support for Cedarview - radeon: 2 layer page tables, async VM pte updates, better PLL selection for > 2 screens, better ACPI interactions The rest is general grab bag of fixes. So why part 1? well I have the exynos pull req which came in a bit late but was waiting for me to do something they shouldn't have and it looks fairly safe, and David Howells has some more header cleanups he'd like me to pull, that seem like a good idea, but I'd like to get this merge out of the way so -next dosen't get blocked." Tons of conflicts mostly due to silly include line changes, but mostly mindless. A few other small semantic conflicts too, noted from Dave's pre-merged branch. * 'drm-next' of git://people.freedesktop.org/~airlied/linux: (447 commits) drm/nv98/crypt: fix fuc build with latest envyas drm/nouveau/devinit: fixup various issues with subdev ctor/init ordering drm/nv41/vm: fix and enable use of "real" pciegart drm/nv44/vm: fix and enable use of "real" pciegart drm/nv04/dmaobj: fixup vm target handling in preparation for nv4x pcie drm/nouveau: store supported dma mask in vmmgr drm/nvc0/ibus: initial implementation of subdev drm/nouveau/therm: add support for fan-control modes drm/nouveau/hwmon: rename pwm0* to pmw1* to follow hwmon's rules drm/nouveau/therm: calculate the pwm divisor on nv50+ drm/nouveau/fan: rewrite the fan tachometer driver to get more precision, faster drm/nouveau/therm: move thermal-related functions to the therm subdev drm/nouveau/bios: parse the pwm divisor from the perf table drm/nouveau/therm: use the EXTDEV table to detect i2c monitoring devices drm/nouveau/therm: rework thermal table parsing drm/nouveau/gpio: expose the PWM/TOGGLE parameter found in the gpio vbios table drm/nouveau: fix pm initialization order drm/nouveau/bios: check that fixed tvdac gpio data is valid before using it drm/nouveau: log channel debug/error messages from client object rather than drm client drm/nouveau: have drm debugging macros build on top of core macros ...
850 lines
24 KiB
C
850 lines
24 KiB
C
/*
|
|
* Copyright 2008 Advanced Micro Devices, Inc.
|
|
* Copyright 2008 Red Hat Inc.
|
|
* Copyright 2009 Jerome Glisse.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Dave Airlie
|
|
* Alex Deucher
|
|
* Jerome Glisse
|
|
* Christian König
|
|
*/
|
|
#include <linux/seq_file.h>
|
|
#include <linux/slab.h>
|
|
#include <drm/drmP.h>
|
|
#include <drm/radeon_drm.h>
|
|
#include "radeon_reg.h"
|
|
#include "radeon.h"
|
|
#include "atom.h"
|
|
|
|
/*
|
|
* IB
|
|
* IBs (Indirect Buffers) and areas of GPU accessible memory where
|
|
* commands are stored. You can put a pointer to the IB in the
|
|
* command ring and the hw will fetch the commands from the IB
|
|
* and execute them. Generally userspace acceleration drivers
|
|
* produce command buffers which are send to the kernel and
|
|
* put in IBs for execution by the requested ring.
|
|
*/
|
|
static int radeon_debugfs_sa_init(struct radeon_device *rdev);
|
|
|
|
/**
|
|
* radeon_ib_get - request an IB (Indirect Buffer)
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: ring index the IB is associated with
|
|
* @ib: IB object returned
|
|
* @size: requested IB size
|
|
*
|
|
* Request an IB (all asics). IBs are allocated using the
|
|
* suballocator.
