linux/include/drm/drm_mode_config.h
Daniel Vetter 613051dac4 drm: locking&new iterators for connector_list
The requirements for connector_list locking are a bit tricky:
- We need to be able to jump over zombie conectors (i.e. with refcount
  == 0, but not yet removed from the list). If instead we require that
  there's no zombies on the list then the final kref_put must happen
  under the list protection lock, which means that locking context
  leaks all over the place. Not pretty - better to deal with zombies
  and wrap the locking just around the list_del in the destructor.

- When we walk the list we must _not_ hold the connector list lock. We
  walk the connector list at an absolutely massive amounts of places,
  if all those places can't ever call drm_connector_unreference the
  code would get unecessarily complicated.

- connector_list needs it own lock, again too many places that walk it
  that we could reuse e.g. mode_config.mutex without resulting in
  inversions.

- Lots of code uses these loops to look-up a connector, i.e. they want
  to be able to call drm_connector_reference. But on the other hand we
  want connectors to stay on that list until they're dead (i.e.
  connector_list can't hold a full reference), which means despite the
  "can't hold lock for the loop body" rule we need to make sure a
  connector doesn't suddenly become a zombie.

At first Dave&I discussed various horror-show approaches using srcu,
but turns out it's fairly easy:

- For the loop body we always hold an additional reference to the
  current connector. That means it can't zombify, and it also means
  it'll stay on the list, which means we can use it as our iterator to
  find the next connector.

- When we try to find the next connector we only have to jump over
  zombies. To make sure we don't chase bad pointers that entire loop
  is protected with the new connect_list_lock spinlock. And because we
  know that we're starting out with a non-zombie (need to drop our
  reference for the old connector only after we have our new one),
  we're guranteed to still be on the connector_list and either find
  the next non-zombie or complete the iteration.

- Only downside is that we need to make sure that the temporary
  reference for the loop body doesn't leak. iter_get/put() functions +
  lockdep make sure that's the case.

- To avoid a flag day the new iterator macro has an _iter postfix. We
  can rename it back once all the users of the unsafe version are gone
  (there's about 100 list walkers for the connector_list).

For now this patch only converts all the list walking in the core,
leaving helpers and drivers for later patches. The nice thing is that
we can now finally remove 2 FIXME comments from the
register/unregister functions.

v2:
- use irqsafe spinlocks, so that we can use this in drm_state_dump
  too.
- nuke drm_modeset_lock_all from drm_connector_init, now entirely
  cargo-culted nonsense.

v3:
- do {} while (!kref_get_unless_zero), makes for a tidier loop (Dave).
- pretty kerneldoc
- add EXPORT_SYMBOL, helpers&drivers are supposed to use this.

v4: Change lockdep annotations to only check whether we release the
iter fake lock again (i.e. make sure that iter_put is called), but
not check any locking dependecies itself. That seams to require a
recursive read lock in trylock mode.

Cc: Dave Airlie <airlied@gmail.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Sean Paul <seanpaul@chromium.org>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20161213230814.19598-6-daniel.vetter@ffwll.ch
2016-12-18 14:32:35 +01:00