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
int radeon_ib_get(struct radeon_device *rdev, int ring,
|
|
struct radeon_ib *ib, struct radeon_vm *vm,
|
|
unsigned size)
|
|
{
|
|
int i, r;
|
|
|
|
r = radeon_sa_bo_new(rdev, &rdev->ring_tmp_bo, &ib->sa_bo, size, 256, true);
|
|
if (r) {
|
|
dev_err(rdev->dev, "failed to get a new IB (%d)\n", r);
|
|
return r;
|
|
}
|
|
|
|
r = radeon_semaphore_create(rdev, &ib->semaphore);
|
|
if (r) {
|
|
return r;
|
|
}
|
|
|
|
ib->ring = ring;
|
|
ib->fence = NULL;
|
|
ib->ptr = radeon_sa_bo_cpu_addr(ib->sa_bo);
|
|
ib->vm = vm;
|
|
if (vm) {
|
|
/* ib pool is bound at RADEON_VA_IB_OFFSET in virtual address
|
|
* space and soffset is the offset inside the pool bo
|
|
*/
|
|
ib->gpu_addr = ib->sa_bo->soffset + RADEON_VA_IB_OFFSET;
|
|
} else {
|
|
ib->gpu_addr = radeon_sa_bo_gpu_addr(ib->sa_bo);
|
|
}
|
|
ib->is_const_ib = false;
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i)
|
|
ib->sync_to[i] = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_ib_free - free an IB (Indirect Buffer)
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ib: IB object to free
|
|
*
|
|
* Free an IB (all asics).
|
|
*/
|
|
void radeon_ib_free(struct radeon_device *rdev, struct radeon_ib *ib)
|
|
{
|
|
radeon_semaphore_free(rdev, &ib->semaphore, ib->fence);
|
|
radeon_sa_bo_free(rdev, &ib->sa_bo, ib->fence);
|
|
radeon_fence_unref(&ib->fence);
|
|
}
|
|
|
|
/**
|
|
* radeon_ib_schedule - schedule an IB (Indirect Buffer) on the ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ib: IB object to schedule
|
|
* @const_ib: Const IB to schedule (SI only)
|
|
*
|
|
* Schedule an IB on the associated ring (all asics).
|
|
* Returns 0 on success, error on failure.
|
|
*
|
|
* On SI, there are two parallel engines fed from the primary ring,
|
|
* the CE (Constant Engine) and the DE (Drawing Engine). Since
|
|
* resource descriptors have moved to memory, the CE allows you to
|
|
* prime the caches while the DE is updating register state so that
|
|
* the resource descriptors will be already in cache when the draw is
|
|
* processed. To accomplish this, the userspace driver submits two
|
|
* IBs, one for the CE and one for the DE. If there is a CE IB (called
|
|
* a CONST_IB), it will be put on the ring prior to the DE IB. Prior
|
|
* to SI there was just a DE IB.
|
|
*/
|
|
int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib,
|
|
struct radeon_ib *const_ib)
|
|
{
|
|
struct radeon_ring *ring = &rdev->ring[ib->ring];
|
|
bool need_sync = false;
|
|
int i, r = 0;
|
|
|
|
if (!ib->length_dw || !ring->ready) {
|
|
/* TODO: Nothings in the ib we should report. */
|
|
dev_err(rdev->dev, "couldn't schedule ib\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* 64 dwords should be enough for fence too */
|
|
r = radeon_ring_lock(rdev, ring, 64 + RADEON_NUM_RINGS * 8);
|
|
if (r) {
|
|
dev_err(rdev->dev, "scheduling IB failed (%d).\n", r);
|
|
return r;
|
|
}
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
struct radeon_fence *fence = ib->sync_to[i];
|
|
if (radeon_fence_need_sync(fence, ib->ring)) {
|
|
need_sync = true;
|
|
radeon_semaphore_sync_rings(rdev, ib->semaphore,
|
|
fence->ring, ib->ring);
|
|
radeon_fence_note_sync(fence, ib->ring);
|
|
}
|
|
}
|
|
/* immediately free semaphore when we don't need to sync */
|
|
if (!need_sync) {
|
|
radeon_semaphore_free(rdev, &ib->semaphore, NULL);
|
|
}
|
|
/* if we can't remember our last VM flush then flush now! */
|
|
if (ib->vm && !ib->vm->last_flush) {
|
|
radeon_ring_vm_flush(rdev, ib->ring, ib->vm);
|
|
}
|
|
if (const_ib) {
|
|
radeon_ring_ib_execute(rdev, const_ib->ring, const_ib);
|
|
radeon_semaphore_free(rdev, &const_ib->semaphore, NULL);
|
|
}
|
|
radeon_ring_ib_execute(rdev, ib->ring, ib);