672 lines
24 KiB
C

/*
* Copyright (c) 2016 Intel Corporation
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of the copyright holders not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. The copyright holders make no representations
* about the suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
#ifndef __DRM_MODE_CONFIG_H__
#define __DRM_MODE_CONFIG_H__
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/idr.h>
#include <linux/workqueue.h>
#include <drm/drm_modeset_lock.h>
struct drm_file;
struct drm_device;
struct drm_atomic_state;
struct drm_mode_fb_cmd2;
/**
* struct drm_mode_config_funcs - basic driver provided mode setting functions
*
* Some global (i.e. not per-CRTC, connector, etc) mode setting functions that
* involve drivers.
*/
struct drm_mode_config_funcs {
/**
* @fb_create:
*
* Create a new framebuffer object. The core does basic checks on the
* requested metadata, but most of that is left to the driver. See
* struct &drm_mode_fb_cmd2 for details.
*
* If the parameters are deemed valid and the backing storage objects in
* the underlying memory manager all exist, then the driver allocates
* a new &drm_framebuffer structure, subclassed to contain
* driver-specific information (like the internal native buffer object
* references). It also needs to fill out all relevant metadata, which
* should be done by calling drm_helper_mode_fill_fb_struct().
*
* The initialization is finalized by calling drm_framebuffer_init(),
* which registers the framebuffer and makes it accessible to other
* threads.
*
* RETURNS:
*
* A new framebuffer with an initial reference count of 1 or a negative
* error code encoded with ERR_PTR().
*/
struct drm_framebuffer *(*fb_create)(struct drm_device *dev,
struct drm_file *file_priv,
const struct drm_mode_fb_cmd2 *mode_cmd);
/**
* @output_poll_changed:
*
* Callback used by helpers to inform the driver of output configuration
* changes.
*
* Drivers implementing fbdev emulation with the helpers can call
* drm_fb_helper_hotplug_changed from this hook to inform the fbdev
* helper of output changes.
*
* FIXME:
*
* Except that there's no vtable for device-level helper callbacks
* there's no reason this is a core function.
*/
void (*output_poll_changed)(struct drm_device *dev);
/**
* @atomic_check:
*
* This is the only hook to validate an atomic modeset update. This
* function must reject any modeset and state changes which the hardware
* or driver doesn't support. This includes but is of course not limited
* to:
*
* - Checking that the modes, framebuffers, scaling and placement
* requirements and so on are within the limits of the hardware.
*
* - Checking that any hidden shared resources are not oversubscribed.
* This can be shared PLLs, shared lanes, overall memory bandwidth,
* display fifo space (where shared between planes or maybe even
* CRTCs).
*
* - Checking that virtualized resources exported to userspace are not
* oversubscribed. For various reasons it can make sense to expose
* more planes, crtcs or encoders than which are physically there. One
* example is dual-pipe operations (which generally should be hidden
* from userspace if when lockstepped in hardware, exposed otherwise),
* where a plane might need 1 hardware plane (if it's just on one
* pipe), 2 hardware planes (when it spans both pipes) or maybe even
* shared a hardware plane with a 2nd plane (if there's a compatible
* plane requested on the area handled by the other pipe).
*
* - Check that any transitional state is possible and that if
* requested, the update can indeed be done in the vblank period
* without temporarily disabling some functions.
*
* - Check any other constraints the driver or hardware might have.
*
* - This callback also needs to correctly fill out the &drm_crtc_state
* in this update to make sure that drm_atomic_crtc_needs_modeset()
* reflects the nature of the possible update and returns true if and
* only if the update cannot be applied without tearing within one
* vblank on that CRTC. The core uses that information to reject
* updates which require a full modeset (i.e. blanking the screen, or
* at least pausing updates for a substantial amount of time) if
* userspace has disallowed that in its request.
*
* - The driver also does not need to repeat basic input validation
* like done for the corresponding legacy entry points. The core does
* that before calling this hook.
*
* See the documentation of @atomic_commit for an exhaustive list of
* error conditions which don't have to be checked at the
* ->atomic_check() stage?
*
* See the documentation for struct &drm_atomic_state for how exactly
* an atomic modeset update is described.
*
* Drivers using the atomic helpers can implement this hook using
* drm_atomic_helper_check(), or one of the exported sub-functions of
* it.
*
* RETURNS:
*
* 0 on success or one of the below negative error codes:
*
* - -EINVAL, if any of the above constraints are violated.
*
* - -EDEADLK, when returned from an attempt to acquire an additional
* &drm_modeset_lock through drm_modeset_lock().
*
* - -ENOMEM, if allocating additional state sub-structures failed due
* to lack of memory.
*
* - -EINTR, -EAGAIN or -ERESTARTSYS, if the IOCTL should be restarted.
* This can either be due to a pending signal, or because the driver
* needs to completely bail out to recover from an exceptional
* situation like a GPU hang. From a userspace point all errors are
* treated equally.
*/
int (*atomic_check)(struct drm_device *dev,
struct drm_atomic_state *state);
/**
* @atomic_commit:
*
* This is the only hook to commit an atomic modeset update. The core
* guarantees that @atomic_check has been called successfully before
* calling this function, and that nothing has been changed in the
* interim.
*
* See the documentation for struct &drm_atomic_state for how exactly
* an atomic modeset update is described.
*
* Drivers using the atomic helpers can implement this hook using
* drm_atomic_helper_commit(), or one of the exported sub-functions of
* it.
*
* Nonblocking commits (as indicated with the nonblock parameter) must
* do any preparatory work which might result in an unsuccessful commit
* in the context of this callback. The only exceptions are hardware
* errors resulting in -EIO. But even in that case the driver must
* ensure that the display pipe is at least running, to avoid
* compositors crashing when pageflips don't work. Anything else,
* specifically committing the update to the hardware, should be done
* without blocking the caller. For updates which do not require a
* modeset this must be guaranteed.
*
* The driver must wait for any pending rendering to the new
* framebuffers to complete before executing the flip. It should also
* wait for any pending rendering from other drivers if the underlying
* buffer is a shared dma-buf. Nonblocking commits must not wait for
* rendering in the context of this callback.
*
* An application can request to be notified when the atomic commit has
* completed. These events are per-CRTC and can be distinguished by the
* CRTC index supplied in &drm_event to userspace.
*
* The drm core will supply a struct &drm_event in the event
* member of each CRTC's &drm_crtc_state structure. See the
* documentation for &drm_crtc_state for more details about the precise
* semantics of this event.
*
* NOTE:
*
* Drivers are not allowed to shut down any display pipe successfully
* enabled through an atomic commit on their own. Doing so can result in
* compositors crashing if a page flip is suddenly rejected because the
* pipe is off.
*
* RETURNS:
*
* 0 on success or one of the below negative error codes:
*
* - -EBUSY, if a nonblocking updated is requested and there is
* an earlier updated pending. Drivers are allowed to support a queue
* of outstanding updates, but currently no driver supports that.
* Note that drivers must wait for preceding updates to complete if a
* synchronous update is requested, they are not allowed to fail the
* commit in that case.
*
* - -ENOMEM, if the driver failed to allocate memory. Specifically
* this can happen when trying to pin framebuffers, which must only
* be done when committing the state.
*
* - -ENOSPC, as a refinement of the more generic -ENOMEM to indicate
* that the driver has run out of vram, iommu space or similar GPU
* address space needed for framebuffer.
*
* - -EIO, if the hardware completely died.
*
* - -EINTR, -EAGAIN or -ERESTARTSYS, if the IOCTL should be restarted.
* This can either be due to a pending signal, or because the driver
* needs to completely bail out to recover from an exceptional
* situation like a GPU hang. From a userspace point of view all errors are
* treated equally.
*
* This list is exhaustive. Specifically this hook is not allowed to
* return -EINVAL (any invalid requests should be caught in