|
|
r = radeon_fence_emit(rdev, &ib->fence, ib->ring);
|
|
if (r) {
|
|
dev_err(rdev->dev, "failed to emit fence for new IB (%d)\n", r);
|
|
radeon_ring_unlock_undo(rdev, ring);
|
|
return r;
|
|
}
|
|
if (const_ib) {
|
|
const_ib->fence = radeon_fence_ref(ib->fence);
|
|
}
|
|
/* we just flushed the VM, remember that */
|
|
if (ib->vm && !ib->vm->last_flush) {
|
|
ib->vm->last_flush = radeon_fence_ref(ib->fence);
|
|
}
|
|
radeon_ring_unlock_commit(rdev, ring);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_ib_pool_init - Init the IB (Indirect Buffer) pool
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Initialize the suballocator to manage a pool of memory
|
|
* for use as IBs (all asics).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
int radeon_ib_pool_init(struct radeon_device *rdev)
|
|
{
|
|
int r;
|
|
|
|
if (rdev->ib_pool_ready) {
|
|
return 0;
|
|
}
|
|
r = radeon_sa_bo_manager_init(rdev, &rdev->ring_tmp_bo,
|
|
RADEON_IB_POOL_SIZE*64*1024,
|
|
RADEON_GEM_DOMAIN_GTT);
|
|
if (r) {
|
|
return r;
|
|
}
|
|
|
|
r = radeon_sa_bo_manager_start(rdev, &rdev->ring_tmp_bo);
|
|
if (r) {
|
|
return r;
|
|
}
|
|
|
|
rdev->ib_pool_ready = true;
|
|
if (radeon_debugfs_sa_init(rdev)) {
|
|
dev_err(rdev->dev, "failed to register debugfs file for SA\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_ib_pool_fini - Free the IB (Indirect Buffer) pool
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Tear down the suballocator managing the pool of memory
|
|
* for use as IBs (all asics).
|
|
*/
|
|
void radeon_ib_pool_fini(struct radeon_device *rdev)
|
|
{
|
|
if (rdev->ib_pool_ready) {
|
|
radeon_sa_bo_manager_suspend(rdev, &rdev->ring_tmp_bo);
|
|
radeon_sa_bo_manager_fini(rdev, &rdev->ring_tmp_bo);
|
|
rdev->ib_pool_ready = false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* radeon_ib_ring_tests - test IBs on the rings
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Test an IB (Indirect Buffer) on each ring.
|
|
* If the test fails, disable the ring.
|
|
* Returns 0 on success, error if the primary GFX ring
|
|
* IB test fails.
|
|
*/
|
|
int radeon_ib_ring_tests(struct radeon_device *rdev)
|
|
{
|
|
unsigned i;
|
|
int r;
|
|
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
struct radeon_ring *ring = &rdev->ring[i];
|
|
|
|
if (!ring->ready)
|
|
continue;
|
|
|
|
r = radeon_ib_test(rdev, i, ring);
|
|
if (r) {
|
|
ring->ready = false;
|
|
|
|
if (i == RADEON_RING_TYPE_GFX_INDEX) {
|
|
/* oh, oh, that's really bad */
|
|
DRM_ERROR("radeon: failed testing IB on GFX ring (%d).\n", r);
|
|
rdev->accel_working = false;
|
|
return r;
|
|
|
|
} else {
|
|
/* still not good, but we can live with it */
|
|
DRM_ERROR("radeon: failed testing IB on ring %d (%d).\n", i, r);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Rings
|
|
* Most engines on the GPU are fed via ring buffers. Ring
|
|
* buffers are areas of GPU accessible memory that the host
|
|
* writes commands into and the GPU reads commands out of.
|
|
* There is a rptr (read pointer) that determines where the
|
|
* GPU is currently reading, and a wptr (write pointer)
|
|
* which determines where the host has written. When the
|
|
* pointers are equal, the ring is idle. When the host
|
|
* writes commands to the ring buffer, it increments the
|
|
* wptr. The GPU then starts fetching commands and executes
|
|
* them until the pointers are equal again.
|
|
*/
|
|
static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring);
|
|
|
|
/**
|
|
* radeon_ring_write - write a value to the ring
|
|
*
|
|
* @ring: radeon_ring structure holding ring information
|
|
* @v: dword (dw) value to write
|
|
*
|
|
* Write a value to the requested ring buffer (all asics).