* @atomic_check) or -EDEADLK (this function must not acquire
* additional modeset locks).
*/
int (*atomic_commit)(struct drm_device *dev,
struct drm_atomic_state *state,
bool nonblock);
/**
* @atomic_state_alloc:
*
* This optional hook can be used by drivers that want to subclass struct
* &drm_atomic_state to be able to track their own driver-private global
* state easily. If this hook is implemented, drivers must also
* implement @atomic_state_clear and @atomic_state_free.
*
* RETURNS:
*
* A new &drm_atomic_state on success or NULL on failure.
*/
struct drm_atomic_state *(*atomic_state_alloc)(struct drm_device *dev);
/**
* @atomic_state_clear:
*
* This hook must clear any driver private state duplicated into the
* passed-in &drm_atomic_state. This hook is called when the caller
* encountered a &drm_modeset_lock deadlock and needs to drop all
* already acquired locks as part of the deadlock avoidance dance
* implemented in drm_modeset_lock_backoff().
*
* Any duplicated state must be invalidated since a concurrent atomic
* update might change it, and the drm atomic interfaces always apply
* updates as relative changes to the current state.
*
* Drivers that implement this must call drm_atomic_state_default_clear()
* to clear common state.
*/
void (*atomic_state_clear)(struct drm_atomic_state *state);
/**
* @atomic_state_free:
*
* This hook needs driver private resources and the &drm_atomic_state
* itself. Note that the core first calls drm_atomic_state_clear() to
* avoid code duplicate between the clear and free hooks.
*
* Drivers that implement this must call drm_atomic_state_default_free()
* to release common resources.
*/
void (*atomic_state_free)(struct drm_atomic_state *state);
};
/**
* struct drm_mode_config - Mode configuration control structure
* @mutex: mutex protecting KMS related lists and structures
* @connection_mutex: ww mutex protecting connector state and routing
* @acquire_ctx: global implicit acquire context used by atomic drivers for
* legacy IOCTLs
* @fb_lock: mutex to protect fb state and lists
* @num_fb: number of fbs available
* @fb_list: list of framebuffers available
* @num_encoder: number of encoders on this device
* @encoder_list: list of encoder objects
* @num_overlay_plane: number of overlay planes on this device
* @num_total_plane: number of universal (i.e. with primary/curso) planes on this device
* @plane_list: list of plane objects
* @num_crtc: number of CRTCs on this device
* @crtc_list: list of CRTC objects
* @property_list: list of property objects
* @min_width: minimum pixel width on this device
* @min_height: minimum pixel height on this device
* @max_width: maximum pixel width on this device
* @max_height: maximum pixel height on this device
* @funcs: core driver provided mode setting functions
* @fb_base: base address of the framebuffer
* @poll_enabled: track polling support for this device
* @poll_running: track polling status for this device
* @delayed_event: track delayed poll uevent deliver for this device
* @output_poll_work: delayed work for polling in process context
* @property_blob_list: list of all the blob property objects
* @blob_lock: mutex for blob property allocation and management
* @*_property: core property tracking
* @preferred_depth: preferred RBG pixel depth, used by fb helpers
* @prefer_shadow: hint to userspace to prefer shadow-fb rendering
* @cursor_width: hint to userspace for max cursor width
* @cursor_height: hint to userspace for max cursor height
* @helper_private: mid-layer private data
*
* Core mode resource tracking structure. All CRTC, encoders, and connectors
* enumerated by the driver are added here, as are global properties. Some
* global restrictions are also here, e.g. dimension restrictions.
*/
struct drm_mode_config {
struct mutex mutex; /* protects configuration (mode lists etc.) */
struct drm_modeset_lock connection_mutex; /* protects connector->encoder and encoder->crtc links */
struct drm_modeset_acquire_ctx *acquire_ctx; /* for legacy _lock_all() / _unlock_all() */
/**
* @idr_mutex:
*
* Mutex for KMS ID allocation and management. Protects both @crtc_idr
* and @tile_idr.
*/
struct mutex idr_mutex;
/**
* @crtc_idr:
*
* Main KMS ID tracking object. Use this idr for all IDs, fb, crtc,
* connector, modes - just makes life easier to have only one.
*/
struct idr crtc_idr;
/**
* @tile_idr:
*
* Use this idr for allocating new IDs for tiled sinks like use in some
* high-res DP MST screens.
*/
struct idr tile_idr;
struct mutex fb_lock; /* proctects global and per-file fb lists */
int num_fb;
struct list_head fb_list;
/**
* @connector_list_lock: Protects @num_connector and
* @connector_list.
*/
spinlock_t connector_list_lock;
/**
* @num_connector: Number of connectors on this device. Protected by
* @connector_list_lock.
*/
int num_connector;
/**
* @connector_ida: ID allocator for connector indices.
*/
struct ida connector_ida;
/**
* @connector_list: List of connector objects. Protected by
* @connector_list_lock. Only use drm_for_each_connector_iter() and
* struct &drm_connector_list_iter to walk this list.
*/
struct list_head connector_list;
int num_encoder;
struct list_head encoder_list;
/*
* Track # of overlay planes separately from # of total planes. By
* default we only advertise overlay planes to userspace; if userspace
* sets the "universal plane" capability bit, we'll go ahead and
* expose all planes.
*/
int num_overlay_plane;
int num_total_plane;
struct list_head plane_list;
int num_crtc;
struct list_head crtc_list;
struct list_head property_list;
int min_width, min_height;
int max_width, max_height;
const struct drm_mode_config_funcs *funcs;
resource_size_t fb_base;
/* output poll support */
bool poll_enabled;
bool poll_running;
bool delayed_event;
struct delayed_work output_poll_work;
struct mutex blob_lock;
/* pointers to standard properties */
struct list_head property_blob_list;
/**
* @edid_property: Default connector property to hold the EDID of the
* currently connected sink, if any.
*/
struct drm_property *edid_property;
/**
* @dpms_property: Default connector property to control the
* connector's DPMS state.
*/
struct drm_property *dpms_property;
/**
* @path_property: Default connector property to hold the DP MST path
* for the port.
*/
struct drm_property *path_property;
/**
* @tile_property: Default connector property to store the tile
* position of a tiled screen, for sinks which need to be driven with
* multiple CRTCs.
*/
struct drm_property *tile_property;
/**
* @plane_type_property: Default plane property to differentiate
* CURSOR, PRIMARY and OVERLAY legacy uses of planes.
*/
struct drm_property *plane_type_property;
/**
* @prop_src_x: Default atomic plane property for the plane source
* position in the connected &drm_framebuffer.
*/
struct drm_property *prop_src_x;
/**
* @prop_src_y: Default atomic plane property for the plane source
* position in the connected &drm_framebuffer.
*/
struct drm_property *prop_src_y;
/**
* @prop_src_w: Default atomic plane property for the plane source
* position in the connected &drm_framebuffer.
*/
struct drm_property *prop_src_w;
/**
* @prop_src_h: Default atomic plane property for the plane source
* position in the connected &drm_framebuffer.
*/
struct drm_property *prop_src_h;
/**
* @prop_crtc_x: Default atomic plane property for the plane destination
* position in the &drm_crtc is is being shown on.
*/
struct drm_property *prop_crtc_x;
/**
* @prop_crtc_y: Default atomic plane property for the plane destination
* position in the &drm_crtc is is being shown on.
*/
struct drm_property *prop_crtc_y;
/**
* @prop_crtc_w: Default atomic plane property for the plane destination
* position in the &drm_crtc is is being shown on.
*/
struct drm_property *prop_crtc_w;
/**
* @prop_crtc_h: Default atomic plane property for the plane destination
* position in the &drm_crtc is is being shown on.
*/
struct drm_property *prop_crtc_h;
/**
* @prop_fb_id: Default atomic plane property to specify the
* &drm_framebuffer.
*/
struct drm_property *prop_fb_id;
/**
* @prop_in_fence_fd: Sync File fd representing the incoming fences
* for a Plane.
*/
struct drm_property *prop_in_fence_fd;
/**
* @prop_out_fence_ptr: Sync File fd pointer representing the
* outgoing fences for a CRTC. Userspace should provide a pointer to a
* value of type s64, and then cast that pointer to u64.
*/
struct drm_property *prop_out_fence_ptr;
/**
* @prop_crtc_id: Default atomic plane property to specify the
* &drm_crtc.
*/
struct drm_property *prop_crtc_id;
/**
* @prop_active: Default atomic CRTC property to control the active
* state, which is the simplified implementation for DPMS in atomic
* drivers.
*/
struct drm_property *prop_active;
/**
* @prop_mode_id: Default atomic CRTC property to set the mode for a