|
|
*/
|
|
void radeon_ring_write(struct radeon_ring *ring, uint32_t v)
|
|
{
|
|
#if DRM_DEBUG_CODE
|
|
if (ring->count_dw <= 0) {
|
|
DRM_ERROR("radeon: writting more dword to ring than expected !\n");
|
|
}
|
|
#endif
|
|
ring->ring[ring->wptr++] = v;
|
|
ring->wptr &= ring->ptr_mask;
|
|
ring->count_dw--;
|
|
ring->ring_free_dw--;
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_supports_scratch_reg - check if the ring supports
|
|
* writing to scratch registers
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Check if a specific ring supports writing to scratch registers (all asics).
|
|
* Returns true if the ring supports writing to scratch regs, false if not.
|
|
*/
|
|
bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev,
|
|
struct radeon_ring *ring)
|
|
{
|
|
switch (ring->idx) {
|
|
case RADEON_RING_TYPE_GFX_INDEX:
|
|
case CAYMAN_RING_TYPE_CP1_INDEX:
|
|
case CAYMAN_RING_TYPE_CP2_INDEX:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_free_size - update the free size
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Update the free dw slots in the ring buffer (all asics).
|
|
*/
|
|
void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
u32 rptr;
|
|
|
|
if (rdev->wb.enabled)
|
|
rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]);
|
|
else
|
|
rptr = RREG32(ring->rptr_reg);
|
|
ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift;
|
|
/* This works because ring_size is a power of 2 */
|
|
ring->ring_free_dw = (ring->rptr + (ring->ring_size / 4));
|
|
ring->ring_free_dw -= ring->wptr;
|
|
ring->ring_free_dw &= ring->ptr_mask;
|
|
if (!ring->ring_free_dw) {
|
|
ring->ring_free_dw = ring->ring_size / 4;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_alloc - allocate space on the ring buffer
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
* @ndw: number of dwords to allocate in the ring buffer
|
|
*
|
|
* Allocate @ndw dwords in the ring buffer (all asics).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
|
|
{
|
|
int r;
|
|
|
|
/* Align requested size with padding so unlock_commit can
|
|
* pad safely */
|
|
ndw = (ndw + ring->align_mask) & ~ring->align_mask;
|
|
while (ndw > (ring->ring_free_dw - 1)) {
|
|
radeon_ring_free_size(rdev, ring);
|
|
if (ndw < ring->ring_free_dw) {
|
|
break;
|
|
}
|
|
r = radeon_fence_wait_next_locked(rdev, ring->idx);
|
|
if (r)
|
|
return r;
|
|
}
|
|
ring->count_dw = ndw;
|
|
ring->wptr_old = ring->wptr;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_lock - lock the ring and allocate space on it
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
* @ndw: number of dwords to allocate in the ring buffer
|
|
*
|
|
* Lock the ring and allocate @ndw dwords in the ring buffer
|
|
* (all asics).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&rdev->ring_lock);
|
|
r = radeon_ring_alloc(rdev, ring, ndw);
|
|
if (r) {
|
|
mutex_unlock(&rdev->ring_lock);
|
|
return r;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_commit - tell the GPU to execute the new
|
|
* commands on the ring buffer
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Update the wptr (write pointer) to tell the GPU to
|
|
* execute new commands on the ring buffer (all asics).
|
|
*/
|
|
void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
/* We pad to match fetch size */
|
|
while (ring->wptr & ring->align_mask) {
|
|
radeon_ring_write(ring, ring->nop);
|
|
}
|
|
DRM_MEMORYBARRIER();
|
|
WREG32(ring->wptr_reg, (ring->wptr << ring->ptr_reg_shift) & ring->ptr_reg_mask);
|
|
(void)RREG32(ring->wptr_reg);
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_unlock_commit - tell the GPU to execute the new
|
|
* commands on the ring buffer and unlock it
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Call radeon_ring_commit() then unlock the ring (all asics).
|
|
*/
|
|
void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
radeon_ring_commit(rdev, ring);
|
|
mutex_unlock(&rdev->ring_lock);
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_undo - reset the wptr
|
|
*
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Reset the driver's copy of the wtpr (all asics).
|
|
*/
|
|
void radeon_ring_undo(struct radeon_ring *ring)
|
|
{
|
|
ring->wptr = ring->wptr_old;
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_unlock_undo - reset the wptr and unlock the ring
|
|
*
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Call radeon_ring_undo() then unlock the ring (all asics).
|
|
*/
|
|
void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
radeon_ring_undo(ring);
|
|
mutex_unlock(&rdev->ring_lock);
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_force_activity - add some nop packets to the ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Add some nop packets to the ring to force activity (all asics).
|
|
* Used for lockup detection to see if the rptr is advancing.
|
|
*/
|
|
void radeon_ring_force_activity(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
int r;
|
|
|
|
radeon_ring_free_size(rdev, ring);
|
|
if (ring->rptr == ring->wptr) {
|
|
r = radeon_ring_alloc(rdev, ring, 1);
|
|
if (!r) {
|
|
radeon_ring_write(ring, ring->nop);
|
|
radeon_ring_commit(rdev, ring);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_force_activity - update lockup variables
|
|
*
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Update the last rptr value and timestamp (all asics).
|
|
*/
|
|
void radeon_ring_lockup_update(struct radeon_ring *ring)
|
|
{
|
|
ring->last_rptr = ring->rptr;
|
|
ring->last_activity = jiffies;
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_test_lockup() - check if ring is lockedup by recording information
|
|
* @rdev: radeon device structure
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* We don't need to initialize the lockup tracking information as we will either
|
|
* have CP rptr to a different value of jiffies wrap around which will force
|
|
* initialization of the lockup tracking informations.
|
|
*
|
|
* A possible false positivie is if we get call after while and last_cp_rptr ==
|
|
* the current CP rptr, even if it's unlikely it might happen. To avoid this
|
|
* if the elapsed time since last call is bigger than 2 second than we return
|
|
* false and update the tracking information. Due to this the caller must call
|
|
* radeon_ring_test_lockup several time in less than 2sec for lockup to be reported
|
|
* the fencing code should be cautious about that.
|
|
*
|
|
* Caller should write to the ring to force CP to do something so we don't get
|
|
* false positive when CP is just gived nothing to do.
|
|
*
|
|
**/
|
|
bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
unsigned long cjiffies, elapsed;
|
|
uint32_t rptr;
|
|
|
|
cjiffies = jiffies;
|
|
if (!time_after(cjiffies, ring->last_activity)) {
|
|
/* likely a wrap around */
|
|
radeon_ring_lockup_update(ring);
|
|
return false;
|
|
}
|
|
rptr = RREG32(ring->rptr_reg);
|
|
ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift;
|
|
if (ring->rptr != ring->last_rptr) {
|
|
/* CP is still working no lockup */
|
|
radeon_ring_lockup_update(ring);
|
|
return false;
|
|
}
|
|
elapsed = jiffies_to_msecs(cjiffies - ring->last_activity);
|
|
if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) {
|
|
dev_err(rdev->dev, "GPU lockup CP stall for more than %lumsec\n", elapsed);
|
|
return true;
|
|
}
|
|
/* give a chance to the GPU ... */
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_backup - Back up the content of a ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: the ring we want to back up
|
|
*
|
|
* Saves all unprocessed commits from a ring, returns the number of dwords saved.
|
|
*/
|
|
unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring,
|
|
uint32_t **data)
|
|
{
|
|
unsigned size, ptr, i;
|
|
|
|
/* just in case lock the ring */
|
|
mutex_lock(&rdev->ring_lock);
|
|
*data = NULL;
|
|
|
|
if (ring->ring_obj == NULL) {
|
|
mutex_unlock(&rdev->ring_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* it doesn't make sense to save anything if all fences are signaled */
|
|
if (!radeon_fence_count_emitted(rdev, ring->idx)) {
|
|
mutex_unlock(&rdev->ring_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* calculate the number of dw on the ring */
|
|
if (ring->rptr_save_reg)
|
|
ptr = RREG32(ring->rptr_save_reg);
|
|
else if (rdev->wb.enabled)
|
|
ptr = le32_to_cpu(*ring->next_rptr_cpu_addr);
|
|
else {
|
|
/* no way to read back the next rptr */
|
|
mutex_unlock(&rdev->ring_lock);
|
|
return 0;
|
|
}
|
|
|
|
size = ring->wptr + (ring->ring_size / 4);
|
|
size -= ptr;
|
|
size &= ring->ptr_mask;
|
|
if (size == 0) {
|
|
mutex_unlock(&rdev->ring_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* and then save the content of the ring */
|
|
*data = kmalloc_array(size, sizeof(uint32_t), GFP_KERNEL);
|
|
if (!*data) {
|
|
mutex_unlock(&rdev->ring_lock);
|
|
return 0;
|
|
}
|
|
for (i = 0; i < size; ++i) {
|
|
(*data)[i] = ring->ring[ptr++];
|
|
ptr &= ring->ptr_mask;
|
|
}
|
|
|
|
mutex_unlock(&rdev->ring_lock);
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_restore - append saved commands to the ring again
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: ring to append commands to
|
|
* @size: number of dwords we want to write
|
|
* @data: saved commands
|
|
*
|
|
* Allocates space on the ring and restore the previously saved commands.