* CRTC. A 0 mode implies that the CRTC is entirely disabled - all
* connectors must be of and active must be set to disabled, too.
*/
struct drm_property *prop_mode_id;
/**
* @dvi_i_subconnector_property: Optional DVI-I property to
* differentiate between analog or digital mode.
*/
struct drm_property *dvi_i_subconnector_property;
/**
* @dvi_i_select_subconnector_property: Optional DVI-I property to
* select between analog or digital mode.
*/
struct drm_property *dvi_i_select_subconnector_property;
/**
* @tv_subconnector_property: Optional TV property to differentiate
* between different TV connector types.
*/
struct drm_property *tv_subconnector_property;
/**
* @tv_select_subconnector_property: Optional TV property to select
* between different TV connector types.
*/
struct drm_property *tv_select_subconnector_property;
/**
* @tv_mode_property: Optional TV property to select
* the output TV mode.
*/
struct drm_property *tv_mode_property;
/**
* @tv_left_margin_property: Optional TV property to set the left
* margin.
*/
struct drm_property *tv_left_margin_property;
/**
* @tv_right_margin_property: Optional TV property to set the right
* margin.
*/
struct drm_property *tv_right_margin_property;
/**
* @tv_top_margin_property: Optional TV property to set the right
* margin.
*/
struct drm_property *tv_top_margin_property;
/**
* @tv_bottom_margin_property: Optional TV property to set the right
* margin.
*/
struct drm_property *tv_bottom_margin_property;
/**
* @tv_brightness_property: Optional TV property to set the
* brightness.
*/
struct drm_property *tv_brightness_property;
/**
* @tv_contrast_property: Optional TV property to set the
* contrast.
*/
struct drm_property *tv_contrast_property;
/**
* @tv_flicker_reduction_property: Optional TV property to control the
* flicker reduction mode.
*/
struct drm_property *tv_flicker_reduction_property;
/**
* @tv_overscan_property: Optional TV property to control the overscan
* setting.
*/
struct drm_property *tv_overscan_property;
/**
* @tv_saturation_property: Optional TV property to set the
* saturation.
*/
struct drm_property *tv_saturation_property;
/**
* @tv_hue_property: Optional TV property to set the hue.
*/
struct drm_property *tv_hue_property;
/**
* @scaling_mode_property: Optional connector property to control the
* upscaling, mostly used for built-in panels.
*/
struct drm_property *scaling_mode_property;
/**
* @aspect_ratio_property: Optional connector property to control the
* HDMI infoframe aspect ratio setting.
*/
struct drm_property *aspect_ratio_property;
/**
* @degamma_lut_property: Optional CRTC property to set the LUT used to
* convert the framebuffer's colors to linear gamma.
*/
struct drm_property *degamma_lut_property;
/**
* @degamma_lut_size_property: Optional CRTC property for the size of
* the degamma LUT as supported by the driver (read-only).
*/
struct drm_property *degamma_lut_size_property;
/**
* @ctm_property: Optional CRTC property to set the
* matrix used to convert colors after the lookup in the
* degamma LUT.
*/
struct drm_property *ctm_property;
/**
* @gamma_lut_property: Optional CRTC property to set the LUT used to
* convert the colors, after the CTM matrix, to the gamma space of the
* connected screen.
*/
struct drm_property *gamma_lut_property;
/**
* @gamma_lut_size_property: Optional CRTC property for the size of the
* gamma LUT as supported by the driver (read-only).
*/
struct drm_property *gamma_lut_size_property;
/**
* @suggested_x_property: Optional connector property with a hint for
* the position of the output on the host's screen.
*/
struct drm_property *suggested_x_property;
/**
* @suggested_y_property: Optional connector property with a hint for
* the position of the output on the host's screen.
*/
struct drm_property *suggested_y_property;
/* dumb ioctl parameters */
uint32_t preferred_depth, prefer_shadow;
/**
* @async_page_flip: Does this device support async flips on the primary
* plane?
*/
bool async_page_flip;
/**
* @allow_fb_modifiers:
*
* Whether the driver supports fb modifiers in the ADDFB2.1 ioctl call.
*/
bool allow_fb_modifiers;
/* cursor size */
uint32_t cursor_width, cursor_height;
struct drm_mode_config_helper_funcs *helper_private;
};
void drm_mode_config_init(struct drm_device *dev);
void drm_mode_config_reset(struct drm_device *dev);
void drm_mode_config_cleanup(struct drm_device *dev);
#endif