|
|
*/
|
|
int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring,
|
|
unsigned size, uint32_t *data)
|
|
{
|
|
int i, r;
|
|
|
|
if (!size || !data)
|
|
return 0;
|
|
|
|
/* restore the saved ring content */
|
|
r = radeon_ring_lock(rdev, ring, size);
|
|
if (r)
|
|
return r;
|
|
|
|
for (i = 0; i < size; ++i) {
|
|
radeon_ring_write(ring, data[i]);
|
|
}
|
|
|
|
radeon_ring_unlock_commit(rdev, ring);
|
|
kfree(data);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_init - init driver ring struct.
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
* @ring_size: size of the ring
|
|
* @rptr_offs: offset of the rptr writeback location in the WB buffer
|
|
* @rptr_reg: MMIO offset of the rptr register
|
|
* @wptr_reg: MMIO offset of the wptr register
|
|
* @ptr_reg_shift: bit offset of the rptr/wptr values
|
|
* @ptr_reg_mask: bit mask of the rptr/wptr values
|
|
* @nop: nop packet for this ring
|
|
*
|
|
* Initialize the driver information for the selected ring (all asics).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size,
|
|
unsigned rptr_offs, unsigned rptr_reg, unsigned wptr_reg,
|
|
u32 ptr_reg_shift, u32 ptr_reg_mask, u32 nop)
|
|
{
|
|
int r;
|
|
|
|
ring->ring_size = ring_size;
|
|
ring->rptr_offs = rptr_offs;
|
|
ring->rptr_reg = rptr_reg;
|
|
ring->wptr_reg = wptr_reg;
|
|
ring->ptr_reg_shift = ptr_reg_shift;
|
|
ring->ptr_reg_mask = ptr_reg_mask;
|
|
ring->nop = nop;
|
|
/* Allocate ring buffer */
|
|
if (ring->ring_obj == NULL) {
|
|
r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true,
|
|
RADEON_GEM_DOMAIN_GTT,
|
|
NULL, &ring->ring_obj);
|
|
if (r) {
|
|
dev_err(rdev->dev, "(%d) ring create failed\n", r);
|
|
return r;
|
|
}
|
|
r = radeon_bo_reserve(ring->ring_obj, false);
|
|
if (unlikely(r != 0))
|
|
return r;
|
|
r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT,
|
|
&ring->gpu_addr);
|
|
if (r) {
|
|
radeon_bo_unreserve(ring->ring_obj);
|
|
dev_err(rdev->dev, "(%d) ring pin failed\n", r);
|
|
return r;
|
|
}
|
|
r = radeon_bo_kmap(ring->ring_obj,
|
|
(void **)&ring->ring);
|
|
radeon_bo_unreserve(ring->ring_obj);
|
|
if (r) {
|
|
dev_err(rdev->dev, "(%d) ring map failed\n", r);
|
|
return r;
|
|
}
|
|
}
|
|
ring->ptr_mask = (ring->ring_size / 4) - 1;
|
|
ring->ring_free_dw = ring->ring_size / 4;
|
|
if (rdev->wb.enabled) {
|
|
u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4);
|
|
ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index;
|
|
ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4];
|
|
}
|
|
if (radeon_debugfs_ring_init(rdev, ring)) {
|
|
DRM_ERROR("Failed to register debugfs file for rings !\n");
|
|
}
|
|
radeon_ring_lockup_update(ring);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_ring_fini - tear down the driver ring struct.
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Tear down the driver information for the selected ring (all asics).
|
|
*/
|
|
void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
int r;
|
|
struct radeon_bo *ring_obj;
|
|
|
|
mutex_lock(&rdev->ring_lock);
|
|
ring_obj = ring->ring_obj;
|
|
ring->ready = false;
|
|
ring->ring = NULL;
|
|
ring->ring_obj = NULL;
|
|
mutex_unlock(&rdev->ring_lock);
|
|
|
|
if (ring_obj) {
|
|
r = radeon_bo_reserve(ring_obj, false);
|
|
if (likely(r == 0)) {
|
|
radeon_bo_kunmap(ring_obj);
|
|
radeon_bo_unpin(ring_obj);
|
|
radeon_bo_unreserve(ring_obj);
|
|
}
|
|
radeon_bo_unref(&ring_obj);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Debugfs info
|
|
*/
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
|
|
static int radeon_debugfs_ring_info(struct seq_file *m, void *data)
|
|
{
|
|
struct drm_info_node *node = (struct drm_info_node *) m->private;
|
|
struct drm_device *dev = node->minor->dev;
|
|
struct radeon_device *rdev = dev->dev_private;
|
|
int ridx = *(int*)node->info_ent->data;
|
|
struct radeon_ring *ring = &rdev->ring[ridx];
|
|
unsigned count, i, j;
|
|
|
|
radeon_ring_free_size(rdev, ring);
|
|
count = (ring->ring_size / 4) - ring->ring_free_dw;
|
|
seq_printf(m, "wptr(0x%04x): 0x%08x\n", ring->wptr_reg, RREG32(ring->wptr_reg));
|
|
seq_printf(m, "rptr(0x%04x): 0x%08x\n", ring->rptr_reg, RREG32(ring->rptr_reg));
|
|
if (ring->rptr_save_reg) {
|
|
seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg,
|
|
RREG32(ring->rptr_save_reg));
|
|
}
|
|
seq_printf(m, "driver's copy of the wptr: 0x%08x\n", ring->wptr);
|
|
seq_printf(m, "driver's copy of the rptr: 0x%08x\n", ring->rptr);
|
|
seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw);
|
|
seq_printf(m, "%u dwords in ring\n", count);
|
|
i = ring->rptr;
|
|
for (j = 0; j <= count; j++) {
|
|
seq_printf(m, "r[%04d]=0x%08x\n", i, ring->ring[i]);
|
|
i = (i + 1) & ring->ptr_mask;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int radeon_ring_type_gfx_index = RADEON_RING_TYPE_GFX_INDEX;
|
|
static int cayman_ring_type_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX;
|
|
static int cayman_ring_type_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX;
|
|
|
|
static struct drm_info_list radeon_debugfs_ring_info_list[] = {
|
|
{"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_ring_type_gfx_index},
|
|
{"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_ring_type_cp1_index},
|
|
{"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_ring_type_cp2_index},
|
|
};
|
|
|
|
static int radeon_debugfs_sa_info(struct seq_file *m, void *data)
|
|
{
|
|
struct drm_info_node *node = (struct drm_info_node *) m->private;
|
|
struct drm_device *dev = node->minor->dev;
|
|
struct radeon_device *rdev = dev->dev_private;
|
|
|
|
radeon_sa_bo_dump_debug_info(&rdev->ring_tmp_bo, m);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static struct drm_info_list radeon_debugfs_sa_list[] = {
|
|
{"radeon_sa_info", &radeon_debugfs_sa_info, 0, NULL},
|
|
};
|
|
|
|
#endif
|
|
|
|
static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
unsigned i;
|
|
for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) {
|
|
struct drm_info_list *info = &radeon_debugfs_ring_info_list[i];
|
|
int ridx = *(int*)radeon_debugfs_ring_info_list[i].data;
|
|
unsigned r;
|
|
|
|
if (&rdev->ring[ridx] != ring)
|
|
continue;
|
|
|
|
r = radeon_debugfs_add_files(rdev, info, 1);
|
|
if (r)
|
|
return r;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int radeon_debugfs_sa_init(struct radeon_device *rdev)
|
|
{
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
return radeon_debugfs_add_files(rdev, radeon_debugfs_sa_list, 1);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|